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Abstract

This paper deals with the existence and uniqueness results for a class of impul-
sive boundary value problem for implicit nonlinear fractional differential equa-
tions and k-Generalized t-Hilfer fractional derivative involving both retarded
and advanced arguments. Our results are based on some suitable fixed point
theorems. Suitable illustrative examples are provided.

Key words and phrases: 1-Hilfer fractional derivative, k-generalized -Hilfer frac-
tional derivative, impulsions, retarded arguments, advanced arguments, existence, unique-
ness.

AMS (MOS) Subject Classifications: 34A08, 26A33, 34A12.

1 Introduction

The fractional calculus has long been an attractive research topic in functional space
theory due to its applicability in the modeling and scientific understanding of nat-
ural phenomena. Indeed, several applications in viscoelasticity and electrochemistry
have been investigated. Non-integer derivatives of fractional order have been suc-
cessfully used to generalize the fundamental laws of nature. For more details, we
recommend [1-3,8,12,14,19-23]. The authors of [6,7, 13, 15] explored the existence,
stability and uniqueness of solutions for various problems with fractional differential
equation and inclusions concerning retarded or advanced arguments. Recently in [10],
Diaz presented the definitions of the special functions k-gamma and k-beta. Several
findings and generalizations for various fractional integrals and derivatives based on
the properties of the these special functions can be found in [9,16,17]. In [26], Sousa
et al. introduce another so-called -Hilfer fractional derivative with respect to another
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function and gave some important properties concerning this type of fractional opera-
tors. We direct readers to the papers [4,5,24,25] and the references therein for further
results based on this operator.

Recently in [22], we established existence, uniqueness and Ulam stability results to
the boundary value problem with nonlinear implicit generalized Hilfer type fractional
differential equation with impulses:

(¢Q+@():f0“0<”) )U)WEkaZQ”Wm

N\

(psz%_'yu> ) = (pjé{?u) (t) + Le(ulty)); k=1,...,m,

e (P (@) e (P ) (6) = s

where thaf 2T, ™7 are the generalized Hilfer fractional derivative of order o € (0,1)
k k

and type € [0,1] and generalized fractional integral of order 1 — ~, (fy =a+p—afb)

respectively, ¢1, ¢o, c3 are reals with ¢; + o # 0, Jy = (tg, trr1;k=0,...,m, a =1ty <

t < oo <ty < tppr = b < o0, ulty) = hm u(ty + €) and u(t,) = l1m u(ty + ¢€)
0~

represent the right and left hand limits of u( ) at t = tg, [ : (a,b] x RxR — R is
a given function and Ly : R — R; £k = 1,...,m are given continuous functions. The
proved results rely on Banach contraction principle, Krasnoselskii and Schaefer fixed
point theorems.

In keeping with the spirit of generalizing the previous results, in this paper, we
establish existence and uniqueness results to the following k-generalized 1/-Hilfer prob-
lem with nonlinear implicit fractional differential equation with impulses involving both
retarded and advanced arguments :

(fDlre) () = £ (20, (EDL*2) 1) te di=0,om (1)
(T ) (1) = (T 9) (@) + Lalw i = 1ooom, (2)
ar (T8 ) (@) + o (T 9) () = 3)
#(t) = w(t), tela—Aal, A>0, (4)
ﬂo:@@,te@ﬁ+ﬂ,ﬂ>a (5)

where ; Dﬁrd’ jﬁl*g)’k;w are the k-generalized 1-Hilfer fractional derivative of order
v e (0, k) and type r € [0,1] defined in Section 2, and k-generalized v-fractional
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integral of order k(1 —¢) defined in [18] respectively, where £ = +(r(k —9) +9), k > 0,
weC(la—Xa,R),&eC([bb+2],R), [:]a,b]xPCepy (|-XA]) xR — Ris
a given appropriate function specified latter, ay, as, a3 € R such that oy +as # 0, J; :=
(tistigr];i=10,...,m, a =1ty <ty <...<tp <tm =b<o0,u(t) = Eli%hu(tmte)
and u(t;) = el—i>I0n— u(t; + €) represent the right and left hand limits of u(t) at ¢t = ¢; and
L;:R —R;7=1,...,m are given continuous functions. For each function x defined
on [a —A\b+ 5\] and for any ¢ € (a,b], we denote by ' the element defined by

d(ry=z(t+71), TE [—)\,5\] .

This paper has the following structure: In Section 2, some notations are introduced
and we recall some preliminaries about k-generalized -Hilfer fractional integral, the
functions k-Gamma, k-Beta and some auxiliary results. Further, we give the definition
of the k-generalized i-Hilfer type fractional derivative and some essential theorems and
lemmas. In Section 3, we present two existence results for the problem (1)-(5) that
are founded on the Banach contraction principle and Schauder fixed point theorem.
Finally, in the last section, we give an example to illustrate the applicability of our
main result.

