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Abstract. This paper presents an advanced model for assessing risks
associated with potential catastrophic events faced by insurance com-
panies. The model focuses on describing the behavior of claims related
to phenomena that can have severe and far-reaching consequences. The
mathematical foundation of this model is based on the Fokker-Planck
equation, specifically its fractional form, which provides a robust frame-
work for capturing the dynamics of risk processes. By modeling the
solution to these equations, we derive the density function of the risk
process, enabling a comprehensive understanding of the evolution of
catastrophic events. The study emphasizes perturbed risk processes,
by employing the fixed point theory and utilizing fractional Brownian
motion to model both normal and anomalous diffusion by varying the
Hurst index. A key component of this approach is the calculation of
the ruin probability, a critical risk measure in actuarial science, which
is evaluated for a variety of models with corresponding numerical im-
plementations. This approach offers a novel perspective on actuarial
risk modeling, presenting a new methodology for coupling the severity
of claims with the frequency of occurrence. The final fractional par-
tial differential equations open a gate to using numerical methods in
the field for extreme risk measurement and modeling of catastrophic or
abnormal events.

AMS Subject Classification: 35R11, 60G22, 91B30, 60J60.
Keywords and Phrases: Fokker-Planck Equation, FPDE, Fractional
Brownian Motion, Ruin Probability, Actuarial Science

Received: November 2024; Accepted: February 2025
∗Corresponding Author

1



2 M. TIRI NAZALOU, A. KHANI AND S. REZAPOUR

1 Introduction

Catastrophic phenomena are among the most challenging to model, and
this has been a persistent issue in actuarial science since the field’s ori-
gin. A low amount of historical data on the occurrence of these events,
their unpredictable severity when they happen, and the preparedness of
the community against them are among the important parameters that
make modeling difficult. Insurance companies are among the front liners
when phenomena like floods, pandemic or drought occur. They often
face a destructive number of claims that cannot be met, at least in the
short term. Therefore, they have to calculate the probability of occur-
rence and the possible severity of these events beforehand. Here, we try
to consider many parameters related to the subject and present a risk
process that is both realistic and tractable.

Consider an insurance company that offers protection across vari-
ous domains, such as vehicle insurance, life and health insurance, and
fire insurance. These protections are provided through specific con-
tracts, wherein predefined premiums are collected from policyholders
in exchange for assuming partial or complete risk. In the event of a
catastrophic incident, numerous claims may arise that require prompt
resolution. Additionally, a variety of insurance contracts may have their
respective triggers activated. To model the associated risk, we utilize the
following perturbed surplus process of the insurance company:

Ut = µt−
M∑
i=1

Si +D(t)BH
t , (1)

where

S1 =

N
(1)
t∑
i=1

z1i , S2 =

N
(2)
t∑
i=1

z2i , · · · , SM =

N
(M)
t∑
i=1

zMi .

Additionally, each N i
t is a Poisson process with parameter λi, and z

j
i are

independent and identically distributed (i.i.d.) random variables that
represent the claims with distribution functions Φj

i . We assume there are
M different perils, each with its own definition and corresponding insur-
ance policy as outlined in the contracts. Each customer may have one
or multiple protections related to these M perils. Additionally, D(t)BH

t

is the process, such as Brownian motion or fractional Brownian motion,
that can be used to model bias, error, or dependencies between other
variables.

Remark 1. The Poisson parameters, λi’s, are also used to control the
inclusion of the perils when modeling the situation in a particular area.
For example, λi = 0 indicates that the i-th peril is either not considered
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in the contracts or has a very low probability of occurrence given the type
of catastrophe and the presence of other perils.

We used fractional Brownian motion (FBM) as the noise in our mod-
eling for two reasons. First, this process can model both normal and
anomalous diffusion, which is crucial when modeling catastrophic phe-
nomena. Second, given the assumed interrelationship between the perils,
we use FBM to capture such relationships between the variables in the
model.

1.1 Preliminaries

Random walk has been a valuable tool in modeling various phenomena
across different fields. It is particularly useful for modeling types of dif-
fusion, such as the path of a particle in a given environment, the spread
of diseases or information in a network, and human or animal mobility
[18]. A random walk consists of two components: one related to the
time the walker remains stationary or exhibits negligible movement, and
the other related to the magnitude of the movement or jump made once
the waiting time is over. The size of the jump can vary according to a
variable, such as the price of a stock, the number of infected individuals
during an epidemic, or the amount of a claim that an insurance company
must pay to its policy holders.

