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Abstract: A new method is proposed for finding a set of efficient solutions to bi-objective fractional
transportation problems with fuzzy numbers using ranking function. This method is an important tool
for the decision makers to obtain efficient solutions and select the preferred optimal solution from the
satisfaction level. The procedure allows the user to identify next efficient solution to the problem from
the current efficient solution. This new approach enables the decision makers to evaluate the
economic activities and make satisfactory managerial decisions when they are handling a variety of
logistic problems involving two objectives. An illustrative example is presented to clarify the idea of
the proposed approach.
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1. Introduction

Transportation problem nourishes economic and social activity and is cardinal to operations research
and management science. In the classical transportation problem of linear programming, the
traditional objective is one of minimizing the total cost multi-objective transportation problem and
linear fractional programming problem, which has attracted the attention of many researchers in the
past. In general, the real life problems are modeled with multi-objectives, which are measured in
different scales and at the same time are in conflict. In actual classical transportation problems, the
multi-objective functions are generally considered, which include average delivery time of the
commodities, reliability of transportation, product deterioration and so on. A number of optimization
problems are actually multi-objective optimization problems (MOPs), where the objectives are
conflicting. As a result, there is usually no single solution, which optimizes all objectives
simultaneously. A number of techniques have been developed to find a compromise solution to
MOPs. Miettinen [1] refers the reader to the recent book about the theory and algorithms for MOPs.
Fractional programming problems (FPPs) arise from many applied areas such as portfolio selection,
stock cutting, game theory, and numerous decision problems in management science. Many
approaches for FPPs have been exploited in considerable details. See, for example, Avriel et al. [2],
Schaible[3] and Stancu-Minasian [4]. Multi-objective Linear fractional programming problems are
useful targets in production and financial planning and return on investment. There are several ways
to solve the linear fractional programming (LFP) and multi-objective linear fractional programming
(MOLFP) problems [5, 6,7]. Tantawy (2007) proposed a new method for solving linear fractional
programming problems [8]. Singh, Sharma and Dangwal proposed a solution concept to MOLFP
problem using the Taylor polynomial series at optimal point of each linear fractional function in
feasible region [9]. Sulaiman and Abulrahim used transformation technique for solving multi-
objective linear fractional programming problems to single objective linear fractional programming
problem through a new method using mean and median and then solved the problem by modified
simplex method [10, 11]. Bodkhe et al., (2010) used the fuzzy programming technique with
hyperbolic membership function to solve a bi-objective TP as vector minimum problem [12]. in 2005,
an algorithm was proposed by Omar and Yunes for solving multi —objective 1transportation problems
using fuzzy factors [13]. In 2011, Pendian presented a new method for solving two objective
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transportation problems [14]. Pandian and Natarajan, (2010) have introduced a new method for
finding an optimal solution for transportation problems [15]. Amit and Pushpinder (2010) have
introduced ranking of generalized trapezoidal fuzzy numbers based on rank [16].

In this paper, we propose a new method namely; dripping method for finding the set of efficient
solutions to bi-objective transportation fractional problem with fuzzy numbers using ranking function
and percent level of satisfaction of a solution for transportation problem with the proposed model is
introduced. In the proposed method, one can identify next solution to the problem from the current
solution, which differs from utility function method, goal programming approach, fuzzy programming
technique, genetic approach and evolutionary approach. The percentage level of satisfaction of a
solution of the bi-objective transportation fractional problem is then introduced. The dripping method
is illustrated with the help of a numerical example. This new approach enables the decision makers to
evaluate the economic activities and make self- satisfied managerial decisions when they are handling
a variety of logistic problems involving two objectives.

2. The Fractional Transportation Simplex Method [17]

As in the case of a general linear fractional programming problem, the solution process of a linear
fractional transportation problem (LFTP) consists of two phases:

1) Finding an initial basic feasible solution (BFS);

2) Improving the current basic feasible solution until the optimality criterion is satisfied.
Since the process of finding initial BFS for LFPT is the same as in the linear problem (LP) case, we
will focus mainly on the second stage.

