Solving Initial Value Problems with Mendeleev’s Quadrature

Authors

  • Ilis Suryani Universitas Riau
  • M. Imran Universitas Riau
  • Z. Zulkarnain Universitas Riau
  • M. D. H. Gamal Universitas Riau

DOI:

https://doi.org/10.30495/jme.v11i0.508

Keywords:

Initial value problems, Mendeleev’s quadra- ture, Euler’s method, midpoint method, Heun’s method, stability region.

Abstract

This article presents the Mendeleev method to solve the initial value problems. The construction of this method using Mendeleev’s
quadrature by Pleshakov [Comp. Math. and Math. Phys., 52 (2012),
211-212.] to approximate the integral
R xi+1
xi
f(Y (s))ds. We derive the local truncation error and show the stability region of the proposed method. The computational comparisons show that Mendeleev’s
method is better than Euler’s method, midpoint method and Heun’s
method.

Downloads

Published

2017-01-13

Issue

Section

Vol. 11, No. 1, (2017)