The two variables, waiting time and size of the jumps, determine
the behavior of the random walk and the outcome for the walker, ei-
ther after a specific period or asymptotically over time. These variables
can be either deterministic or random; however, at least one of them
must be random to ensure that the walk is classified as random. The
mathematical representation of the random walk is given by:

Rt =

N∑
i=1

Xi,

where N is a process that counts the number of jumps in a particular
time interval and Xi represents the size of each jump. When the waiting
time is not fixed but is instead a continuous random variable, we use Nt,
which is a process that counts the number of jumps up to time t. The
resulting random walk is known as the continuous-time random walk
(CTRW) process, first studied by Montroll and Weiss [21], who provided
a Fourier-Laplace representation of the density function for this process.

ˆ̃P (k, s) =
1− ψ̃(s)

s

1

1− ψ̃(s)f̂(k)
,

where ψ̃(s) is the Laplace transform of the waiting times and f̂(k) is
the Fourier transform of the jumps. Depending on the behavior of these
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two variables, waiting times and the size of the jumps, the CTRW can
describe various types of diffusion, including normal diffusion such as
Brownian motion and anomalous diffusion such as Levy flights. For a
detailed discussion of different asymptotic behaviors and possible explicit
representations of the density function, we refer to [12, 16].

An interesting aspect of modeling such processes is the variety of
approaches that can be used to understand their behavior. These ap-
proaches include master equations and partial differential equation (PDE)
representations. In this work, we adopt the PDE approach, specifically
converting the models into a form known as the Fokker-Planck equa-
tion, which is a family of fractional partial differential equations. The
Fokker-Planck equations have a long history of being used to model var-
ious phenomena across different disciplines [23].

The well-known diffusion equation

∂P (x, t)

∂t
= D

1

2

∂2P (x, t)

∂2x
,

is a special case of the Fokker-Planck equation where the first term is
zero. In this case, the solution represents the probability density func-
tion of Brownian motion [27]. It also corresponds to a special case of the
CTRW where both the jumps and the counting process are well-behaved,
assuming the existence of moments for the waiting times and the jumps.

Although there are other approaches to describing random phenom-
ena, the PDE approach offers a robust arsenal for both analytical and
numerical treatment of the resulting equations. Therefore, we apply this
methodology to risk processes arising from insurance-related problems
and compute key metrics in this field, such as the probability of ruin.
A comprehensive and detailed PDE treatment of CTRW processes has
been reviewed by Metzler et al. [18, 19]. In previous studies, such as the
work by Alkhazzan et al., 2023, the existence and continuity of solutions
for multi-time scale fractional stochastic differential equations have been
addressed, providing the foundation for modeling complex systems like
insurance risk processes [1, 2]. The application of CTRW modeling in
science is extensive, with applications branching out in many directions.
It has a particularly long history in finance and insurance [13, 24, 25, 29].
Specifically, all insurance risk modeling typically begins with a compound
Poisson process, which is a special case of CTRW.

Ut = u+ µt−
Nt∑
i=0

Xi,

where u is the initial capital, µ is the premium rate, Nt is the counting
process corresponding to the number of claims, and Xi represents the
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severity of the claims [10, 14, 30]. The probability of ruin is defined
by the random variable τ(u) = inf{t ≥ 0 : Ut < 0}, which is the first
passage time of the risk process crossing the value zero. Therefore, the
Ultimate probability of ruin is defined as ψ(u) = P [τ(u) <∞].

For finite time, the ∞ is replaced with a finite amount T [3]. Cal-
culating this quantity is a very challenging task; therefore, models are
often designed based on tractability conditions. This means that some
characteristics of the real-world problem are replaced with ones that are
more mathematically manageable, resulting in an approximation of the
original model that better represents the fundamental issue. For in-
stance, the independence assumption between the variables in model 1.1
is unrealistic in many cases. Additionally, the severity of claims is of-
ten assumed to be well-behaved, typically light-tailed, with finite mean
and variance. To address these deficiencies, researchers have introduced
extra parameters to account for real-world phenomena. For example,
they have perturbed the classical model with normal diffusion to cap-
ture possible dependencies between the number and severity of claims
or to include additional factors such as fluctuations due to interest rates
from the insurance company’s investments [6, 9, 26, 28]. There have also
been instances where perturbations used anomalous diffusion to focus
more on the severity variable, considering extreme scenarios and apply-
ing Levy stable motion for this purpose [7].