Consider the following LFPT problem:
P(x) Yit1 X1 DijXij + Do

(LFTP) Q= =
D(x) Xty Xj-idijxij +do
Subject to
n
xijj=a; fori=12..,m (2.1)
j=1
n
inj = bj for j=12,..,m (2.2)
i=1
X 20, i=12..,mj=12.,n (2:3)

Here and in what follows we suppose that D(x) > 0,Vx = (x;;) € S, where S denotes a feasible set
defined by constraints (2.1)-(2.3). In addition, we assume that
ai>O, b]>0, i=1,2,...,m;j=1,2,...,n
and that total demand equals to total supply, i.e.
n

iai - ij (2.4)
i=1 =1

We now show how the simplex method may be adapted to the case when an LFPT problem must be
solved. First, we have to introduce special simplex multipliers u; ,v]f and ul ,v]'-' associated with
numerator P(X) and denominator D(x), respectively. Elements u; and u1 ,i=12,..,m, correspond
to m supply constraints and elements v]-’ and v] ,j =1,2,...,n, correspond to n demand constraints.
We calculate these variables from the following systems of linear equations

ui +v{ =p; and u; + VJ =dj, (ijefp (2.5)



Then, using the variables ul ) v] ,u and v we define the following 'reduced costs' A and A
A/--_ uf + U', - pij
A ij= u + 17 d”
It is easy to show that the latter may also be expressed as follows

} fori=12,..mj=12..,n (2.6)

Ajj(x) = Ajj — QA ,i=12,..,mj=12,..,n (2.7)

Theorem 2.1: [18] Basic feasible solution X = (xi]-) of LFPT problem is optimal if
Ajj(x)=20,i=12,..,m,j=12,..,n (2.8)

3. Bi-objective Fractional Transportation Problem

Consider the following Bi-objective Fractional Transportation Problems (BFTP):

Px) TMOSE ol il
(BFTP) Maximize Q; = 1) _ Li=12j 1pu ij T Do

D;(x) i le] +dj
P, (x E- p: Xij +
Maximize Qz — 2( ) — i=14&j= 1p1] ij p(;
D, (x) 121 =1 lej+d
Subject to
Yicixij=a; fori=12,..m (3.1)
Yicixij=bj forj=12,..,n 3.2)
Xij = 0, i=12,..mj=12,..,n (3.3)

Here and in what follows we suppose that
D;(x) > 0,D,(x) > 0,vx = (x;;) €S,
where S denotes a feasible set defined by constraints (1.1) to (1.3). Further, we assume that
al->0, bj>0, i=1,2,...,m;j=1,2,...,n
and that total demand equals to total supply, i.e.
i=1a; = Xj=1 bj.
Definition 3.1: [17] A set X° = {xlj ,i=12,..,m;j=12,..,n} is said to be feasible to the
problem (FP) if X satisfies the conditions (1.1) to (1.3).
Definition 3.2: [7] A feasible solution X°is said to be an efficient solution to the problem (P) if there
exists no other feasible X of BTP such that Q;(X) = Q;(X°) and Q,(X) > Q,(X°) or Q,(X) =
(X% and Q;(X) > Q,(X?). Otherwise, it is called non-efficient solution to the problem (P).

4. Bi-objective Fuzzy Fractional Transportation Problem
Consider the following Bi-objective Transportation Problem of linear fractional programming problems

FP) @®=ﬁ®—2%3“%m+%

Di(x) X 1;11ﬂ”+w
Q00 = 2 T 52 Py +
2 = = =
DZ(X) 121 1 le} +d2
Subject to
n
inj =q; fori=12,..,m (1.1)
j=1
n
in,- =bj forj=12..,n (1.2)
i=1



Xij = 0, i=12,..mj=12..,n (1.3)

Here and in what follows we suppose that
D;(x) > 0,D,(x) > 0,vx = (x;) €5,
where S denotes a feasible set defined by constraints (1.1) to (1.3). Further, we assume
a;>0,b;>0, i=12..,mj=12..,n
and that total demand equals to total supply, i.e.
m

n

Zaiszj

=1 j=1

Definition 4.1: [16] The percentage level of satisfaction of the objective of the transportation problem
for the solution U of the transportation problem, L(Z; U) is defined as follows:

Z.(U
(V) x 100 if the problem is maximization type
L(Z,U) = Z (X))
t U) = 0
27:(X{) — Z(U
(M) if the problem is minimization type
Z(X¢)

Where Z(U) is the objective value at the solution U and Z.(X{) is the optimal objective value of the
transportation problem.

