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Enlargements of Monotone Operators
Determined by Representing Functions
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Abstract. In this paper, we study a new enlargement of subdiffer-
ential for any proper lower semicontinuous function. We know that
ε-subdifferential of any proper lower semicontinuous function is an en-
largement of its subfifferential and any point from the graph of ε-
subdifferential can be approximated by a point from the graph of sub-
fifferential. This nice property, apart from its theoretical importance,
gives also the possibility to use the enlargement of subdifferentials in
finding approximate solutions of inclusions determined by subdifferen-
tials. We define a new enlargement and observe, in the case subdiffer-
entials, the relation between this new enlargement and the ε- subdiffer-
ential.
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1. Introduction

Let X be real Banach space with continuous dual X∗ with pairing be-
tween them denoted by 〈. , .〉. As usual, we will use the same symbol ‖.‖
for the norms in X and X∗, w and w∗ will stand for the weak and weak
star topology in X and X∗ respectively. For given operator T : X ⇒ X∗,

its graph will be denoted by

Gr(T ) := {(x, x∗) ∈ X ×X∗ : x∗ ∈ T (x)},
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and the sets
Dom(T ) := {x ∈ X : T (x) 6= ∅}

and
R(T ) := ∪{T (x) : x ∈ Dom(T )}

will stand for the domain and the range of T respectively. The inverse
operator of T, T−1 : X∗ ⇒ X is defined by

T−1(x∗) := {x ∈ X : x∗ ∈ T (x)}, x∗ ∈ X∗,

and evidently has the range of T as domain and the same graph as T.
The operator T is said to be monotone if

〈y − x, y∗ − x∗〉 > 0 ∀(x, x∗), (y, y∗) ∈ Gr(T ).

Observe that the property of T being monotone is a property of the
graph of T, hence, if T is monotone, the same is true for T−1.

A monotone operator T : X ⇒ X∗, is called maximal if its graph can
not be properly extended to a graph of another monotone mapping be-
tween X and X∗. In an equivalent way, T is maximal, if the condition
〈y − x, y∗ − x∗〉 > 0 for every Gr(T), implies that (x, x∗) ∈ Gr(T ).
A well-known example of a maximal monotone operator is the subd-
ifferential of a proper lower semicontinuous convex function f : X →
R ∪ {+∞}. Recall that proper f means that the set domf := {x ∈ X :
f(x) < +∞} (which is the effective domain of f) is nonempty. For any
ε > 0, if x ∈ domf, we define the ε-subdifferential of f by:

∂εf(x) := {x∗ ∈ X∗ : f(y)− f(x) > 〈y − x, x∗〉 − ε, ∀y ∈ X},

if x ∈ domf, and ∂εf(x) := ∅, if x /∈ domf. For every ε > 0, ∂εf is al-
ways non-empty valued at the points of domf. In other words, for every
ε > 0 one has Dom(∂εf) = domf. For ε = 0, ∂0f is subdifferential ∂f

of f (the latter could be empty at some points of dom f). According to
the well-known result of Rockafellar ([16]), ∂f is a maximal monotone
operator.
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2. Enlargements

As it was seen from the definition of ε-subdifferential, for any proper
lower semicontinuous function f : X → R ∪ {+∞} and any ε > 0,

the ε-subdifferential ∂εf is an enlargement of the subdifferential ∂f, i.e.
∂f(x) ⊂ ∂εf(x) for any x ∈ X. On the other hand, this enlargement
is not far enough from the initial operator. The well-known Brøndsted-
Rockafellar theorem ([1]) asserts that any point from the graph of ∂εf

can be approximated (depending ε) with a point from the graph ∂f.

This nice property, apart from its theoretical importance, give also the
possibility to use the enlargement of subdifferentials in finding approxi-
mate solutions of inclusions determined by subdifferentials.
Motivated by the above, the search of possible enlargements of an ar-
bitrary (maximal) monotone operators has been done during in recent
years. Different attempts for such notions, inspired by various properties
of variational inequalities, could be found in [8],[15] and [19]. Recently
the following notion of enlargement has been paid a lot of attention.
Given a monotone T : X ⇒ X∗, ε > 0 and for every (y, y∗) ∈ Gr(T ),
let

T ε(x) := {x∗ ∈ X∗ : 〈y − x, y∗ − x∗〉 > −ε., (1)

This definition was given in [9] but the notion was not studied. Inde-
pendently, this concept has been studied, first in finite dimensions in [2]
with applications to approximate solutions of variational inequalities,
and then in Hilbert space (most of the proofs work straitforward in the
reflexive case) in [3], with applications to finding a zero of a maximal
monotone operator. An approach with families of enlargements was fur-
ther investigated in [18].
In the case of subdifferentials, i.e. T = ∂f for a convex proper (lower
semicontinuous) function, one easily sees that ∂εf ⊂ T ε for every ε > 0.