We will employ a different method to find the Fourier transform and,
consequently, the probability density of continuous-time random walks
(CTRW), with a particular focus on CTRWs perturbed by processes such
as Brownian or fractional Brownian motion. The CTRWs used in our
models will have a common characteristic: the counting process will be
a Poisson process. This choice of counting process is conducive to a
reliable model, as it accommodates various considerations, including the
heavy-tailed nature of the jumps, dependencies between the counting
process and the jumps, and other elements such as market fluctuations.
We begin with a general model, and special cases will be addressed later,
with their calculations presented separately.

2 Main Results

We first calculate the fractional partial differential equation for the case
of a single peril and then extend the results to the case of M perils.

The perturbed risk process is given by

Ut = µt−
Nt∑
i=0

zi +D(t)BH
t , (2)
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where, µ is the premium rate, D(t) is the diffusion function (or kernel
function), Nt is a Poisson process, zi represents the random variable for
the severity of claims, and BH

t is a fractional Brownian motion with
Hurst index H. The following theorem provides the fractional Fokker-
Planck equation for the above jump-diffusion process with drift.

Theorem 2.1. For the jump-diffusion process with drift in Eq.(2) and
the choice of diffusion function in a way that

lim
dt→0

(D(t+ dt)−D(t))2

dt
=
D0Ht

2H−1

dt2H
, (3)

the fractional Fokker-Planck equation equals to

∂P (x, t)

∂t
= −µ∂P (x, t)

∂x

+ D0Ht
2H−1∂

2P (x, t)

∂2x

+ λ

∫ ∞
0

P (x− y, t)dΦ(y)− λP (x, t). (4)

Proof. By conditioning the process on the occurrence of a claim in a
time interval with length dt, the following equation follows

P (x, t+ dt) = (1− λdt)E
[
P (x− µdt−D(t)

[
BH
t+dt −BH

t

]
, t)
]

+ λdtE [P (x− y, t)] .

Assuming that P (x, t) has a Taylor expansion, the following relation
holds

P (x, t+ dt) = (1− λdt)E

[
P (x, t)− µdt∂P (x, t)

∂x

−
(
D(t+ dt)−D(t)

)∂P (x, t)

∂x
[BHt+dt −BHt ]

+
1

2

∂2P (x, t)

∂2x

[
µ2dt2 + 2µdt

(
D(t+ dt)−D(t)

)
[BHt+dt −BHt ]

+
(
D(t+ dt)−D(t)

)2
[BHt+dt −BHt ]2

]
+ · · ·

]
+ λdtE [P (x− y, t)] .

Applying the expectation function and the properties of FBM, we get

P (x, t+ dt)− P (x, t)

dt
= −µ∂P (x, t)

∂x

+
1

2

(
D(t+ dt)−D(t)

)2
dt

(dt)2H
∂2P (x, t)

∂2x

+ λ

∫ ∞
0

P (x− y, t)dΦ(y)− λP (x, t).
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Taking the limit from both sides and applying the assumption (3) the
result follows. �

Taking Fourier transform of Eq. (4) yields

∂P̂ (ω, t)

∂t
= −iωµP̂ (ω, t)−D0Ht

2H−1ω2P̂ (ω, t) + λΦ̂(ω)P̂ (ω, t)− λP̂ (ω, t). (5)

This results in the following solution for the Fourier transform of the
PDF of the risk process (considering P (x, 0) = δ(x) )

P̂ = exp
((
−iωµ−D0Ht

2H−1ω2 + λΦ̂(ω)− λ
)
t
)
. (6)

For the sake of illustration, we take the claims to be normal, so Eq. (6)
becomes

P̂ = exp

((
−iωµ− λ−D0Ht

2H−1ω2 + λ

(
1− ω2

2

))
t

)
= exp

((
−iωµ− (2D0Ht

2H−1 + λ)

2
ω2

)
t

)
.

Therefore

P (x, t) =
exp(− (µt+x)2

2t(λ+2D0Ht2H−1)
)√

2πt(λ+ 2D0Ht2H−1)
.