Definition 4.2: [7] Let R be real numbers set, @ fuzzy number is a map with below conditions:
1) U is continuous.
2) Mg on[ay,a,] is ascending and continuous.

3) MUy on[asz, a,] is descending and continuous.

That a4, a,, a; and a, are real numbers and fuzzy numbers is shown as @ = [a4, a,, az, a,] and it is
called trapezoidal fuzzy number.

Definition 4.3: [7] If d is trapezoid fuzzy number, membership function is as follows:

x—a1
a,<x<a,
A —ag
ug(x) = 1 a, <x<aj
X—a4
az < x < ay
a3z — Q4

Definition 4.4: [16] a-cut set of a fuzzy number a is shown by A, and is defined as below:

Aq = {xlug(x) = a} = [a, aff]

Definition 4.5:[15] Robust ranking technique which satisfy compensation, linearity, and
additively properties and provides results which consist human intuition. If @ is a fuzzy

number then the Robust Ranking is defined by
1

R(a) = %f (al, + a¥)da
0

Where [al, a¥] is the @ — cut of the fuzzy number a.
In this paper, we use this method for ranking the objective values. The robust ranking
index R(d) gives the representative value of fuzzy number @ .

Definition 4.6: [15] let G and b are two fuzzy numbers then
1) @@= b ifand only if R(@) = R(b)
2) @ =b ifandonly if R(d@) = R(b)



3) @< b ifandonly if R(@) < R(b)

Definition 4.7: [15] Let d@ = (ay,a,, as,a,) and b = (by, by, bz, by) be two trapezoidal fuzzy
numbers then

@

Q

@ é (a1,az,a3,a4) @ (by, by, b3, by) = (ay + by, az + by, a3 + bs,ay + by)
(i) © b = (ay,a;,a3,a4) e(lgbp%'bs}é b4)k: ()‘11 _fbp;:z _Obzfas — b3, a4 — by)
_ a, kay kasz, kay ork >
(i) ka = klay, az a5 04) = {(ka4,ka3,ka2,ka1) fork <0
(iv)  a®b=(ay,a; a3 a4) Q (by, by, b3,bs) = (t1,t5,t3,ts)
where t; = minimum{a, b,, a, by, a,b;, asb,);
t, = minimum{a,b,, a,bs, asb,, asbs);
t; = maximum{a,b,, a,bs, asb,, asbs) and
t, = maximum{a, by, a; by, ashy, asb,)
_ (ay.a5,03,04) (a1 g g ay
(b1,b2,b3,b4) " by

S Qe

)

Now, we need the following theorem, which is used in the proposed method.

Theorem 2.1: [14] LetX0 = {x),i=

(P,) minimize Z; = Z z CijXij

i=1 j=1

=1,2,..,m:j = 1,2,...,n} be an optimal solution to (P1) where

Subject to
Yicixij=a; fori=12,..m
Yieixij=b; forj=12,..,m
xij = O, = 1,2, ...,m;j = 1,2, e n

In addition, Y° = {ylpj,i =1,2,..,m:j = 1,2,..,n} be an optimal solution to (P2) where
n

m
(P,) minimize Z, = Z z djjxj;
i=1j=1
Subject to

Yicixij=a; fori=12,..m
Yic1xij=bj for j=12,...m
Xij >0, i=12, o, MG Jj = 1,2,..,n

Then, U° = {u?j,i =1,2,..,m:j=12,..,n} which is obtained fromX° = {xu,
1,2,..,n} or Y%= {yioj,i =1,2,..,m:j=12,..,n}, is an efficient / non efficient solution to the
problem (P).

i=12,.,mj=

5. Proposed Method:

We now propose a new method namely, dripping method for finding all the solutions to the bi-
objective transportation problem of fractional programming problems (P).The dripping method
proceeds as follows:

Step 1:

Convert fuzzy bi-objective transportation problems into bi-objective transportation problems with
classic number by using Robust Ranking Technique

Step 2:

Construct two individual problems of the given BTFP namely, first objective transportation problem
of fractional programming problems (FOTFP) and second objective transportation problem of
fractional programming problems (SOTFP).



