Closability of Module σ -Derivatoins

M. Mosadeq*

Mashhad Branch, Islamic Azad University

M. Hassani

Mashhad Branch, Islamic Azad University

A. Niknam

Ferdowsi University

Abstract. Let σ be a linear mapping from a dense subalgebra A of a Banach algebra B into B. In this note, we study the closability of a module σ — derivation δ from A into a B— bimodule M. Applying the notions of torsion-free modules and essential ideals, we present several results concerning the closability of such derivations. Also we investigate the closability of module σ — derivations of the C^* — algebra B into a Hilbert B— bimodule M.

AMS Subject Classification: 46H40; 46L57; 46L08. Keywords and Phrases: $(\sigma-)$ Derivation, deficiency indices, relative boundedness, simple module, torsion-free module, essential ideal, Hilbert C^*- module.

1. Introduction

Throughout the paper, A is a dense subalgebra of a Banach algebra B and M is a Banach B- bimodule. We recall that a linear mapping $\delta: A \to M$ is a (module) derivation if $\delta(ab) = \delta(a)b + a\delta(b)$ for all $a, b \in A$. A derivation δ is said to be inner if there exists an element $u \in M$ such that $\delta(a) := ua - au$, for all $a \in A$. Recently, a number of

Received: June 2011; Final Revision: January 2012

^{*}Corresponding author

analysts have studied various generalized notions of derivations in the context of Banach algebras. As an example, suppose that $\sigma:A\to B$ is a homomorphism. If for every $u\in M$, we take $\delta_u^\sigma:A\to M$ by $\delta_u^\sigma(a):=u\sigma(a)-\sigma(a)u$, then it is easily seen that $\delta_u^\sigma(ab)=\delta_u^\sigma(a)\sigma(b)+\sigma(a)\delta_u^\sigma(b)$ for all $a,b\in A$. Therefore considering the relation $\delta(ab)=\delta(a)b+a\delta(b)$ as an special case of $\delta(ab)=\delta(a)\sigma(b)+\sigma(a)\delta(b)$ for all $a,b\in A$, where $\sigma:A\to B$ is a linear mapping, leads the theory of derivations to be extensively developed.

The above consideration motivated the authors in [8,9] to generalize the notion of derivation as follows:

Let $\sigma: A \to B$ be a linear mapping. By a (module) $\sigma-$ derivation we mean a linear mapping $\delta: A \to M$ such that $\delta(ab) = \delta(a)\sigma(b) + \sigma(a)\delta(b)$ for all $a, b \in A$. In order to construct a $\sigma-$ derivation, suppose that u is an element of M satisfying

$$u(\sigma(ab) - \sigma(a)\sigma(b)) = (\sigma(ab) - \sigma(a)\sigma(b)) u.$$

Then the mapping δ_u^{σ} defined by $\delta_u^{\sigma}(a) := u\sigma(a) - \sigma(a)u$ is a module σ — derivation which is called inner. Note that if σ is an endomorphism, then u can be any arbitrary unitary element of M. It is easy to see that if σ is bounded, then the module σ — derivation δ_u^{σ} is bounded. The reader is referred to [5,8,9,10] for more details on σ — derivations.

A linear mapping $\delta: A \to M$ is called closable if it has a closed linear extension. For a linear mapping $\delta: A \to M$, we let $S(\delta)$ denote the set

$$\{x \in M : there \ is \ a \ sequence \ \{a_n\} \ in \ A \ with \ a_n \to 0 \ and \ \delta(a_n) \to x\}$$

and call it the separating space of δ . δ is closable iff $S(\delta) = \{0\}[15]$. It is obvious that if δ is continuous, then it is closable but the converse dose not hold in general. We refer the reader to [4,13,14] for more information on the concept of closability. In this note as a main result we show that if σ is a continuous surjective linear mapping and δ is a module σ -derivation, then the separating space $S(\delta)$ is bimodule and applying this result we conclude the closability of a σ -derivation δ under some restrictions on the codimensions of the sets $\{a \pm \delta(a) : a \in A\}$ which are called the deficiency indices.