In the absence of the jump process, this result is similar to the work
of [15] where they used a fractional Langevin approach to calculate the
fractional derivative and the density of the corresponding FBM with a
drift.

M Perils

Consider the model (1), It can be shown, using characteristic function of
sum of Si, that

S =
M∑
i=1

Si =

M∑
i=1

N
(i)
t∑

j=1

zj =

Nt∑
i=1

Zi,

is also a compound Poisson process, where Nt is a Poisson process with
the parameter λ =

∑M
i=1 λi, and Zi are iid distribution function with

following density function Φ(x) =
∑M

i=1
λi
λ Φi(x).

Based on these facts, the (5) for the following model

Ut = µt−
M∑
i=1

N
(i)
t∑

j=1

zj +D(t)BH
t ,
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reads as

∂P̂ (ω, t)

∂t
= −iωµP̂ (ω, t)−D0Ht

2H−1ω2P̂ (ω, t)

+
( M∑
i=1

λi

) M∑
i=1

Φ̂i(ω)P̂ (ω, t)−
( M∑
i=1

λi

)
P̂ (ω, t).

Notice that, using these model we can cluster, for example, the insurance
contracts or regions based on their type and distribution functions.

Similarly the Eq. (6) becomes

P̂ = exp

((
−iωµ−D0Ht

2H−1ω2 +
( M∑
i=1

λi

) M∑
i=1

Φ̂i(ω)−
( M∑
i=1

λi

))
t

)
.

(7)

Example 2.2. Suppose a insurance company has two different kind of
contracts, with different severities. We assume the first category follows
a normal distribution and the second is a exponential. The equation (7)
reads as

P̂ = exp

−iωµ−D0Ht
2H−1

ω
2
+
( M∑
i=1

λi

) M∑
i=1

(
exp(iet−

σ2t2

2
) +

θ

θ − it

)
(ω) −

( M∑
i=1

λi

) t
 ,

where (e, σ), θ are the parameters of normal and exponential distribu-
tions respectively

Remark 2. Using the properties of fractional Brownian motion (FBM),
it is possible to assume that the claims are normally distributed and apply
H > 1

2 for scenarios where severe cases have a high probability of occur-
ring. In the numerical section, we will present a method for calculating
the Hurst index in relation to the problem.

2.1 First Passage Time

The first passage time (FPT) is a concept similar to the ruin index. It
represents the time at which the process first crosses a particular level.
The probability of first passage time can be calculated using the survival
function of the process, which is related to its probability density function
(PDF) by

S(t) =

∫ u

−∞
P (x, t)dx

Pfpt = − ∂

∂t
S(t)

Notice that Pfpt is the probability that the risk process passes the level
u at time t for the first time, and not before that. Next, we derive
results for different parameter choices in the model (2). Since some of
the resulting models play specific roles in calculating the ruin probability,
we will explain them in more detail rather than simply presenting the
final results.
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D0 = 0

This case represents a risk process that considers only the pure jump
process and the linear growth rate of the premium, without incorpo-
rating additional factors. This model illustrates a scenario where the
independence between the number and severity of claims is reasonable,
such as in life insurance, where the death of one policyholder is inde-
pendent of the deaths of others. Additionally, there are no significant
effects from interest rates or inflation on the insurance company concern-
ing the contracts. The model and the corresponding density function are
represented as Ut = µt−

∑Nt
i=0 Yi.

Taking a similar approach as the previous case following equation
follows

∂P (x, t)

∂t
= −µ∂P (x, t)

∂x

+ λ

∫ ∞
0

P (x− y, t)dΦ(y)− λP (x, t),

P̂ = exp
((
−iωµ+ λΦ̂(ω)− λ

)
t
)

(8)

Example 2.3. We consider two cases for the claims, normal and power
law distribution, and find a solution for Eq.(8) accordingly. For the
normal case we have

Φ̂(ω) = exp

(
−ω2

2

)
,

where we used a standard normal distribution to simplify the calcula-
tions. Therefore, Eq.(8) reads

P̂ = exp

((
−iωµ+ λ exp

(
−ω2

2

)
− λ
)
t

)
Notice, behavior of a function at infinity mimics its Fourier transform’s
behavior when ω goes to zero. So we can take the following approxima-
tion

P̂ = exp

((
−iωµ− λ+ λ

(
1− ω2

2

))
t

)
= exp

((
−iωµ− λ

2
ω2

)
t

)
.