Step 3:

Obtain an optimal solution to the problems FOTFP and SOTFP using transportation algorithm of
fractional programming problems (in order to solve fuzzy single objective problem, obtain solution
with maximum profit method and then optimize it with modified distribution method).

Step 4:

Start with an optimal solution of FOTFP in the SOTFP as a feasible solution, which is an efficient
solution to BTFP.

Step 5:

Select the allocated cell (z, ) with the minimize penalty in the SOTFP. Then, construct a rectangular
looplthat starts and ends at the allocated cell (¢, ¥) and connect some of the unallocated and allocated
cells.

Step 6:

Add and subtract A to and from the transition cells of the loop in such a way that the rim requirements
remain satisfied and assign a sequence of values to A one by one in such a way that the allocated cell

remains non-negative. Then, obtain a feasible solution to SOTFP for each value of 4 , which is also

an efficient / a non-efficient solution to BTFP by the Theorem 2.1.

Step 7:

Check whether the feasible solution to SOTFP obtained from the step 5. It is the optimum solution. If
not, repeat the Steps 4 and 5 until an optimum solution to SOTFP is found. If so, the process can be
stopped and movement to the next step can be made.

Step 8:

Start with an optimal solution of the SOTFP in the FOTFP as a feasible solution which is an efficient/
non-efficient solution to BTFP.

Step 9:

Repeat the steps 4, 5 and 6 for the FOTFP.

Step 10:

Combine all solutions (efficient / non efficient) of BTFP obtained using the optimal solutions of
FOTFP and SOTFP. From this, a set of efficient solutions and a set of non-efficient solutions to the
BTFP can be obtained.

6. Numerical Example:

The proposed method for solving a BFFTP is illustrated by the following example.

Example: Assume there are two objectives under consideration: The first objective function is the
maximization of the ratio of the total delivery speed to total waste along the shipping route and the
second objective function is the maximization of ratio of total profit to total cost. The ratio of the total
delivery speed to total waste along the shipping route and the second objective function is the
maximization of ratio of total profit to total cost are given in the following tables:

(FOTFP)

Destination—> | 1 2 3 4 supply

sourcel

1 (2,3,5,6) (3,5,8,10) (2,3,6,9) (0,1,3,4) 15
(0.1,1,2) (1,2,3.6) (1,2,5.8) (5,5,7.7)

2 (1,1,2,4) (3,5,6,6) (0,0,2,2) (2,3,5,6) 25
(24.5.5) (1,2,3,6) (4.4,7.8) 0,1,3.4)

3 (1,1,2,4) (0,0,1,3) (2,2,5,7) (2,2,4.4) 20
(3.:4,6,7) (1,3,4.4) (2,2,3.5) (1,2,2,3)

demand 14 18 12 16

(SOTFP)

Destination—> | 1 2 3 4 supply

sourcel




1 (9,10,10,11) (13,13,14,16) | (6,7,9,10) (10,10,13,15) 15
(12,14,17,17) | (11,11,13,13) | (14,14,17,19) | (5,7,9,11)

2 (7,8,8,9) (9,11,13,15) (10,13,16,17) | (6,6,9,11) 25
(8,9,11,12) (5,5,7,7) (10,11,14,17) | (9,11,13,15)

3 (7,8,10,11) (4,5,6,9) (12,15,16,17) | (7,9,10,10) 20
(10,13,14,15) | (13,14,16,17) | (9,11,12,16) (7,8,11,14)

demand 14 18 12 16

Convert fuzzy bi-objective transportation problems into bi-objective transportation problems with
classic number by using Robust Ranking Technique to obtain a problem with below characteristics:

(FOTFP):
Destination— 1 2 3 4 supply
sourcel
1 4 6 5 2 15
1 3 4 6
2 2 5 1 4 25
4 3 6 2
3 2 1 4 3 20
5 3 3 2
demand 14 1 12 16
(SOTFP):
Destination— 1 2 3 4 supply
sourcel
1 10 14 8 12 15
15 12 16 8
2 8 12 14 8 25
10 6 13 12
3 9 6 15 9 20
13 15 12 10
demand 14 18 12 16

Obtain fuzzy solution with maximum profit method and then optimize it with modified distribution
method, then FFOTP optimal solution is:

xll = 14,X12 = 1,x21 = 17,x24 = 8,x33 = 12,X34 = 8

Obtain fuzzy solution with maximum profit method and then optimize it with modified distribution
method then FFOTP optimal solution is:

.x14_ = 15,x21 = 7,x22 = 18,x31 = 7,.x33 = 12,X34_ = 1

Now, as in Step 3, we consider the optimal solution of the FOTFP in the SOTFP as a feasible solution
in the following table:




Destination— 1 2 3 4 supply
sourcel
1 10 14 8 12 15
15 14 12 1 16 8
2 8 12 14 8 25
10 6 17 13 12 8
3 9 6 15 9 20
13 15 12 12 10 8
demand 14 18 12 16
251 704, . C . . .
Thus, (E’ %) is the bi-objective value of BTP for the feasible solution x;; = 14 ,x1, = 1,x5; =

17,x24 = 8,X33 = 12 ,X34 = 8
According to Step 4, we construct a rectangular loop (2,4) - (2,2) - (1,2) - (1,4) - (2,4) . By using the
Step 5, we have the following reduced table.

Destination— 1 2 3 4 supply
sourcel
1 10 14 8 12 15
15 14 12 1-—-2 16 8 A
2 8 12 14 8 25
10 6 174+ 4 13 12 8-—-A
3 9 6 15 9 20
13 15 12 12 10 8
demand 14 18 12 16

Now, the current solution to SOTFP is not the optimum solution. Repetition of Steps 5 and 6 results in
the following feasible solution which is better than the prior feasible solution of SOTFP.
Thus, by using Steps 5 and 6, we obtain the set of all-efficient / non-efficient solution from FOTFP to

SOTFP as given below:
Iteratio A Bi-objective value
n
1 0.1} (94,145 + 1,245 + 1,312 + 24) (561 — 4,649 — 32,757 + A, 849 + 31)
(153,193 — 1,274 + 24,360 + 31) ' (481 + 41,534 + 74,651 + 31,746 + 44)
2 {1,2,...,6} (94 — 21,146 + 41,246 + 54,314 + 41) (560 — 21,646 — 24,758 — 21,852 — 21)
(153 — 714,192 — 71,276 — 84,363 — 61) " (410 + 84,496 + 94,596 + 104,690 + 91)
3 {1,2,....9} (112 + 24,170 + 21,276 + 44,338 + 61) (548,634 — 21,746 — 31,840 — 31)
(111 — 51,150 — 44,228 — 44,347 — 32) " (458 + 104,550 + 104,656 + 104, 744 + 104)
4 {1,2,...,8} (130 — 21,188 — 34,312 — 44,392 — 51) (548 — 71,616 — 64,749 — 81,813 —71)
(66 — 32,114 — 21,192 — 44,300 — 71) ' (548 + 41,640 + 44,746 + 61,834 + 64)
5 {1,2,...,8} (114 + 314,164 + 44,280 + 44,352 + 1) (492 + 64,588 + 91,823 + 84,757 + 51)
(42 +1,98,160 — 24,244 + 1) (580 — 104,672 — 111,794 — 114,882 — 111)

Similarly, by using Steps 8 and 9, we obtain the set of all solutions S, from SOTFP to FOTFP is

given below:

Iteration A Bi-objective value
1 {0,1} (138 — 21,196 — 24,312 — 44,360 — 64) (540,640 + 24,718 + 21,797 + 31)
(50 4+ 51,98 + 44,144 + 44,252 + 31) ' (500 — 104,576 — 104,693 — 104,794 — 104)
2 {1,2,...,7} (136 — 24,194 — 31,308 — 64,354 — 71) (556 — 1,642+ 1,722 + 1,800 - 1)
(55+31,102 + 31,148 + 31,255+ 24) ' (490 — 1,566 — 31,696,784)
3 {1,2,...,14} (122 — 34,173 — 32,280 — 44,305 — 21) (533 + 1,649 — 1,699 + 34,793 + 51)
(76 + 72,123 + 614,169 + 31,269 + 91) ' (483 — 44,545 — 21,696 — 51,784 — 52)
4 {1,2,...,7} (804 24,131 4 21,224 + 34,277 + 54) (547 + 21,635+ 4,771 — 21,863 — 21)
(174 — 31,207 — 21,309 — 54,395 — 51) " (427 — 31,517 — 44,626 — 51,714 — 44)




Now the set of all solutions S of the BTP obtained from FOTP to SOTP and from SOTP to FOTP is given below:

number | Q;(x) Q,(®) (R(Q),R(Q,)) | Level Satisfaction

1 92 151 251 318 558 644 756 850 (1.0889,1.3478) (34.21,97.25)
357°268°185" 146 699’ 606°505" 418

2 90 156 256 322 556 151 754 848 (1.1527,1.3212) (36.22,95.34)
351°268°178"139 708°616°185"426

3 88 161 261 326 554 151 752 846 (1.2224,1.2955) (38.41,93.48)
345°268°171°132 717°626°185"434

4 86 166 266 330) 552 151 750 844 (1.2989,1.2706) (40.81,91.69)
(339'268’164'125 (726'636'185'442)

5 84 171 271 334 550 151 748 842 (1.3833,1.2466) (43.47,89.95)
333'268°157"118 735°646°185"450

6 82 176 276 338 548 151 746 840 (1.4769,1.2241) (46.41,88.33)
(327'268'150'111) (74-4'656'185’4-58)

7 114 172 280 344 548 632 743 837 (1.5641,1.1977) (49.15,86.42)
350°224°146"106 754’ 666°560" 648

8 116 174 284 350 548 630 740 834—) (1.6462,1.1730) (51.72,84.64)
(353'220'142'101) 764’ 676°570"478

9 118 177 288 356 548 628 737 831 (1.7353,1.1492) (54.52,82.92)
356°216°138" 96 (774'686'580'488

10 120 180 292 362) 548 626 734 828) (1.8327,1.1262) (57.59,81.26)
(359'212'134' 91 784’ 696°590"498

11 122 183 296 368) 548 624 731 825 (1.9395,1.1040) (60.94,79.67)
362°208°130" 86 (794'706'600’508

12 124 186 300 374 548 622 728 822 (2.0575,1.0826) (64.65,78.12)
(365'204’126' 81 804'716'610’518)

13 126 189 304 380 548 620 725 819 (2.1885,1.0619) (68.77,76.63)
(368'200'122' 76) 814°726°620°528

14 128 192 308 386 548 618 722 816 (2.3351,1.0418) (73.37,75.18)
371°196°118" 71 824'736'630’538)

15 130 195 312 392 548 616 719 813) (2.5007,1.0224) (78.57,73.78)
(374'192'114' 66) (834'746'640'548

16 126 182 304 382 534 604 765 799 (2.6399,1.0114) (82.95,72.98)
286°184°110" 60 (846'758'648’556

17 124 179 300 377 527 598 773 792 (2.7076,1.0003) (85.08,72.18)
(279'180'108' 57) (852'764'652’560)

18 122 176 296 372 520 592 781 785 (2.7824,0.9893) (87.42,71.38)
272°176°106" 54 (858'770'656'564-

19 120 173 292 367 513 586 789 778) (2.8656,0.9785) (90.04,70.61)
(265'172'104' 51 864°776' 660’568

20 118 170 288 362 506 580 797 771 (2.9586,0.9678) (92.96,69.84)
(258'168’102' 48) (870'782'664'572

21 114 164 280 352 492 568 813 757) (3.1825,0.9470) (100,68.33)
(24-4'160’ 98 ' 42) 882°794' 672580

22 117 168 284 353 498 577 663 762 (3.1620,0.9125) (99.35,65.84)
(24—5'158' 98 ' 43 (871'783'660’570

