Generalized Volterra-type operators from Hardy space into iterated weighted-type ‎spaces

Authors

  • Ebrahim ‎Abbasi
  • Daryoush ‎Molaei
  • Ali Ebrahimi‎

Keywords:

Boundedness, ‎Compactness‎, ‎Generalized Volterra-type operators‎, Hardy space‎, ‎Iterated weighted-type ‎spaces‎

Abstract

Let $H(\mathbb{D})$ be the set of analytic functions on {$\DD$} and for $1\leq p\leq \infty$‎, ‎$H^p$ be the Hardy space‎.

 

‎For $m\in\mathbb{N}$ suppose that $I^m$ be {$m$}th iteration and $\overrightarrow{g}=(g_0,\cdots,g_{m-1})$ where $I(f)=\int_{0}^{z} f(w)dw$ and $\{g_i\}_{i=0}^{m-1}\subset H(\DD)$‎.

‎The generalized Volterra-type operators $I^m_{\overrightarrow{g}}$ on‎

‎$H(\DD)$ is defined as follows‎

‎$$I^m_{\overrightarrow{g}}(f)=I^m(\sum_{i=0}^{m-1}f^{(i)}g_i).$$‎

‎In this paper‎, ‎we investigate boundedness and compactness {of} generalized Volterra-type operators from Hardy space into iterated weighted-type spaces‎,

‎$V_n=\{f\in H(\DD)‎: ‎\ \ \sup_{z\in\DD}(1-|z|^2)|f^{(n)}(z)|<\infty \}$‎.‎

Published

2025-11-02

Issue

Section

Vol. 19, No. 6, (2025)