Let us mention that this inclusion is, in general, strict and a simple exam-
ple is 1

2‖x‖
2. But the enlargement T ε satisfies a Brøndsted -Rockafellar

type theorem in reflexive Banach spaces. The result was proved by
Torralba[19] by making use of the Minty-Rockafellar subjectivity theo-
rem (see also [3]) for Hilbert space setting. But, as mentioned above,
the proof works for the case of a reflexive space because it uses the same
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surjectively theorem. An extension outside the reflexive case for a class
of maximal monotone operators is given in [14].
Here we wish to introduce and investigate another enlargement, which
is generated by representation function associated with given monotone
operator proposed by Fitzpatrick in [6]. The idea is to try from one
side to enlarge enough the given operator in order to able to treat it
numerically. However on the other side to have a smaller one which will
allow to approximate always the enlargement by couples from the graph
of the initial operator.
Let us consider the Cartesian product X ×X∗ equipped with a product
topology determined by the norm topology in X and the w∗-topology
in X∗. In this case the dual of X ×X∗ can be identified with X∗ ×X

and hence, for the couples 〈(x, x∗), (y∗, y)〉 = 〈x, y∗〉+ 〈y, x∗〉. First, for
given a (proper)convex function g : X ×X∗ → R ∪ {+∞}, let us define
the following operator Tg : X ⇒ X∗ by

Tg(x) := {x∗ : (x∗, x) ∈ ∂g(x, x∗)}, x ∈ X.

The so-defined operator Tg is monotone ( [6], Proposition 2.2).
Further, for a given monotone operator T : X ⇒ X∗, let us define the
following function LT : X ×X∗ → R ∪ {+∞} by

LT (x, x∗) := sup{〈y, x∗〉+〈x−y, y∗〉 : (y, y∗) ∈ Gr(T )}, (x, x∗) ∈ X×X∗. (2)

The following theorem summarizes some of the most important prop-
erties of LT proved by Fitzpatrick in [6]:

Theorem 2.1. ([6]) Let T : X ⇒ X∗ be monotone operator with
Dom(T ) 6= ∅. Then

(a) The function LT is a proper convex ‖.‖×w∗-lower semicontinuous
function;

(b) For any x ∈ X one has T (x) ⊆ TLT
(x). If T is maximal monotone

T = TLT
;

(c) If T is maximal monotone, then LT (x, x∗) > 〈x, x∗〉 for every
(x, x∗) ∈ X ×X∗ and LT (x, x∗) = 〈x, x∗〉 if and only if (x, x∗) ∈
Gr(T ). Moreover, LT is the minimal convex function on X ×X∗

with these two properties.
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The above representation of a given monotone operator by subdifferen-
tials of convex functions in X×X∗ is the transformation of the represen-
tation of the monotone operators by subdifferentials of saddle functions
provided by Krauss[7]. The Fitzpatrick approach was also studied in
[10].
Now, let us use the usual ε-subdifferetials of the function LT in order
to define an enlargement of a given monotone operator T : X ⇒ X∗ for
which we will always assume that Dom(T ) 6= ∅. For ε > 0 let

Tε(x) := {x∗ ∈ X∗ : (x∗, x) ∈ ∂εLT (x, x∗)}, x ∈ X. (3)

Because of Theorem 2.1, this operator needs an enlargement of T , i.e.
T (x) ⊂ Tε(x) for any x ∈ X. Moreover, it can be easily by verified that
Tε(x) is convex and since LT (x, .) is lower semicontinuous for the w∗-
topology, then for any ε and x ∈ X the image Tε(x) is w∗-closed in X∗.

First, we know that the new enlargement is contained in the one form
(1).

Proposition 2.2. Let T : X ⇒ X∗ be maximal monotone. Then
Tε ⊂ T ε.