Let $\delta_0: A \to M$ be a linear mapping. Following [14], a module σ -derivation δ is called *relative bounded with respect to* δ_0 (or briefly δ_0 -

bounded) if there exist $\alpha, \beta > 0$ such that $\| \delta(a) \| \le \alpha \| a \| + \beta \| \delta_0(a) \|$, for all $a \in A$. Among other facts we show that for a linear operator $\delta_0 : A \to M$ and a δ_0 — bounded module σ — derivation δ if there exists a core D for δ_0 such that the restriction of δ on D is closable, then δ is closable.

For an element a in a unital Banach algebra A, let sp(a) be the set of all complex number λ such that $\lambda - a$ is not invertible in A and call it the spectrum of a. The spectral radius of a is defined by $\nu(a) := \sup\{|\lambda|: \lambda \in sp(a)\}$. An element a is called quasi-nilpotent if $\nu(a) = 0$. The set of all quasi-nilpotents is denoted by Q(A). An algebra A is called semi-simple if $rad(A) = \{0\}$, where rad(A) is defined to be the intersection of the maximal ideals in A, ([See 3]).

Let B be a C^* - algebra and M be a complex linear space which is a left B- module and $\lambda(bx) = (\lambda b)x = b(\lambda x)$, where $\lambda \in \mathbb{C}$, $b \in B$ and $x \in M$. The space M is called a *left pre-Hilbert* B- module, if there exists a B- valued inner product <, >: $M \times M \to B$ such that for every $x, y, z \in M$, $\lambda \in \mathbb{C}$ and $b \in B$, satisfies the following conditions:

```
(i) < x, x \gg 0
```

$$(ii) < x, x > = 0$$
 if and only if $x = 0$

$$(iii) < x + \lambda y, z > = < x, z > +\lambda < y, z >$$

$$(iv) < x, y > = < y, x > *$$

$$(v) < ax, y >= a < x, y >.$$

Similarly, we can define a right pre-Hilbert B- module. The left (right) pre-Hilbert B- module M is called Hilbert B- module if it is a Banach space with respect to the norm $\|x\| := \|< x, x>\|^{\frac{1}{2}}$. The Hilbert module M is called full if the closed linear span < M, M> of all elements of the form $< x, y> (x, y\in M)$ is equal to B. Let M be a right pre-Hilbert B- module with the inner product $<,>_1$ and a left pre-Hilbert B- module with the inner product $<,>_2$. Then M is a pre-Hilbert B- bimodule if for every $x, y, z\in M$ and for each $a,b\in B$, the following conditins hold:

(i)
$$\langle x, y \rangle_2 z = x \langle y, z \rangle_1$$

(ii) $\langle bx, bx \rangle_1 \leq ||b||^2 \langle x, x \rangle_1$ and $\langle xa, xa \rangle_2 \leq ||a||^2 \langle x, x \rangle_2$. In [7] it is shown that if M is a pre-Hilbert B- bimodule, then $||x|| := ||\langle x, x \rangle_1||^{\frac{1}{2}} = ||\langle x, x \rangle_2||^{\frac{1}{2}}$ defines a norm on M. We also investigate the closability of module σ - derivations from a dense subalgebra A of a C^* - algebra B into Hilbert B- bimodule M.

2. The Results

Theorem 2.1. Let $\delta: A \to M$ be a bounded below module $\sigma-$ derivation such that $S(\delta) = R(\delta)$. Then $\delta = 0$. In particular, δ is closable.

Proof. Let $x \in S(\delta)$. Then there exists a sequence $\{a_n\}$ in A such that $a_n \to 0$ and $\delta(a_n) \to x$. Since $x \in S(\delta) = R(\delta)$, so $\delta(a) = x$ for some $a \in A$. Also δ is bounded below hence there exists C > 0 such that $C \parallel a \parallel \leq \parallel \delta(a) \parallel$ for all $a \in A$. This implies that δ is an injection and δ^{-1} is bounded. Therefore $a_n \to \delta^{-1}(x) = a$. But $a_n \to 0$ thus a = 0 and $a = \delta(a) = 0$. \square

Theorem 2.2. Let M be a simple B- bimodule in the sense that it has no non-trivial two-sided submodule, $\sigma: A \to B$ be a surjective continuous linear mapping and let $\delta: A \to M$ be a module $\sigma-$ derivation. Then either δ is closable or the range $R(\delta)$ of δ is dense in M.

