Norm estimates of the pre--schwarzian derivatives for two certain subclasses of starlike functions
Abstract
Let $\alpha\in[\pi/2,\pi)$ and $\gamma_1,\gamma_2\in(0,1]$. For a normalized analytic functions $f$ in the open unit disc $\Delta$ we consider\begin{equation*}%\label{1definition} \mathcal{M}(\alpha):=\left\{f\in\mathcal{A}: 1+\frac{\alpha-\pi}{2 \sin \alpha}< {\rm Re}\left\{\frac{zf'(z)}{f(z)}\right\} < 1+\frac{\alpha}{2\sin \alpha}, \quad z\in\Delta\right\},\end{equation*}and\begin{equation*}%\label{1definition} \mathcal{S}^*_t(\gamma_1,\gamma_2):=\left\{f\in\mathcal{A}: -\frac{\pi\gamma_1}{2}< \arg\left\{\frac{zf'(z)}{f(z)}\right\} <\frac{\pi\gamma_2}{2}, \quad z\in\Delta\right\}.\end{equation*}In the present paper, we establish a sharp norm estimate of the pre--Schwarzian derivative for functions $f$ belonging two these subclasses of analytic and normalized functions.
Keywords
Univalent; Starlike; Locally univalent; Subordination; Pre--Schwarzian norm.
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution 3.0 License.