2 Preliminaries

First, we present the weighted spaces, notations, definitions, and preliminary facts
which are used in this paper. Let 0 < a <b < o0, J = [a,b], ¥ € (0,k), r € [0,1], k >0
and £ = 1(r(k —9) + ). By C(J,R) we denote the Banach space of all continuous
functions from .J into R with the norm

[2llec = sup{|z(t)] : t € J}.

Let C = C(Jla—\,a],R) and C = C <[b,b+ 5\} ,R) be the spaces endowed, respec-
tively, with the norms

[zlle = sup{[z(#)] : t € [a = A, al},

and
||z = sup {|x(t)| e [b,b+ X} } .

Consider the weighted Banach space

Cewo(J) = {2+ Ji = Rt = WL )a(t) € Ot i R) |
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where \Ifg’(t,ti) = () — () and i = 0,...,m. And, we consider
PC¢jp(J) = {x t(a,b] = Rz € Cgpp(J);i=0,...,m,and there exist
t

x(t;) and <ji(1_§)’k;¢x> (t7);i=1,...,m,with z(t;) = x(ti)},

with the norm

xp};(t,ti)x(t)‘} .

2]l poe 1, =  max sup
S i=0,...,m te[ti,ti+1}

Consider the weighted Banach space

PCs iy ([—)\,E\D = {:U : [—)\,5\} —-R:7— \I/?(t,ti)l'(T) € C([r, 741, R);i=0,...,m,
and there exist z(7; ) and (jﬁ(lfg)’k;wx) (r);i=1,...,m,

t (2

with z(7;7) = o(7;) and 7, = t; — t, for each ¢ € JZ},

with the norm

\I/g(t,ti)l't(T)‘}, sup |z%(7)|, sup |$b(7')‘

||:13t||[7/\’5\] = max | max sup
re TE[=A,0] 7€[0,A]

[TisTit1]
Next, we consider the Banach space
F={o:[a=20b+A] 5 Rial,y, €C aly,,5 € Cand al,y € PCeu(J)}

with the norm
]|z = max {||z|le, [z ll¢, 1] poe 1 }-

Consider the space XfZ(a, b), (c € R, 1 < p < o) of those real-valued Lebesgue
measurable functions ¢ on [a, b] for which | g|| xr < 00, where the norm is defined by

lolve = ( [ b ¢'<t>|g<t>|pdt); |

where 1) is an increasing and positive function on [a,b] such that ¢’ is continuous on
[a,b] with 1(0) = 0. In particular, when ¥(z) = z, the space X} (a,b) coincides with
the L,(a,b) space.
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Definition 2.1. ( [10]) The k-gamma function is defined by
oo tk
[e(a) = / t* e~ ®dt,a > 0.
0

When k — 1 then I'(a)) = T'x(a), we have also some useful following relations T'y(a) =
ke 7'T (9), Te(a + k) = ol'y(@) and Ty (k) = T(1) = 1. Furthermore k-beta function
1s defined as follows

1
By(a, ) = E/ (N1 — )5 e
0

«Q T'r ()l
so that By(or,§) = 1B (£, 7) and Bilor. §) = S
Now, we give all the definitions to the different fractional operators used throughout
this paper.

Definition 2.2. ( [18]) (k-Generalized 1-fractional Integral) Let g € X (a,b) and [a, b]
be a finite or infinite interval on the real azis R = (—00,00), 1(t) > 0 be an increasing
function on (a,b] and '(t) > 0 be continuous on (a,b) and ¥ > 0. The generalized

k-fractional integral operators of a function f (left-sided and right-sided) of order ¥ are
defined by

T (1) = /@Mt,s)w’(s)g(s)ds,

a

T () = / T (s, )0 ()9 (5)ds,

(W) = ()

with k > 0 and &Y (t,s) = KT ()
k

Also in [17], Népoles Valdés gave a more generalized fractional integral operators

defined by
78200 = 15 | G
ka G(u(t) — ¥(s), 2)

. )g(S)dS
T&ng(t) = ka(ﬁ)/t G(s) —v(t), 1)

where G(z,0) € AC]a, b]; the space of absolutely continuous functions defined on [a, b].

Theorem 2.3. ([17]) Let g : [a,b] — R be an integrable function, and take ¥ > 0 and
k> 0. Then jgffg exists for all t € [a,b].

Theorem 2.4. ( [17]) Let g € X{/(a,b) and take 9 > 0 and k > 0. Then jgffg €
C([a, b], R).
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Lemma 2.5. Let 9 > 0, r > 0 and k > 0. Then, we have the following semigroup
property given by

Tt T (1) = Tt () = T T @)

and

%@k;wjr;k;wf(t) — jﬁ_”’kwf(t) — \Z)Tik;wjvik;wf(t)

Proof. By Lemma 1 in [26] and the property of k-gamma function, for ¢ > 0, r > 0
and k > 0, we get

TV TV F(t) =

Lemma 2.6. Let ¥, > 0 and k > 0. Then, we have

0,k Tk, Tk,
ja+ ¢‘1;f ¢(t7 a) - \Ijﬁfr(t a)

and B B
TR (b, 4) = WGP (b, t).