Taking inverse Fourier transform, the following probability density func-
tion results

P (x, t) =
exp(− (µt+x)2

2tλ )
√

2πtλ
,
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which is, as expected, the distribution of a Brownian process. Taking
λ = 1 and µ = 0, we obtain the standard Brownian motion. Interestingly,
we provide a demonstration of the Central Limit Theorem (CLT) in a
novel way. Thus, the survival function S(t) is

S(t) = Φ

(
u+ µt√

tλ

)
,

where Φ denotes the CDF of the standard normal distribution. There-
fore,

Pfpt = − 1√
2π

exp

−
(
u+µt√
tλ

)2
2

(µ− u+µt
2t√
tλ

)
.

Now, suppose the claims follow a distribution with power-law asymptotic
behavior

Φ(x) =
1

|x|1+α
,

with following Fourier transform (its approximation)

Φ̂(k) = 1− |ω|α.

Following this choice for claims, the Eq.(8)

P̂ = exp ((−iωµ+ λ(1− |ω|α)− λ) t)

= exp ((−iωµ− |ω|α) t) .

The inverse Fourier of this function results [18]

P (x, t) =
1

(Kαt)
1
α

Lα
( x− µ

(Kαt)
1
α

)
=

π

αx
H1,1

2,2

[ x− µ
[(Kαt)]

1
α

∣∣∣(1, 1

α
), (1,

1

2
); (1, 1), (1,

1

2
)
]
,

where Kα is the diffusion parameter related to severity and the number
of the claims, and H is Fox H-function (see [8] for more on H-functions).

D0 = 0, Random Premiums

Here, we assume that policyholders have the option to pay the premium
either during the contract period or with potential delays or early pay-
ments to the insurance company.

Ut =

N1
t∑

i=1

Xi −
N2
t∑

i=1

Yi,

To find this probability, we use the fact that the combination of two
compound Poisson processes results in another compound Poisson pro-
cess [4]. The resulting process has a counting process Nt which is a
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Poisson process with parameter λ = λ1 + λ2, and the reward variable Z
has the following distribution:

λ1
λ1 + λ2

F1(x) +
λ2

λ1 + λ2
F2(x),

where F1, F2 are distributions of X,−Y respectively. The result is fol-
lowing process for Ut =

∑N(t)
i=1 Zi.

The rest of the calculations are similar to the previous case except
with a zero drift.

H = 1
2

Consider the following model of an insurance company’s capital as a
classical risk process perturbed by a Brownian motion

Ut = µt−
N(t)∑
i=0

zi +DBt,

similar calculations result

∂P (x, t)

∂t
= −µ∂P (x, t)

∂x
+D

1

2

∂2P (x, t)

∂2x

+ λ

∫ ∞
0

P (x− y, t)dΦ(y)− λP (x, t).

P̂ = exp

((
−iωµ− D

2
ω2 + λΦ̂(ω)− λ

)
t

)
(9)

The above function is not straightforward to invert using the Fourier
transform, but in some cases, the Taylor series expansion can be used to
find the inverse. However, since we already have the Fourier transform of
the density function, we can use it to calculate the moments of the dis-
tribution. For more complex cases, such as power-law distributions for
the claims, it is common to use these moments to approximate the prob-
ability density function of the risk process. For demonstration purposes,
let us consider the claims to be normally distributed once again

Φ̂(ω) = exp

(
−ω2

2

)
So the equation (9) reads

P̂ = exp

((
−iωµ− D

2
ω2 + λ exp

(
−ω2

2

)
− λ

)
t

)
Again, the behavior of a function at infinity mimics its Fourier trans-
form’s behavior when ω goes to zero. So we can take the following
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approximation

P̂ = exp

((
−iωµ− λ− D

2
ω2 + λ

(
1− ω2

2

))
t

)
= exp

((
−iωµ− (D + λ)

2
ω2

)
t

)
Taking inverse Fourier transform, the following probability density func-
tion results

P (x, t) =
exp(− (µt+x)2

2t(λ+D))√
2πt(λ+D)

,

which is just the distribution of a modified (shifted) Brownian motion.
Similarly we can calculate the survival function and probability of ruin
as follows

S(t) =

∫ u

−∞

exp
(
− (µt+x)2

2t(λ+D)