Proof. Let ε > 0 and x∗ ∈ Tε(x) for x ∈ X. Then, by definition, for
every (u, u∗) ∈ X ×X∗, we have

LT (u, u∗)− LT (x, x∗) > 〈(u− x, u∗ − x∗), (x∗, x)〉 − ε.

Since LT (x, x∗) > 〈x, x∗〉 and for (u, u∗) ∈ Gr(T ) one has LT (u, u∗) =
〈u, u∗〉, for every (u, u∗) ∈ Gr(T ), the latter inequality gives

〈(u− x, u∗ − x∗), (x∗, x)〉 > −ε,

which, according to (2.1) x∗ ∈ T ε(x). The proof is completed. �

Further, we wish to investigate the particular case of subdifferentials.
First we observe the following simple estimation.

Lemma 2.3. Let T : X ⇒ X∗ be monotone, ε > 0 and x∗ ∈ T ε(x).
Then

LT (x, x∗) 6 〈x, x∗〉+ ε.
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Proof. The proof comes directly from the definitions. Since x∗ ∈ T ε(x)
for every (y, y∗) ∈ Gr(T ), we have

〈y − x, y∗ − x∗〉 > −ε

which for every (y, y∗) ∈ Gr(T ), gives

〈x, x∗〉+ ε > 〈y, x∗〉+ 〈x− y, y∗〉.

Now the desired estimation follows from the definition of LT in (2). �

Observe that, due to the previous proposition, this estimation holds also
for the new enlargement Tε.

Now, let us see, in the case of subdifferentials, what is the relation
between the new enlargement and the ε-subdifferential. Given a proper
lower semicontinuous function f : X → R∪{+∞}, by f∗ we denoted the
Fenchel-Moreou conjugate of f, i.e. the function f∗ : X∗ → R ∪ {+∞},
defined by

f∗(x∗) := sup{〈x, x∗〉 − f(x) : x ∈ X}, x∗ ∈ X∗

Observe that f∗ is lower semicontinuous with respect to the w∗- topology
in X∗. Hence, if we put g(x, x∗) = f(x) + f∗(x∗), (x, x∗) ∈ X × X∗,

we obtain a convex proper and ‖.‖ × w∗-lower semicontinuous function
in X × X∗. It is easily verified that for this function we have Tg =
∂f (Example 2.3 from [6]). Moreover, since g(x, x∗) > 〈x, x∗〉 for any
(x, x∗) ∈ X ×X∗ and g(x, x∗) = 〈x, x∗〉 exactly when x∗ ∈ ∂f(x), then
by Theorem 2.1 for T = ∂f = Tg, for every (x, x∗) ∈ X ×X∗ we get

g(x, x∗) = f(x) + f∗(x∗) > LT (x, x∗).

Theorem 2.4. Let T = ∂f for some proper convex and lower semicon-
tinuous function f : X → R∪{+∞}. Then for any ε > 0 and x ∈ domf

we have Tε(x) ⊂ ∂εf(x).

Proof. Take x ∈ domf and x∗ ∈ Tε(x) for some ε > 0. By definition
this means for every (u, u∗) ∈ X ×X∗

LT (u, u∗)− LT (x, x∗) > 〈(u− x, u∗ − x∗), (x∗, x)〉 − ε.
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As above, using LT (x, x∗) > 〈x, x∗〉, for every (u, u∗) ∈ X ×X∗

LT (u, u∗)− 〈x, u∗〉 > 〈u− x, x∗〉 − ε.

Let us take an arbitrary u ∈ X and δ > 0. Take a u∗δ ∈ ∂δf(x). By the
last inequality we have

LT (u, u∗δ)− 〈x, u∗δ〉 > 〈u− x, x∗〉 − ε,

from f∗(x∗) = sup{〈x, x∗〉 − f(x) : x ∈ X}, by the Theorem 2.1 (c) we
have L > f + f∗ and

f(u) + f∗(u∗δ)− 〈x, u∗δ〉 > 〈u− x, x∗〉 − ε.

Since u∗δ ∈ ∂δf(x), we know that

f(u)− f∗(u∗δ) 6 〈x, u∗δ〉+ δ,

which together with the previous inequality give

f(u)− f(x) + δ > 〈u− x, x∗〉 − ε.

Passing to the limit for δ we get

f(u)− f(x) > 〈u− x, x∗〉 − ε,

and since u was arbitrary, we conclude that x∗ ∈ ∂εf(x). �
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