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Abstract. In this paper, homotopy analysis method is directly ex-
tended to investigate nth order semi-differential equations and to de-
rive their numerical solutions which is introduced by replacing some
integer-order space derivatives by fractional derivatives. The fractional
derivatives are described in the Caputo sense. So the homotopy analysis
method for differential equations of integer-order is directly extended to
derive explicit and numerical solutions of the fractional differential equa-
tions. An optimal value of the convergence control parameter is given
through the square residual error. Comparison is made between Homo-
topy perturbation method, collocation spline method, and the present
method.
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1. Introduction

Fractional differential equations have gained importance and popularity
during the past three decades or so, mainly due to its demonstrated
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applications in numerous seemingly diverse fields of science and engi-
neering. For example, the nonlinear oscillation of earthquake can be
modeled with fractional derivatives, and the fluid-dynamic traffic model
with fractional derivatives can eliminate the deficiency arising from the
assumption of continuum traffic flow. The differential equations with
fractional order have recently proved to be valuable tools to the model-
ing of many physical phenomena ([3, 20]). This is because of the fact that
the realistic modeling of a physical phenomenon does not depend only on
the instant time, but also on the history of the previous time which can
also be successfully achieved by using fractional calculus. Most nonlinear
fractional equations do not have exact analytic solutions, so approxima-
tion and numerical techniques must be used. The Adomain decomposi-
tion method (ADM) ([16]), the homotopy perturbation method (HPM)
([18]), the variational iteration method (VIM) ([19]) and other methods
have been used to provide analytical approximation to linear and non-
linear problems. However, the convergence region of the corresponding
results is rather small. In 1992, Liao employed the basic ideas of the ho-
motopy in topology to propose a general analytic method for nonlinear
problems, namely Homotopy Analysis Method (HAM), ([9-13]). This
method has been successfully applied to solve many types of nonlinear
problems in science and engineering, such as the viscous flows of non-
Newtonian fluids ([7]), the KdV-type equations ([1]), finance problems
([28]), Falkner-Skan boundary layer flows ([17]), electrohydrodynamic
flow ([14]), systems of fractional algebraic-differential equations ([26,
27]) and so on. The HAM contains a certain auxiliary parameter h
which provides us with a simple way to adjust and control the conver-
gence region and rate of convergence of the series solution.
The HAM offers certain advantages over routine numerical methods.
Numerical methods use discretization which gives rise to rounding off
errors causing loss of accuracy, and requires large computer memory
and time. This computational method yields analytical solutions and
has certain advantages over standard numerical methods. The HAM
method is better since it does not involve discretization of the variables
and hence is free from rounding off errors and does not require large
computer memory or time.
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The aim of this paper is to use homotopy analysis method for solving
semi-differential equations. An optimal value of the convergence control
parameter is defined through the square residual error concept. The
paper has been organized as follows. In Section 2, a brief review of the
theory of fractional calculus will be given to fix notation and provide
a convenient reference. In Section 3, we give analysis of the HAM. In
Section 4, we extend the application of the HAM to construct numerical
solution for the fractional semi-differential equation. Conclusions are
presented in Section 5.

2. Description on the Fractional Calculus

Definition 2.1. A real function f(t), t > 0 is said to be in the space
Cµ, µ ∈ R if there exists a real number p > µ, such that f(t) = tpf1(t)
where f1 ∈ (0,∞), and it is said to be in the space Cµ

n l if and only if
h(n) ∈ Cµ, n ∈ N . Clearly Cµ ⊂ Cν if ν 6 µ [3].

Definition 2.2. The Riemann-Liouville fractional integral operator
(Jα) of order α > 0, of a function f ∈ Cµ, µ > −1, is defined as

Jαf(x) =
1

Γ(α)

∫ x

0
(x− t)α−1f(t)dt, α > 0, x > 0.) (1)

J0f(x) = f(x). (2)

Γ(α) is the well-known Gamma function. Some of the properties of the
operator Jα, which we will need here, are as follows [21]:
For f ∈ Cµ, µ > −1, α, β > 0 and γ > −1

JαJβf(x) = Jα+βf(x),

JαJβf(x) = JβJαf(x),

Jαtγ =
Γ(γ + 1)

Γ(α+ γ + 1)
tα+γ .