)
√

2πt(λ+D)
dx

Substituting x =
√
t(λ+D) z − µt and simplifying, we get:

S(t) = Φ

(
u+ µt√
t(λ+D)

)
,

where Φ denotes the CDF of the standard normal distribution.
The probability of ruin Pfpt is given by

Pfpt = − ∂

∂t
S(t)

Differentiating S(t) with respect to t, we have

Pfpt =
e
− (u+µt)2

2t(D+λ) (D + λ)(−u+ µt)

2
√

2π(t(D + λ))3/2

3 Coupled Case

In this section we present a model in which the waiting time and sever-
ity of the claims are dependent. we couple them through the following
relation

Φ(x|t) = φ(x)δ(x− atρ), (10)

where φ(x) is a density function regardless of time and a, ρ are con-
stant parameters. Using this coupling equation, we calculate the Fokker-
Planck equation of following model

Ut = µt−
N(t)∑
i=0

zi +DBt.
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Similar to the previous models we use conditioning on the occurrence of
a claim in a short time dt

P (x, t+ dt) = (1− λdt)E [P (x− µdt−D [Bt+dt −Bt] , t)]
+ λdtE [P (x− y, t)] .

Assuming that P (x, t) has a Taylor expansion, the following relation
holds

P (x, t+ dt) = (1− λdt)E

[
P (x, t)− µdt∂P (x, t)

∂x

− D
∂P (x, t)

∂x
[Bt+dt −Bt]

+
1

2

∂2P (x, t)

∂2x

[
µ2dt2 + 2µdtD[Bt+dt −Bt]

+ D2[Bt+dt −Bt]2
]

+ · · ·

]
+ λdtE [P (x− y, t)] .

Applying the expectation function and the properties of FBM, we get

P (x, t+ dt)− P (x, t)

dt
= −µ∂P (x, t)

∂x

+
1

2
D2 ∂

2P (x, t)

∂2x

+ λ

∫ ∞
0

P (x− y, t)dΦ(y|t)− λP (x, t).

To solve this equation, we apply Fourier transform with respect to x
and substitute the Eq. (10)

∂P̂ (ω, t)

∂t
= −iωµP̂ (ω, t)−D2ω2P̂ (ω, t) + λφ(atρ)e−ikat

ρ

P̂ (ω, t)− λP̂ (ω, t),

where we used the fact that∫ ∞
−∞

φ(x)δ(x− atρ)e−ikxdx = φ(atρ)e−ikat
ρ
.

This results in the following solution for the Fourier transform of the
PDF of the risk process (considering P (x, 0) = δ(x) )

P̂ = exp
((
−iωµ−D2ω2 + λφ(atρ)e−ikat

ρ − λ
)
t
)
.

4 Real-World Application

In the models presented, two parameters are crucial: H and α, where H
is the Hurst index and α is the power-law parameter. These parameters
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characterize the type of diffusion induced by the continuous-time random
walk (CTRW) of the risk process or the perturbation process in many
insurance-linked models. Their values determine the appropriate mod-
eling of sub-diffusion and super-diffusion processes to accurately reflect
real-world scenarios. Therefore, the initial task in modeling is to iden-
tify whether normal or anomalous diffusion is required for the problem at
hand. Subsequently, these parameters will influence the behavior of the
resulting density function and, consequently, the ruin probabilities. We
use a ranking method to better quantify the diffusion parameters. This
approach considers both the quality and quantity of the problem, aiming
to develop a model that can predict future situations more accurately.

We illustrate this method through an example in the insurance sec-
tor, where a company is considering selling health insurance related to
potential epidemic or endemic events. We adjust the model parameters
based on non-pharmaceutical interventions implemented by governments
to control the virus. Specifically, we use findings from two papers [5, 11],
which examine the impact and effectiveness of restrictions aimed at halt-
ing or slowing the virus’s spread. We use Table 2 from [5] as our primary
reference for the measures of restrictions imposed by different countries
in response to the COVID-19 pandemic. Additionally, we utilize the
rankings presented in [5, 11] to calculate the parameters α and H for
each region.

Variables a1,··· ,20 ∈ {0, 1} are defined such that ai = 1 if the gov-
ernment applies the intervention ranked i, and ai = 0 otherwise. Based
on the rankings presented in this table, we assign the following values
to the Hurst parameter based on the interventions implemented by the
government in the region under study:

H = 1− θ
20∑
i=1

aiωi,

in which 0 < θ ≤ 1 is a parameter used to capture the community
structure in a population.