Proof. By Definition 2.2 and using the change of variable
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Using the Definition 2.1 of k-beta function and the relation with gamma function, we
have

TIFOUE (8 a) = TEY (L, a).

a 9+r
]
Theorem 2.7. Let 0 < a < b < 00,0 >0,0<¢<1, k>0 andzx € Cepy(J). If
9
T >1—¢&, then

(jaﬁk;wx) (a) = lim (jaﬂJ’rk;wx) (t) = 0.

t—at

Proof. © € C¢py(J) means that \I/?(t,a)x(t) € C(J,R), then there exists a positive
constant R such that for ¢ € (a, b] we have

W (t, a)z(t)| < R,
thus,
|2(t)| < RU4(kE)| W (1, a)]. (6)

Now, we apply the operator jjf;w(-) on both sides of Equation (6) and using Lemma
2.6, so that we have

‘(Jff;wx) (t)‘ < RT(k¢) Jaﬁ’“?w@’;’g(t,a)‘

= RO (kE) TSV (1 a).

Then, we have the right-hand side — 0 as * — a, and

Tim (7250 (1) = (7552) (@) = 0.

We are now able to define the k-generalized 1)-Hilfer derivative as follows.

V
Definition 2.8. (k-Generalized ¢-Hilfer Derivative) Let n — 1 < z <n withn € N,

J = |a,b] an interval such that —oco < a < b < oo and ¢g,¢ € C"([a,b],R) two
functions such that v is increasing and V'(t) # 0, for all t € J. The k-generalized
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W-Hilfer fractional derivatives (left-sided and right-sided) TDYTY(2) and EDY)" V() of
a function g of order ¥ and type 0 < r < 1, with k > 0 are defined by

HomO, it A ey (1 A\ o 7 (1) (kn=0) ks
1ol ) = (T () (0 )
_ (j;(rkn 9), ’¢6" <knj(1 r)(kn— ﬂ)k¢g>> (t)

and

oot ooy ortbn-okw (L AN (0 ()
1oy ) = (g0 (s (R 2))©
_ (\Zﬁkn_ﬂ)’k;w(_l)néz (kn%(i—r)(kn—ﬁ)ykﬂﬁg)) (t) :

§ 1 d\"
where (5¢ = (W%) .

Lemma 2.9. Lett > a, 9 >0,0<r <1,k>0. Then for 0 <& < 1;§ = %(r(k—ﬁ)—i—

1), we have
b (o =
w Dol <\If5 (s, a)) (t) = 0.

Proof. From Definitions 2.2 and 2.8, we have

-1

JO k= kw <\Iﬂ/’( )) o /t kUPY(t, ) <\I/g’(s,a)> V' (s)ds,

1
where X = —(1—r)(k—14). Now, we make the change of the variable by u =

P(s) — ¥(a)
P(t) —(a)

to obtain

k (m;‘;x(t, a))_l {1

1
(1=r)(k=9) ;¢ \ij - _ _/ 1 — ) X161

then, by the definition of k-beta function

o= 6700 e

we have

O =0k (g ( (t,a)) T % = KDy (k€),
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then, we have

5 (j (A=n)(k=0) kit (xlz}j(t,@)l) ~0.
O

9
Theorem 2.10. If f € C¢,. [a,b],n—1 < T <n,0<r <1, wheren €N and k > 0,
then

<j;9+k: W Hpir wf> Z = an . z)i_;)) {(5n i (jakinfé),k;ibf(a)) } :

where

§=

In particular, if n = 1, we have

1
= (r(kn =) +9).

(g2 12 ) (0 = 5t - LD = gt )

Proof. From Definition 2.8 and Lemma 2.5, we have
<jaﬁ+k¢ HDﬁr¢f) (t) = <jﬁk¢ ja+kn ?) kwén (k”j r)(kn—9) k;wf)> (1)
_ <ja_$-kn 19)+19k1/1(5n (k”I(l ) (kn—19) '“"f)) (1)

_ / (5! () {0 (k5775 1(5)) } s

a

Integrating by parts, we obtain
<jﬂk¢ HDﬂrwf> (1)
1

_ = W(;};(;é(;))g {5:2—1 <knj(1 r kn—ﬁ),k;wf(a))}

§—1 /t Y'(s) (1=7) (kn—9) k¥
+ o~ k:"J T f(s ds
sl AT 1)}
Using the propriety of the functions gamma and k-gamma, we get
<jaﬁ+kw HD19T¢ ) (1)
1