Proof. It is obvious that $S(\delta)$ is a closed subspace of M. We show that $S(\delta)$ is a two-sided submodule of M. Let $b \in B$ and $x \in S(\delta)$. Thus there is a sequence $\{a_n\}$ in A such that $a_n \to 0$ and $\delta(a_n) \to x$. Since σ is a surjection, so there exists $c \in A$ such that $\sigma(c) = b$. Hence $ca_n \to 0$ and by continuity of σ we have $\delta(ca_n) = \sigma(c)\delta(a_n) + \delta(c)\sigma(a_n) \to bx$. Thus $bx \in S(\delta)$. A similar argument shows that $xb \in S(\delta)$. By the hypothesis $S(\delta) = \{0\}$ or $S(\delta) = M$. Therefore δ is closable or the range of δ is dense in M. \square

Since every simple Banach algebra B is itself a simple A- bimodule, we have the two following results.

Corollary 2.3. Let A be a dense subalgebra of a simple Banach algebra B, $\sigma:A\to B$ be a surjective continuous linear mapping and let $\delta:A\to B$ be a $\sigma-$ derivation. Then either δ is closable or both of the sets $\{a\pm\delta(a):a\in A\}$ are dense in B.

Proof. Following as stated in the proof of Theorem 2.2, one can observe that $S(\delta)$ is a two-sided ideal in B. If $S(\delta) = \{0\}$, then δ is closable. In the case that $S(\delta) = B$, then $R(\delta)$ is dense in B. Hence both of the sets $\{a \pm \delta(a) : a \in A\}$ are dense in B. \square

Corollary 2.4. Let A be a dense subalgebra of a simple Banach algebra B, $\sigma: A \to B$ be a surjective continuous linear mapping and let $\delta: A \to B$ be a σ -derivation such that the set $\{a+\delta(a): a \in A\}$ is closed. Then either δ is closable or the map from A into B which takes $a \mapsto a + \delta(a)$ is onto.

Proof. Follows from the Corollary 2.3.

The proof of the following result is exactly similar to the method has been used in [13]. \Box

Theorem 2.5. Let A be a dense subalgebra of a simple unital Banach algebra $(B, \| . \|)$, $\sigma : A \to B$ be a surjective continuous linear mapping and let $\delta : A \to B$ be a $\sigma-$ derivation. Suppose that (A, | . |) is a Banach algebra for some norm | . |, defined on the domain A of δ such that $\delta : (A, | . |) \to (B, \| . \|)$ is continuous. If the deficiency indices of δ are finite and not equal, then $\delta : A \to B$ is closable.

Remark 2.6. Let A be a dense subalgebra of a simple C^*- algebra $(B, \| . \|)$, $\sigma : A \to B$ be a surjective continuous linear mapping and let $\delta, \delta_0 : A \to B$ be $\sigma-$ derivations such that δ_0 is closed and $\delta : (A, | . |) \to (B, \| . \|)$ is continuous, where the norm | . | is defined by $| a | = \| a \| + \| \delta_0(a) \|$. Since $\| a \| \le | a |$, it follows that I(a) is continuous and therefore $I \pm \delta$ are continuous maps from (A, | . |) into $(B, \| . \|)$. If one of the deficiency indices of δ is finite and non-zero, then one of the two sets $\{a \pm \delta(a) : a \in A\}$ is closed and not equal to B. Using Corollary 2.4, we conclude that δ is closable.

Before we state the next theorem, we need the following useful lemma which can be found in [3].

Lemma 2.7. Let A be a unital Banach algebra and I be an ideal in A with $I \subseteq Q(A)$. Then $I \subseteq rad(A)$. (See [3], Proposition 2.2.3, p 16). Using the concept of semi-simplicity and the above lemma, we have the

following:

Theorem 2.8. Let A be a dense subalgebra of a unital semi-simple Banach algebra B, $\sigma: A \to B$ be a surjective continuous linear mapping and let $\delta: A \to B$ be a $\sigma-$ derivation. If $S(\delta)$ is contained in the set of quasi nilpotent elements of B, then δ is closable.

