$\delta (2)$-ideal Euclidean hypersurfaces of null $L_1$-2-type
Abstract
We say that an isometric immersion hypersurface $ x:M^n\rightarrow\mathbb{E}^{n+1}$ is ofnull $L_k$-2-type if $x =x_1+x_2$, $ x_1, x_2:M^n\rightarrow\mathbb{E}^{n+1}$ are smooth maps and $L_k x_1 =0, ~ L_k x_2 =\lambda x_2$, $\lambda$ is non-zero real number, $L_k$ is the linearized operator ofthe $(k + 1)$th mean curvature of the hypersurface, i.e., $L_k( f ) =\text{tr} (P_k \circ \text{Hessian} f )$ for$f \in C^\infty(M)$, where $P_k$ is the $k$th Newton transformation, $L_k x = (L_k x_1, \ldots , L_k x_{n+1}), ~x = (x_1, \ldots, x_{n+1})$. In this article, we classify $\delta (2)$-idealEuclidean hypersurfaces of null $L_1$-2-type.
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution 3.0 License.