- (w(t]zjg;(qga))g— {53—1 <l€nja(i_7“)(kn—19),kﬂ/)f(a)>}
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+ kgr(g_ 3 /a o @E/E;zs)) {571 1 (knjal 7)(kn—1) k;d)f(s))}ds

So, with integrating by parts n times, we obtain

<j”¢ Hpﬁmf> (t) = ZZ;: (25(?(§__¢2(?;2 {5271 (knj(l . knw),k;wf(a))}

* kzﬁ-nrgs - > [ e (@ ) as
Z klrk _Z)f ;> {53—1 <k”j A0k ¢ )>}
! 1/1/(3) kn—19),k;
* krk<k<1£—n>>/ o0 sope () ds

B e ()

+‘7ak—~(_5 )lm/;[(l r)(kn— ﬁ)kwf(t)’

then by using Lemma 2.5, we get

(72 122 5) (0= 0 = 3 et s (v )

]

Lemma 2.11. Let? > 0,0 <r < 1, and v € C}y.,(J), where k > 0, then fort € (a, 0],
we have

(o2 glva) (@) = a(t),
Proof. We have from Definition 2.8 and Lemma 2.5 that £ = 1 (r(k — ¢) + )
(Foty giiva) (1) = (s, (kTG0 T ) ) (0
(jakf ﬁkwdl (kj(l ) (k—9)+9,k;tp )) (t)
(jakf_fﬁ,k;wal (kjk ke+9 ki )) (),

then, we obtain

(fpir gia) )
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_ 1 S O N I Ao o il
_kﬂﬂf—ﬂﬁﬁﬂl—®+ﬁ%l<ww—ww»kﬁi%ll w@»;wﬂf%]d'

On other hand by integrating by parts, we have

/S ' (T)x(T)dT __ 1
o () —w(n)fTE 164
then, by applying % we get
L [ Y(m)x(r)dr _et? s x'(7)dr
o 7 = x(a) (P(s) —¢(a)) 7% + 7 (8)
”A<w$—ww»*k <A<w®—wv»&k

Now, replacing (8) into Equation (7), and by Dirichlet’s formula and the properties of
k-gamma function, we get

(Foi gl ) (o

1
T kD (kE — O Th(k(1 — &) + 9)

A
k

ds

/t z(a)v'(s) (V(s) — w<a>>j+
(W(t) —b(s)' ~F

a ! W (s)dr ]
+ [ 2/(t)dt - — 1.
/a / (W(t) — ¥(s)) T (1h(s) — (7)) F
U(s) — ¥(a)

Making the following change of variables 1 = in the integral from a to ¢

P(t) —(a)

and similarly changing the variable in the integral from s to ¢, then we have

(Foir 7t ()

1 t / — la —&+2 _ (s -2 <
— L O+m{/$@ﬂ%$@@)@ﬂﬂ () = 0(s)F " d
/ dt/ 1/) 1/} S )&—;—1 (1/)(5,) —1/)(7'))_§+% dT}

s ﬁ)rljkx Sl et ] (w10 + [ o)
- D) E | (i d“] (x“) +f ‘”/“)dt) ’

then by the definition of k-beta function, we obtain

oprss ok DLk — )Te(k(1 ~ €) +9) L
(ot a2e) 0 = L= (0 + [ #ow)
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]

Theorem 2.12. Let the function ¢(-) € C(J,R). Then x € C¢ .y (J;) is a solution of
the differential equation:

(EDZJ%) ) =(t), ted, i=0,....m 0<9<k 0<r<I, 9)
if and only if x satisfies the following Volterra integral equation:

k(1=£),k;
Z+(1 €) wx(ti)

Y CNRY
o(t) = < e (724¢) @), (10)

r(k—9)+9

k )
k , k>0

where £ =

Proof. By applying the fractional integral operator J, i’k;w(-) on both sides of the frac-

tional equation (9) and using Theorem 2.10, we obtain the equation (10).
Now, applying the fractional derivative operator Df_f;w(-) on both sides of the

fractional equation (10), then we get
jkjr(l_g)vkvwx(tl)

HDﬂ,"’;ww) t = HDQZT;T’Z) :
(k o (t) = Dy WY (t, £) (k)

+ (FD T ) (8).

t

Using the Lemma 2.9 and Lemma 2.11, we obtain equation (9). O

3 Existence of Solutions
We consider the following fractional differential equation

(f@;’;f%’%) ()= o(t), te, i=0,....m, (11)
where 0 < ¥ < k,0 < r < 1, with the conditions

(750798 ) (1) = (T 9%00) (07) + Lila ()i = 1,.m, (12)

t (2

a <jak4(_lf€)7k;wx) (a—s—) T (\leélfé),kwx) (b) = s, (13)
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z(t) =w(t), t€a—ANa], >0, (14)
2(t) = 2(t), te [b,b+5\} L A0, (15)
k—19)+0
where § = %, kE > 0, a;,as, a3 € R such that a; + as # 0 and where

o(-) € C(J,R), w(-) € C and & (-) € C.