Proof. The method has been used in the proof of Theorem 2.2 shows that $S(\delta)$ is a two-sided ideal in B and by our assumption $S(\delta) \subseteq Q(B)$. Thus $S(\delta)$ is contained in the radical of B. The semi-simplicity of B implies that $S(\delta) = \{0\}$. Hence δ is closable. \square

Following the argument as stated in [14], we have the next two results.

Theorem 2.9. Let $\delta, \delta_0 : A \to M$ be module $\sigma-$ derivations such that δ_0 is closable and $\delta-$ bounded. If δ is δ_0- bounded, then is closable.

Proof. Let $x \in S(\delta)$. Thus there is a sequence $\{a_n\}$ in A such that $a_n \to 0$ and $\delta(a_n) \to x$. Since δ_0 is δ — bounded, so there exists a real number $\alpha > 0$ such that

$$\parallel \delta_0(a_n) - \delta_0(a_m) \parallel = \parallel \delta_0(a_n - a_m) \parallel \leqslant \alpha(\parallel a_n - a_m \parallel + \parallel \delta(a_n) - \delta(a_m) \parallel)$$

and

$$\alpha(\parallel a_n - a_m \parallel + \parallel \delta(a_n) - \delta(a_m) \parallel) \to 0$$
 $(as \quad m, n \to \infty).$

Thus $\{\delta_0(a_n)\}$ is a Cauchy sequence in the Banach B- module M and hence is convergent. Because of the closability of δ_0 , we have $\delta_0(a_n) \to 0$. On the other hand since δ is δ_0- bounded, so there exists a real number $\beta > 0$ such that

$$\|\delta(a_n)\| \leqslant \beta(\|a_n\| + \|\delta_0(a_n)\|) \to 0 \qquad (as \quad n \to \infty).$$

Therefore x = 0 and hence δ is closable. \square

Remark 2.10. Let $\delta, \delta_0 : A \to M$ be module $\sigma-$ derivations such that δ_0 is closable and $\delta-$ bounded. Suppose that $\delta-\delta_0$ is $\delta-$ bounded. Hence

there exists two positive numbers α, β such that

$$\| (\delta - \delta_0)(a) \| \leq \alpha \| a \| + \beta \| \delta(a) \|$$
.

Therefore

$$\parallel \delta(a) \parallel - \parallel \delta_0(a) \parallel \leq \alpha \parallel a \parallel + \beta \parallel \delta(a) \parallel$$
.

An easy computation shows that if $1-\beta > 0$, then δ is δ_0 — bounded and by the above theorem, δ is closable.

Before we state the next theorem, we recall the following well-known definition.

Definition 2.11. A subset D of domain $D(\delta_0)$ is called a core for δ_0 , if δ_0 is the closure of its restriction on D.

Theorem 2.12. Let $\delta_0: A \to M$ be a linear operator and $\delta: A \to M$ be a δ_0 - bounded module σ - derivation. If there exists a core D for δ_0 such that the restriction $\delta \mid_D: D \to M$ is closable, then δ is closable.

Proof. First note that since δ is δ_0 —bounded, so there exists a positive number β such that

$$\| \delta(a) \| \leq \beta(\| a \| + \| \delta_0(a) \|).$$

Let $x \in S(\delta)$. Thus there is a sequence $\{a_n\}$ in A such that $a_n \to 0$ and $\delta(a_n) \to x$. Let $n \in \mathbb{N}$. Since the subset D of A is a core for δ_0 , so there exists a sequence $\{c_k^n\}$ in D such that $c_k^n \to a_n$ and $\delta_0(c_k^n) \to \delta_0(a_n)$. Hence for every fixed n there exist a positive integer N such that $\|c_N^n - a_n\| < \frac{1}{2n}$ and $\|\delta_0(c_N^n) - \delta_0(a_n)\| < \frac{1}{2n}$. Because of the δ_0 -boundedness of δ we have

$$\|\delta(c_N^n) - \delta(a_n)\| \le \beta(\|c_N^n - a_n\| + \|\delta_0(c_N^n - a_n)\|) < \frac{\beta}{n}.$$

Thus

$$\| \delta(c_N^n) - x \| \le \| \delta(c_N^n) - \delta(a_n) \| + \| \delta(a_n) - x \| \to 0.$$

That is $\delta(c_N^n) \to x$. But $\delta \mid_D: D \to M$ is closable, therefore x = 0. \square Before we state the next theorem, we recall the following well-known definition.