23 120 172 288 354 504 586 671 767 (3.1436,0.9376) (98.78,67.65)
(246'156' 98 ’ 44-) 860'772'64—8'560)

24 123 176 292 355 510 595 679 772) (3.1273,0.9635) (98.26,69.52)
247°154" 98’ 45 (84—9'761’636'550

25 126 180 296 356 516 604 687 777) (3.1129,0.9902) (97.81,71.45)
(24—8'152' 98 ’ 46) 838°750°624"540

26 129 184 300 357 522 613 695 782) (3.1004,1.0179) (97.42,73.45)
249°150’ 98’ 47) (827'739'612’530

27 132 188 304 358 528 622 703 787 (3.0896,1.0418) (97.08,75.17)
250°148° 98 ' 48 (816'728'600’520

28 135 192 308 359 534 631 711 792) (3.0807,1.0764) (96.81,77.67)
(251'14-6' 98 ’ 49) (805'717'588’510

29 138 196 312 360 540 640 719 797 (3.0731,1.1072) (96.56,79.90)
252’144’ 98 "' 50 (794'706'576'500

30 126 179 278 319 550 647 727 795 (2.1267,1.1477) (66.82,82.82)

(65'163'117° 70

784’ 696’551 485




31 124 176 272 312 549 648 728 794 (2.0116,1.1504) (63.21,83.01)
267°169°120" 73 (784'696'54-8'4-84-

32 122 173 266 305 548 649 729 793 (1.9088,1.1530) (59.97,83.20)
269'172'123" 76 (784'696’54—5'4—83)

33 110 161 264 297 537 645 711 813 (1.4755,1.1805) (46.36,85.19)
(305'181'147'104) (764'676'537'4-67

34 107 158 260 295 538 644 714 818 (1.3891,1.1925) (43.65,86.05)
(314'184'153'111) (759'671'535'4—63)

35 104 155 256 293 539 643 717 823 (1.3109,1.2046) (41.19,86.92)
323'187'159'118) (754'666'533'459

36 101 152 252 291 540 642 720 828 (1.2399,1.2170) (38.96,87.82)
(332'190'165'125 (74-9'661'531'4-55)

37 (ﬁ g @ @) 541 641 723 833 (1.1691,1.2295) (36.73,88.72)
341°193°171°132 (74-4'656'529'4-51)

38 9_5 g ﬁ ﬁ) (Fﬁ @ E @ (1.1149,1.2422) (35.03,89.64)
350°196'177"139 739°'651°'527"447

39 92 143 240 285 543 639 729 843 (1.0596,1.2551) (33.29,90.59)
(359'199'183'146) (734'646'525'4-43

40 E E g @) (ﬁ g &5 E (0.9606,1.2815) (30.18,92.47)
377°205°195"160 724" 636°521°435

41 (ﬂ E ﬁ ﬂ) Fi @ E % (0.8744,1.3187) (27.47,95.16)
395°211°207"174 714'626'517'427)

42 ﬁ E E E) 553 638 765 857 (0.8553,1.3493) (26.87,97.36)
380°294°201°165 (702'611'505'4-18

43 2 ﬁ & ﬁ (52 g E E) (0.7434,1.3765) (23.35,99.32)
365°279°195"156 690°596°493"409

44 94 145 245 312 561 642 757 849 (0.7247,1.3858) (22.77,100)
(360'274'193'153) (686'591'489'406)

The above satisfaction level table is very much useful for the decision makers to select the appropriate
efficient solutions to bi-objective fuzzy fractional transportation problems according to their level of
satisfaction of objectives.

7. Conclusion:

In this paper, the proposed method provides the set of efficient solutions for bi-objective fractional
transportation problems with fuzzy numbers using ranking function and percent of function one
solution is introduced for transportation problem. This method is new method that has been used for
solving multi -objective fractional transportation problems with fuzzy numbers in which decision
maker can determine the preferred solution from efficient solution using it. Here the two objectives
inherently take care of at each iteration and the pairs recorded at any step identify the next efficient
pair, thus providing a direction of movement without making use of any utility function. This method
enables the decision makers to select an appropriate solution, depending on their financial position
and their level of satisfaction of objectives.
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