The following theorem shows that the problem (11)-(15) have a unique solution.

Theorem 3.1. The function x(-) satisfies (11)-(15) if and only if it salisfies

( m

T s 2 L)

(03] + (6D) (65}
Jj=1

1
Du(kE) W (t, )

m+1
&%) k(1—&)+9, ks
— § t:
a1 + g (jt;r—l S0) (t;)

Jj=1

1

WY (¢, 1) T (€) - > Li(a(t;)

(0751 + (6D) (03] + (6] s

z(t) = N m+1 oo i o
2 k(1—&)+0, ks k(1—&)+0, ks
- t; t.
a1 + oo ; (\7";1 S0) <])+; (‘Zf;rl S0) (J)
+3 " Lt)| + (j;i’k%) (1), tedsi=1,...,m,
i=1 '

w(t), t€[a—\al,

&(t), te [b,b+&} .

\

Proof. Assume z satisfies (11)-(15). If t € Jp, then

(FD2re) (1) = e(t),
Theorem 2.12 implies that the solution can be written as
_ ja’ifl—f)kﬂbx(a) (

W (t, a)Tk(kE)
If t € Jy, then Theorem 2.12 implies

k(1-8),k;

t

jio- .fL'( 1)

(1) Te) (0)

t

=(t) WY (1, 1)U (KE)

+(7)

+(Tve) @), e,

(17)
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(T840 (1) + L (o (87))
WY (¢, 1) Ty (kE) (
<jk+(1—§),k;¢$> (a) + <jak£175)+19,k;¢80> (t1) + Ly (2(t7))

. a 9, k9
B WY (¢, )y (kE) ' <j“+ SD) o

If t € Jy, then Theorem 2.12 implies

j’i(lfﬁ)’k;wx(b)

T

t 0 k)
(t) 2 +(T27) (1)
WY (, to) T (k) ( 5 )
(‘Z?F(lig)’k;wx) (t;) + L2(x(t5>> n <j19’k;¢90> (t)
= +
\I;g’ (ta t? I (kf) 2
1 K(1-€) k0 KA—E)+0,k:t -
= J a)+ (T ” to) + Ly (x(t
\P?(t,wk(w[( ) () + (T o) (t2) + L (tr)
k(1—€)+0,k;¢) - 0,k
(O (1) + Laal)] + () 0
Repeating the process in this way, the solution z(t) for t € J;,i = 1,...,m, can be
written as

1 B(1-6)k
z(t) = J + L
O R [< ) @ Z
n Z( k- §+19k1/1(10> (t)
Applying Z’;:l_S)’k;w on both sides of (18), using Lemma 2.6 and taking ¢ = b, we obtain
(‘7{"(1 £)k¢)(b) _ (ja_élﬁki/’) +ZL

+Z ( o @*“%) () + (zgl‘§>+ﬂ’k;w¢) (b).

Multiplying both sides of (19) by as and using condition (13), we obtain

ag = ar (T ) (0) = az (T9a) (o) a3 Lal)
j=1

m+1
1— 4, k;
rar 3 (0 @),

1
i=t N 7

(18)

+ (@’}”‘“%) (t).

(19)
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which implies that
(779 ) (a)

= az i[fj(%(tj)) S mz (‘7#(1 5)+0,k;¢(p> (tj). (20)

(05} + (6] (5] + (0] = (05) + (0%)] = j—1

Substituting (20) into (18) and (17) we obtain (16).

Reciprocally, applying J, ’i(lfg)’k;w on both sides of (16) and using Lemma 2.6 and

Lemma 2.5, we get

( a m-+1
3 k(1—-&)+9,k;
t,
oq + o Oé1—|—062 s (‘71‘;1 ) (J)
Ly(x(t; ( klg)*““”)t, if t € Jp,
QVHME) N+ (7 o) (1), itre
(FHO%00) (1) = " ;
t Qa3 Qg — k(1-&)+9, ks
- E Li(x(t;)) + J t
o] oy ot ) i (J)) j=1 ( o @ ) ()
m+1 7
ay KA—E)+0,kt -
— t; Li(x(t;
o 2 (T 0+ Dbt

+ (jt’i“‘@”’k%) (1), tedii=1,....m
\ i

Next, taking the limit ¢ — a™ of (21) and using Theorem 2.7, with k(1—-¢) < k(1—&)+9,
we obtain

+
(1—-€), kb ) o Qs Z k(1—€)+0,k;9p ‘
(ja+ (a ) a1+a2 a1+a2 = < gp)(])
Q2 _
— E Li(z(t.)).
a1 + Qg ) ]( (J))

Now, taking t = b in (21), we get

<‘7t+<1 €):ki >(b)
- aa (-azs) (Saeo & (e w).