Definition 2.13. Let x be in an A- bimodule M. The annihilator x^{\perp} of x is defined by $x^{\perp} := \{a \in A : ax = 0\}$. Then A- bimodule M is called torsion-free if the torsion submodule $M_t := \{x \in M : x^{\perp} \neq \{0\}\}$ be zero. (i.e. for each $x \in M - \{0\}$, $x^{\perp} = \{0\}$.)

Theorem 2.14. Let I be a non-zero ideal in a dense subalgebra A of a Banach algebra B, $\sigma: A \to B$ be a surjective continuous linear mapping satisfying $\sigma(I) \neq \{0\}$. Suppose that $\delta: A \to M$ is a module σ — derivation such that the restriction $\delta \mid_I: I \to M$ is closable. If $S(\delta)$ is a torsion-free module, then δ is closable.

Proof. First note that the surjectivity of σ implies that $S(\delta)$ is a submodule of M. Let $x \in S(\delta)$. Then there exists a sequence $\{a_n\}$ in A such that $a_n \to 0$ and $\delta(a_n) \to x$. It is enough to show that $x^{\perp} \neq \{0\}$. For this, let a be a non-zero element in I such that $\sigma(a) \neq 0$. Then $aa_n \to 0$ and by continuity of σ we have $\delta(aa_n) \to \sigma(a)x$. But $aa_n \in I$ and by the assumption the restriction of δ on I is closable, so $\sigma(a)x = 0$. This shows that x^{\perp} contains a non-zero element $\sigma(a)$. Now since $S(\delta)$ is torsion-free, hence x = 0. \square

Theorem 2.15. Let A be a dense subalgebra of a Banach algebra B, M be a torsion-free B- bimodule and let $\delta:A\to M$ be a non-zero continuous module $\sigma-$ derivation. Then σ is closable.

Proof. Let $b \in S(\sigma)$. Then there exists a sequence $\{a_n\}$ in A such that $a_n \to 0$ and $\sigma(a_n) \to b$. Let x be a non-zero element in $R(\delta)$. So there exists a non-zero element $a \in A$ such that $\delta(a) = x$. Hence $a_n a \to 0$ and by continuity of δ we have $\delta(a_n a) \to b\delta(a) = bx$. Using the continuity of δ once more, we have bx = 0. This shows that $b \in x^{\perp}$ and since M is torsion-free, hence b = 0. \square

Definition 2.16. An ideal I in an algebra B is called essential if its annihilator $I^{\perp} := \{b \in B : bI = \{0\}\}$ is zero.

Replacing the module M by the Banach algebras B and using the concept of the "essential ideal", we have the following:

Theorem 2.17. Let A be a dense subalgebra of a Banach algebra B, I be an essential ideal of B which is contained in A, $\sigma: A \to B$ be a continuous linear mapping such that $\{0\} \neq \sigma(I) \subseteq I$ and $\delta: A \to B$ be a σ - derivation such that the restriction $\delta|_{I}: I \to B$ is closable, then δ is closable.

Proof. Let $b \in S(\delta)$. Then there exists a sequence $\{a_n\}$ in A such that $a_n \to 0$ and $\delta(a_n) \to b$. Let a be a non-zero element in I such that $\sigma(a) \neq 0$. Hence $aa_n \to 0$ and by continuity of σ we have $\delta(aa_n) \to \sigma(a)b$. Because of the closability of the restriction $\delta \mid_I$ we have $\sigma(a)b = 0$. But I is an essential ideal of B so b = 0. \square

Theorem 2.18. Let M be a B- bimodule with an approximate identity $\{e_i\}$, $\sigma: A \to B$ be a surjective continuous linear mapping and let $\delta: A \to M$ be a module $\sigma-$ derivation. If for every ideal (a) generated by $a \in A$, the restriction $\delta|_{(a)}: (a) \to M$ is closable, then δ is closable.

