Refinements of numerical radius inequalities via Specht’s rati‏o

Authors

  • Yaser Khatib Department of Mathematics, Mashhad Branch, Islamic Azad University, Mashhad,Iran.
  • Mahmoud Hassani Department of Mathematics, Mashhad Branch, Islamic Azad University, Mashhad,Iran.
  • Maryam Amyari Department of Mathematics, Mashhad Branch, Islamic Azad University, Mashhad,Iran.

Keywords:

positive operators‎, ‎normalized positive linear map‎, ‎numerical radius‎, ‎Specht's ratio.‎

Abstract

‎We present some new numerical radius inequalities of Hilbert space‎

‎operators‎.

‎We improve and generalize some inequalities with respect to Specht's ratio‎. ‎Let $A$ and $B$ be two positive invertible operators on a Hilbert space $H$ and let $X$ be a bounded operator on $H$‎. ‎Then‎

‎\begin{equation*}‎

‎\omega((A\natural B)X)\leq \frac{1}{2S(\sqrt{h})}\|X^*BX+A\|,\quad (h>0,\‎, ‎h\neq 1)‎

‎\end{equation*}‎

‎where $\|\cdot\|,\,\,\,\omega(\cdot),\,\,\‎, ‎S(\cdot),$ and $\natural$ denote the usual operator norm‎, ‎numerical radius‎, ‎the Specht's ratio‎, ‎and the operator geometric mean‎, ‎respectively‎.

Downloads

Published

2021-10-22

Issue

Section

Vol. 16, No. 7, (2022)