From (22) and (23), we find that

a <j +(1 €).k:9 ) (a*) + az (jli(lfé),k;%) (b) = as,

tm

(22)
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which shows that the boundary condition (13) is satisfied. Next, apply operator
kaffW(,) on both sides of (16), where ¢ = 0,...,m. Then, from Lemma 2.9 and

Lemma 2.11 we obtain equation (11). Also, we can easily show that x satisfies the
equations (12), (14) and (15). This completes the proof. O

As a consequence of Theorem 3.1, we have the following result

r(k—19)+9

Lemma 3.2. Let £ = where 0 < ¥ < k and 0 < r < 1, let f: J X

PCs .y ([—)\,/N\D x R — R be a continuous function, w(-) € C and w(-) € C, then

x € T satisfies the problem (1)-(5) if and only if x is the fixed point of the operator
T :F — F defined by

;

1 « (6% - _
WY (¢, t)Tw(kE) [ i ;Lj(x(tj )
m+1
(Tz) () =9 . 3 Li(x(t;))] T (.73"“"@) (t), teJs;i=0,...,m,
a<t;<t
w(t), t€[a— N al,
B, te[bb+a].

(24)
where ¢ be a function satisfying the functional equation

p(t) = ft,2'(),9(t)).
By Theorem 2.4, we have Tx € F.

The following hypotheses will be used in the sequel :
(Az1) The function f : J x PClg .y ([—)\, X]) x R — R is continuous.
(Az2) There exist constants ¢; > 0 and 0 < (» < 1 such that

|f(t, 21, 91) — f(t 2, 92)] < Gillwy — $2||[,A,;] + Golyr — v

for any 1,29 € PC¢ .y ([—)\, 5\]), y1,y2 € Rand t € (a,b].
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(Az3) There exists a constant ¢; > 0 such that
|Li(y1) — Li(y2)| < flwg(tutwl)’yl — Yol
for any y;,yo € Randi=1,...,m

We are now in a position to state and prove our existence result for the problem
(1)-(5) based on based on Banach’s fixed point theorem [11].

Theorem 3.3. Assume (Ax1)-(Ax3) hold. If

_ 1 o] g TG (0) (@)
£= Ly (k€) [ (|Ofl + | * 1) ( o (1= G)Tw(2k — k§+79)>

G (9(b) — ¥(a))' ( oo L Dulkg) >
(1-¢) a1 + |y (2k — kE+0)  Th(d + k)

<1, (25)

+

then the problem (1)-(5) has a unique solution in F.

Proof. We show that the operator T defined in (24) has a unique fixed point in F.
Let z,y € F. Then for any t € [a — X\, a] U [b, b+ 5\}, we have

| Ta(t) = Ty(t) =
Thus
ITx = Tylle = ITx = Tylle = 0. (26)
Further, for ¢ € (a, b] we have

| Ta(t) = Ty(t)l
_ 1
T Wt ) k(kE)

T (J( TR () - 2<s>|> (t) + 2 1Lia(t) = Lifa(t))|

a<lt;<t

il Z\ J Ly(y(t))]

‘051 +042’

+ 30 (T () — als)]) (1)

a<t;<t

+ (T2 o1(5) — a(s)]) (0)

where ¢ and ¢; be functions satisfying the functional equations

p1(t) = f(t, 2" (), er (1)),
pa(t) = f(t, yt('>= pa(t)).
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By (Az2), we have

|f(t, 2t ou(t) — f(t, ", oa(1))]

lp1(t) — @a(t)] =
< Gl =yl + Glen®) = ea(D)]

Then,
¢
[1(t) — a(t)] < 1_—1c2||wt ~ ¥l
Therefore, for each t € (a, 0]
| Ta(t) = Ty(t)]
1
"Wt ) De(kE)

1
C1las| s

(1= G)|ag + ag] & Z ( i Hﬁkw” f”[—x,&]) (t;)

1_C Z( k(1— £)+z9kax ySH[—A,X]><t9‘)

Thus

61’062| m
Z ” yHPCg,k;w + €1 Z H.?Z - yHPCg,k;w

lag + g | =

+

g (T v ) @

| T(t) = Ty(t)]
1

_ C1|a2| m—+1
T WLt 1) (K

1-G) |a1+a2|2< A >)<tj>

G k(1—€)+0 k1)
P (e )] oyl + 5

2l =yl (7254 0)) ()

By Lemma 2.6, we have

| Ta(t) = Ty(t)]

Iz = yll
= WL )Tk (k)

mCy ((b) — (a))' ~HF
(1= TRk =) + 0+ k)

mb || (m + 1)Clas] (1(b) — v(a)) ™%
|OZ1 + 052‘ + mél + (1 — CQ)‘O{]_ + Oégyl—‘k(k’(l — 5) + 19 + k’)
G (w(t) — () F

o el

Hence

WE(t, ;) (Ta(t) — Ty(t))’
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2 — vl | (o mé (06) — ¥(a) =
< [ ( + 1) (m& + (1= )T (h(1 = )