Proof. Let $x \in S(\delta)$. Then there exists a sequence $\{a_n\}$ in A such that $a_n \to 0$ and $\delta(a_n) \to x$. Let $a \in A$. Since σ is surjective, there exists an element $c \in A$ such that $\sigma(c) = a$. Then $ca_n \to 0$ and by continuity of σ we have $\delta(ca_n) \to \sigma(c)x = ax$. But $ca_n \in (c)$ and by assumption the restriction of δ on (c) is closable, so ax = 0, for every $a \in A$. The density of A in B implies that bx = 0, for every $b \in B$. Since $e_i \in B$, then $e_i x = 0$. But $e_i x \to x$, hence x = 0. \square

The following results concentrate on the closability of module $\sigma-$ derivations in Hilbert C^*- modules:

Let A be a dense subalgebra of a C^* - algebra B, M a Hilbert B-module and let $\{e_i\}$ be an approximate identity for B. We have :

$$< x - e_i x, x - e_i x > = < x, x > -e_i < x, x > +e_i < x, x > e_i - < x, x > e_i$$

Hence $\langle x - e_i x, x - e_i x \rangle \to 0$. Therefore $e_i x \to x$. So by the Theorem 2.18 we have the next corollary.

Corollary 2.19. Let A be a dense subalgebra of a C^* - algebra B, M a Hilbert B- module, $\sigma: A \to B$ be a surjective continuous linear mapping and let $\delta: A \to M$ be a module σ - derivation. If for every ideal (a) generated by $a \in A$, the restriction $\delta|_{(a)}$: $(a) \to M$ is closable, then δ is closable.

Corollary 2.20. Let A be a dense subalgebra of a C^* - algebra B, $\sigma: A \to B$ be a surjective continuous linear mapping and let $\delta: A \to B$ be a module σ - derivation. If for every ideal (a) generated by $a \in A$, the restriction $\delta\mid_{(a)}: (a) \to B$ is closable, then δ is closable.

Before we state the next theorem, we need the following useful lemma which can be found in [11].

Lemma 2.21. Let M be a full Hilbert B- module and $b \in B$. If bx = 0, for every $x \in M$ then b = 0.

Theorem 2.22. Let A be a dense subalgebra of a C^* - algebra B, M be a full Hilbert B- bimodule and let $\delta: A \to M$ be a surjective continuous module σ - derivation. Then σ is closable.

Proof. Let $b \in S(\sigma)$. Then there exists a sequence $\{a_n\}$ in A such that $a_n \to 0$ and $\sigma(a_n) \to b$. Let $x \in M$. Since δ is surjective, so there exists an element $a \in A$ such that $\delta(a) = x$. Hence $a_n a \to 0$ and by continuity of δ we have $\delta(a_n a) \to b\delta(a) = bx$. Using the continuity of δ once more, we have bx = 0, for all $x \in M$. But M is full and by the previous lemma, we have b = 0. \square

Before we state the next theorem, we need the following useful lemma which can be found in [1].

Lemma 2.23. Let I be an ideal in a C^* - algebra B. The following conditions are mutually equivalent:

- (i) I is an essential ideal in B;
- (ii) $||c|| = \sup_{b \in I, ||b|| \le 1} ||cb||, \forall c \in B;$
- $(iii) \parallel c \parallel = \sup_{b \in L \parallel b \parallel < 1} \parallel bc \parallel, \forall c \in B;$
- $(iv) \parallel c \parallel = \sup_{b \in I, \|b\| \le 1} \|bcb^*\|, \forall c \in B.$

Theorem 2.24. Let A be a dense subalgebra of a C^* - algebra B, I be an essential ideal of B which is contained in A, M be a Hilbert B-bimodule and let $\sigma: A \to B$ be a continuous linear mapping such that $\sigma(I) = I$. If $\delta: A \to M$ is a module σ - derivation such that the restriction $\delta|_{I}: I \to M$ is closable, then δ is closable.

Proof. Let $x \in S(\delta)$. Then there exists a sequence $\{a_n\}$ in A such that $a_n \to 0$ and $\delta(a_n) \to x$. It is enough to show that ||x|| = 0. For this, let b be a non-zero element in I satisfying $||b|| \leqslant 1$. Since $\sigma(I) = I$, so there exists a non-zero element $a \in I$ such that $\sigma(a) = b$. Then $aa_n \to 0$ and by continuity of σ we have $\delta(aa_n) \to \sigma(a)x = bx$. But $aa_n \in I$ and by assumption the restriction of δ on I is closable, so bx = 0. The fact that I is an essential ideal of B and the above lemma implies that

$$\parallel x \parallel^2 = \parallel < x, x > \parallel = \sup_{b \in I, \parallel b \parallel \leqslant 1} \parallel b < x, x > b * \parallel = \sup_{b \in I, \parallel b \parallel \leqslant 1} \parallel < bx, bx > \parallel = 0. \ \ \Box$$

The following is an immediate consequence of Theorem 2.24.