ω1 ω2 ω3 ω4 ω5 ω6 ω7 ω8 ω9 ω10 ω11 ω12 ω13 ω14 ω15 ω16 ω17 ω18 ω19 ω20

0.178125 0.140625 0.103125 0.078125 0.0625 0.05 0.0375 0.0375 0.0375 0.0375 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.0125

Table 1: The ranked parameters related to the interventions taken by
countries.

We considered the Iranian health-care system to value ai’s and after
conducting an on-field investigation (which involved a regression analysis
of several countries and regions) we also calculated θ = 0.2. Considering
these results, we calculated the Hurst index as H = 0.79. Assuming the
model be 2 and with the assumption that µ = 110, λ = 3 for the average
number of infected people during the COVID pandemic and the rate of
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new infected people from already infected ones, we get

P (x, t) =
exp

(
− (140t+x)2

2t(3+2D0·0.79·t2·0.79−1)

)
√

2πt (3 + 2D0 · 0.79 · t2·0.79−1)
Therefore

S(t) = Φ

(
u+ 140t√

t (3 + 2D0 · 0.79 · t1.58)

)
,

and

Pfpt = − d

dt
S(t) = −φ

(
u+ 140t√

t (3 + 2D0 · 0.79 · t1.58)

)
· d
dt

(
u+ 140t√

t (3 + 2D0 · 0.79 · t1.58)

)

We can also use a model with a power law distribution for the number
of cases, or claims in insurance terminology, we need to estimate the
parameter α which corresponds to the power-law behavior of the claims’
variable. If we consider model (2), where Hurst index is zero, we have

P (x, t) =
π

αx
H1,1

2,2

[ x− µ
[(Kαt)]

1
α

∣∣∣(1, 1

α
), (1,

1

2
); (1, 1), (1,

1

2
)
]
,

S(t) = Fα

(
u− µ

(Kαt)
1
α

)
,

Pfpt(t) =
u− µ

α(Kαt)
1
α tKα

· 1

(Kαt)
1
α

Lα

(
x− µ

(Kαt)
1
α

)
,

Taking α = 2.5 we get

Pfpt(t) =
1

2.5
· (Kαt)

1
2.5

u− µ
· 1

t
· f2.5

(
u− µ

(Kαt)
1
2.5

)
,

where
fα(x) =

1

π

∫ ∞
0

sin(yx)

y1−α
exp

(
−y

2

)
dy.

Remark 3. By incorporating parameters such as the Hurst index, one
can integrate more relevant information into the modeling process, which
is crucial for calculating the probability of ruin. While the behavior of the
severity variable is often predictable based on previously observed data,
there are situations-such as pandemics or earthquakes- in which incorpo-
rating the diffusion counterpart is essential for accurate modeling. For
anomalous diffusion processes like fractional Brownian motion (FBM),
determining the Hurst index can be challenging, especially when the fre-
quency of disasters is insufficient for accurate prediction. In such cases,
factors like community preparedness in the event of a disaster become
key features of the model. Objectives such as those outlined in Table
1 enhance the model’s realism and improve the reliability of the final
results. See also these articles for other applications of fractional differ-
ential modeling in pandemic and virus diffusion modeling [17, 20, 22].
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5 Conclusion

In this study, we have advanced the modeling of catastrophic risks in
insurance by applying fractional partial differential equations (FPDEs),
specifically the fractional Fokker-Planck equation, to better capture the
complexities of extreme risk events. By incorporating fractional Brow-
nian motion, which allows for both normal and anomalous diffusion
through the manipulation of the Hurst index, our approach provides
a refined representation of claim processes that traditional models may
overlook. The numerical results demonstrate the model’s effectiveness
in computing ruin probabilities and depict a more accurate coupling of
claim severity and frequency. This enhanced model offers a valuable tool
for insurance companies to assess and manage catastrophic risks with
greater precision, reflecting the subtle variations in risk dynamics that
standard approaches might miss. The introduction of fractional FPDEs
signifies a substantial advancement in actuarial risk modeling, offering
deeper insights and improved risk predictions. Future research can build
on these findings by further exploring the model’s applicability across
various risk scenarios and integrating additional stochastic processes to
refine its predictive capabilities.
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