- Fk(/{f) ‘061+042| §)+19+l€)
G () — (a) Jas| Ty (k€)
* 11— G) (\@1+a2|rk<k<1—§)+z9+k) +Fk(19+k)> !

which implies that
HTZ’ - TyHPCg,k;w

lz—ylle [ [ ool m( (V(b) — () "
= T (ke [ ( * 1) (mél TGNk — ket 19))

G <w<b>—w<a>>”+i< oo L Lulhg) )
(1-¢) o + 0ofTi(2k — kE +9)  Ti(9 + k)

_|_

Thus
T2 = Tylloe s < Lllz = ylle- (27)
By (26) and (27), we obtain
[Tz —Tyle < Lz —ylls

By (25), the operator T is a contraction on F. Hence, by Banach’s contraction principle,
T has a unique fixed point x € F, which is a solution to our problem (1)-(5). O

Our next existence result for the problem (1)-(5) is based on Schauder’s fixed point
theorem [11].

Remark 3.4. We note that by taking:
G =05 G =a, L =0,
@ (t) = |f(t,0,0)] and o1 = [Li(0)].
hypothesis (Ax2) implies that
£ )] < au®) + aOllzl 5 + Ol
and from (Ax3), we get

ILi(y)] < o1 + 92‘11?(ti,ti—1)|y|,

fort € (a,b], = € PCg¢py ([—)\,S\D and y € R, where 01,00 > 0 and q1,q2,q3 €

qi =supqi(t), ¢5 =supgqa(t), ¢5 =supgs(t) < 1.
teJ teJ teJ



20 A. Salim, J. E. Lazreg, M. Benchohra, and E. Karapinar
Theorem 3.5. Assume (Ax1)-(Ax3) hold. If
e ®
P ( ool 1) oy + T (W0) = ¥(@)) T
L(kE) | \la1 + as| (1= g5)Tw(2k — k4 9)

g5 (¥ (b) — (a)) Jas| Ty (k¢)
+ =g <|oz1—|—oz2|l“k(2k—k§+19) + rk(19+k;)>

<1, (28)

then the problem (1)-(5) has at least one solution in F.

Proof. In several steps, we will use Schauder’s fixed point theorem to prove that the
operator 7 defined in (24) has a fixed point.
Step 1: The operator T is continuous.

Let {x,} be a sequence such that x, — x in F. For each ¢t € [a — \,a] U [b, b+ 5\},
we have

| Tn(t) = Ta(t)] =
And for t € (a,b], we have
| Tn(t) = Ta(t)]

1 A _ _
S TRk | o + e 2 Bt~ Bl
|Cl!2| = k(1=&)+9,k;¢ . ‘ (o _ Ll
|a1+a2|2( o) = 006 ) () + 3 IEan(17) ~ Lot

a<t;<t

+ 30 (T () = (o)) (1) | + (T nls) = 0(3)]) (1),

a<t;<t

where ¢ and ¢,, be functions satisfying the functional equations

Since x, — z, then we get ¢, (t) — ¢(t) as n — oo for each t € (a,b], and since f and
L;;i=0,...,m are continuous, then we have

| Tz, — Tx|lr = 0 as n — oco.

Step 2: T(By) C Bu.
Let M a positive constant such that

|as| + oy + ag|Tk(kE) .
M > max J@lle, l@llé ¢ s
= {\a1+a2]Fk(k§)(1—€) le. [ =lle
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such that
| | L mai (¥(b) = v(a)
Iy [(m Tagl 1) ( O T )Tk - k£+19)>
gt (V(b) — (a)) | Ty (k€)
+ (1—q) (\a1+agyrk(2k—k£+ﬂ) + Fk(19+k))

We define the following bounded closed set
By ={x€F:|zlr < M}.
For each t € [a — A, a], we have
[ Tz@®)] < llwle,
and for each t € [b, b+ 5\} , we have
Tz@)] < [l

Further, for each t € (a,b], (24) implies that

|as] |z Z|
|a1—|—a2\ |041+042’ J
m—+1

,OJTQZ( TE ) () 3 (T ot

a<t;<t
+ Z | Li(x(t;

a<lt;<t

1

[ Tx(t) < WY (t, ) Tw(kE)

+ (25161 (1), (29)

By the hypothesis (Az2) and Remark 3.4, for ¢ € (a, b], we have

o (t)] = 1£(t,2", (1)
< a(t) + O]z + wOle®),

which implies that

o) < a1 + M + g3le(t)],

then

qi +€I2M
1—q3

()] < =A
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Thus for ¢ € (a, b], by hypothesis (Az3), Remark 3.4 and from (29) we get