Corollary 2.25. Let A be a dense subalgebra of a C^*- algebra B, I be a non-zero ideal of B which is contained in A, M be a Hilbert B- bimodule such that $\|x\|:=\sup_{b\in I,\|b\|\leqslant 1}\|< bx,bx>\|$ holds for all of $x\in M$ and let $\sigma:A\to B$ be a continuous linear mapping such that $\sigma(I)=I$. If $\delta:A\to M$ is a module $\sigma-$ derivation such that the restriction $\delta|_{I}:I\to M$ is closable, then δ is closable.

Acknowledgment: The authors would like to thank the referees for their valuable comments.

References

- [1] D. Bakic and B. Guljas, On a class of module maps of Hilbert C^* modules, *Math. Commun.*, 7 (2002), 177-192.
- [2] F. F. Bonsall and J. Duncan, Complete normed algebras, Springer-Verlag, New York, 1973.
- [3] G. Dales, P. Aiena, J. Eschmeier, K. Laursen, and G. Willis, *Introduction to Banach algebras, Operators and Harmonic Analysis*, Cambridge. Univ. Press., 2003.

- [4] M. Hassani and A. Niknam, Closable module derivations, *Ital. J. Pure Appl. Math.*, 17 (2005), 105-108.
- [5] A. Hosseini, M. Hassani, A. Niknam, and S. Hejazian, Some results on σ derivations, Ann. Funct. Anal., 2 (2011), 75-84.
- [6] E. C. Lance, *Hilbert C*- modules*, LMS Lecture Note Series 210, Cambridge Univ. Press., 1995.
- [7] V. M. Manuilov and E. V. Troitsky, Hilbert C*- modules, Ameraican Mathematical Society, 2005.
- [8] M. Mirzavaziri and M. S. Moslehian, Automatic continuity of σ derivations in C^* algebras, *Proc. Amer. Math. Soc.*, 11 (2006), 805-813.
- [9] M. Mirzavaziri and M. S. Moslehian, σ derivations in Banach algebras, Bull. Iranian Math. Soc., 32 (2006), 65-78.
- [10] M. Mosadeq, M. Hassani, and A. Niknam, (σ, γ) Generalized dynamics on modules, J. Dyn. Syst. Goem. Theory, 9 (2011), 171-184.
- [11] M. S. Moslehian, On full Hilbert C^* modules, Bull. Malays. Math. Soc., 242 (2001), 45-47.
- [12] G. J. Murphy, C^* algebras and operator theory, Academic Press., 1990.
- [13] A. Niknam, A remark on closability of linear mappings in the normed algebras, Arch. Math. (Basel)., 47 (1986), 131-134.
- [14] A. Niknam, Closable derivations of simple C^*- algebras, Glasgow Math. J., 24 (1983), 181-183.
- [15] A. Sinclair, Automatic continuity of linear operators, LMS Lecture Note Series 21, Cambridge Univ. Press., 1976.
- [16] V. S. Shulman, I. G. Todorov, and L. Turowska, Closable multipliers, arXiv: 1001.4638v1 [math. FA]., 2010.

Maysam Mosadeq

Department of Mathematics Faculty of Sciences Assistant Professor of Mathematics Mashhad Branch, Islamic Azad University Mashhad, Iran

E-mail: mosadeq@mshdiau.ac.ir

Mahmoud Hassani

Department of Mathematics Faculty of Sciences Assistant Professor of Mathematics Mashhad Branch, Islamic Azad University Mashhad, Iran E-mail: hassani@mshdiau.ac.ir

Assadollah Niknam

Department of Mathematics Faculty of Mathematical Sciences and Center of Excellence in Analysis on Algebraic Structures (CEAAS) Assistant Professor of Mathematics Ferdowsi University Mashhad, Iran E-mail: dassamankin@yahoo.co.uk.