1

< || m(o1 + 02 M) ||
— (k)

|041+062‘ |061+042’

A m+1 3 ] _ ;
b 2L S (0 ) )+ A Y (7200 ) W]

j—1

WY (t, 1) Ta(t)]

+m(o1 + 02 M)

J=1

+ AL ) (T2 ) ().

t;
By Lemma 2.6, we have

1

| < | s m(o1 + 02M )| o]
— (k)

‘0414‘042’ |041+052|
(m + 1)Alan| (1h(b) — (a))'~6+E
o + aa[Th(k(1 — &) + 9 + k)

mA (b(0) — (@) " FE] A @) - o(t:)
Th(k(1— &)+ 9+ k) T(9 + k) '

[WE (L, ) T x(t)

+m(o1 + 02 M)

Thus

vy | ™ mA ((b) — ()
|\IJ£ (t,t;)Tx(t)| < T (k) [ (|CV1 + ) + 1> (m(Ql + 0o M) + T (2k — k& + ) >

|| n Iy (k€) >

L AWE) - pla) (

[e%]
|y + ao|T(kE)
< M.

Then, for each t € [a —ANb+ :\] we obtain

| Tz||g < M.

Step 3: T(Byy) is relatively compact.
Let i, € Ji;i=0,...,m, 74 <7 and let x € By;. Then

‘wg(ﬁ,ti)n(ﬁ) . wg(@,ti)frx(@)‘

Srk(l [ > (FIT @) @)+ Y L)

T1<t; <T2 T1<t; <T2
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L) (T2 lp(9)]) () = W (o, t) (T84 Le(s)]) (72)]

T1 <ti<7—2 T1 <ti<72
T
/t
.

7

+ | (1) (T 051 (72)

WY (1, t) W (1, 8) — WE (o, £) UG (72, )

(s)¢(s)lds

By Lemma 2.6, we get

Ve (71, )T () = W (72, 43) Tw(72)

3 <‘7tl;11—£)+19,k;w|90(5)y> )+ Y. \Li(x(ti_m]

T1<t;<T2 T1<t;<T2

W?(,]H) ti)@§7¢(7—1a S) - \IJ?(7—27 t’L)\I] (7-27 )

< 1
— I'n(k§)

)
t;

A‘I’ (72, i) (¥(72) — ¥ (1))
Th (0 + )

[ (s)|ds

=%

As 7 — 79, the right-hand side of the above inequality tends to zero. The equicon-
tinuity for the other cases is obvious, thus we omit the details. From stepl to step3
with Arzela-Ascoli theorem, we conclude that 7 : F — F continuous and compact. As
a consequence of Schauder’s fixed point theorem, we deduce that 7 has a fixed point
which is a solution of the problem (1)-(5). O

4 An Example

Example 4.1. Taking r — 0, ¥ = %, k=1,J=[1,x], ¥(t) =1In(t), a; = 2, ag = 3,
as =4, A= A =7 and & = %, we obtain an impulsive boundary value problem which
is a particular case of problem (1)-(5) with Hadamard fractional derivative, given by

({fp%f%) (1) = (Humlix) (t) = f (t,xt(~), (HDI%+:B> (t)) S teoUdi,  (30)
(ZH9Rv0) () = (M) () = Laoe)), (31)
2 ( ff%) (1) +3 (jﬁ’l?l”a:) (3) = 4. (32)

z(t) =w(t), te[l—ml], (33)
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z(t) =w(t), te€[r,2n], (34)
where Jy = (1,¢| and J, = (e, m|. Set

1 . |71 |22
" S — ) t
f( 7I17I2) 105 + 103e™t |: T |SlIl< >| + 1+ |[E1| 1+ |I2| 7
and
£
Li(xy) = |cos(t)| + ————,

where t € J, x1 € PC¢ .y ([—)\,:\D and xo € R. Since the function f is continuous,
then the condition (Ax1) is satisfied.
For each x1,y1 € PC¢ .y ([—)\, 5\]), To,Yy2 € R and t € J, we have

1

< 105 ¥ 1080 (”wl —Yillpay + 22 = yzl) ,

[tz w2) = f(E y1,2)
and
|Li(21) — Li(21)| < o1 — 21, 21,71 €R,
then, the conditions (Ax2) and (Ax3) are satisfied with

1
=(=— =1.
Cl <2 208 and 51

Also, We have

18 In(3)\ = In(3) /3
=——|2(1 24+2) | ~0.9152795054 1.
c [5 ( + 507 ) + 50 (5t 0.915279505465885 <

N3

As all the assumptions of Theorem 3.3 are satisfied, the problem (30)-(34) has a unique
solution in F.

In order to prove an existence result based on Theorem 3.5, we can easily show that
all the conditions are satisfied by using Remark 3.4 and taking

1+ 2| sin(?)| 1

105 + 103em—t’

0 =0=1
for each t € J.
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