Definition 2.3. For the concept of fractional derivative, there exist
many mathematical definitions [24, 15, 23, 3, 21]. In this paper, the two
most commonly used definitions: the Caputo derivative and its reverse
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operator Riemann-Liouville integral are adopted. That is because Caputo
fractional derivative [3] allows the traditional assumption of initial and
boundary conditions. The Caputo fractional derivative is defined as

Dα
t u(x, t) =

∂αu(x, t)
∂tα

=

{
1

Γ(n−α)

∫ t

0
(t− τ)n−α−1 ∂nu(x,t)

∂tn dτ, n− 1 < α < n,
∂nu(x,t)

∂tn , α = n ∈ N .
(3)

Here, we also need two basic properties about them:

DαJαf(x) = f(x), (4)

JαDαf(x) = f(x)−
∞∑

k=0

f (k)(0+)
xk

k!
, x > 0. (5)

Definition 2.4. The MittagLeffler function Eα(z) with a > 0 is defined
by the following series representation, valid in the whole complex plane
[21]:

Eα(z) =
∞∑

n=0

zn

Γ(αn+ 1)
, α > 0, z ∈ C (6)

Definition 2.5. A fractional differential equation of the form [22]:

[D
n
2 + c1D

n−1
2 + · · ·+ cnD

0] = f(t), (7)

is called a semi-differential equation of nth order, where c1, · · · , cn ∈ R
and f(t) is a given function from I into R, I is the interval [0, T ].

In (7) Dα denotes the fractional differential operator of order α /∈ N
in the sense of Caputo, and is given by (3). The theory for the deriva-
tives of fractional order was developed in the 19th century. Recently,
fractional derivatives have proved to be tools in the modeling of many
physical phenomena (see, [4, 5, 6]). We mention the important example:
the Bagley-Torvik equation,

[D2 + c1D
3
2 + · · ·+ c4D

0]y(t) = f(t), y(0) = a1, y
′(0) = a2, (8)
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which arises, for example, in the modeling of the motion of a rigid plate
immersed in a Newtonian fluid. Studying the numerical solution of (7)
has been increased in the last two decades. A survey of some numerical
methods is given by Podlubny [21]. Blank [2] proposed the collocation
spline method and also Rawashdeh [22] applied the collocation spline
method to solve semi-differential equations. In this paper we will apply
Homotopy analysis method for solving semi-differential equations of nth
order.

3. Basic Idea of HAM

To describe the basic ideas of the HAM, we consider the following frac-
tional initial value problem:

Nα[y(t)] = 0, t > 0, (9)

where Nα is a nonlinear differential operator that may involves fractional
derivatives, t denotes an independent operator and y(t) is an unknown
function. The highest order derivative is n, subject to the initial condi-
tions

y(k)(0) = ck, k = 0, 1, · · · , n− 1. (10)

By means of generalizing the traditional homotopy method, the so-called
zeroth-order deformation equation can be defined as

(1− q)Dβ
∗ [φ(t; q)− u0(t)] = q hH(t)Nα[φ(t; q)], (11)

where q ∈ [0, 1] is the embedding parameter, h 6= 0 is a non-zero auxiliary
parameter, H(t) 6= 0 is an auxiliary function, and the auxiliary linear
operator L can be considered as L = Dβ

∗ , β > 0. y0(t) is initial guess
of y(t), y(t) is an unknown functions, respectively. It is important, that
one has great freedom to choose auxiliary things in HAM.
Obviously, when q = 0 and q = 1, it holds

φ(t; 0) = y0(t), φ(t; 1) = y(t),
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respectively. Thus, as q increases from 0 to 1, the solution y(t; q) varies
from the initial guess y0(t) to the solution y(t). Expanding y(t; q) in
Taylor series with respect to q, we have

φ(t; q) = y0(t) +
+∞∑
m=1

ym(t)qm, (12)

where

ym(t) =
1
m!

∂mφ(t; q)
∂qm

|q=0, (13)

If the auxiliary linear operator, the initial guess, the auxiliary parameter
h, and the auxiliary function are so properly chosen, the series (12)
converges at q = 1, then we have

y(t) = y0(t) +
+∞∑
m=1

ym(t), (14)

which must be one of solutions of original nonlinear equation, as proved
by Liao [11]. As h = −1 and H(t) = 1, Eq. (11) becomes

(1− q)Dβ
∗ [φ(t; q)− y0(t)] + q Nα[φ(t; q)] = 0, (15)

which is used mostly in the homotopy perturbation method [8], where as
the solution obtained directly, without using Taylor series . According
to the definition (13), the governing equation can be deduced from the
zero-order deformation equation (11).
Define the vector

~yn = {y0(t), y1(t), . . . , yn(t)}.

Differentiating equation (11) m times with respect to the embedding
parameter q and then setting q = 0 and finally dividing them by m!, we
have the so-called mth-order deformation equation

Dβ
∗ [ym(t)− χmym−1(t)] = hH(t)Rm(~ym−1), (16)
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where

Rm(~ym−1) =
1

(m− 1)!
∂m−1Nα[φ(t; q)]

∂qm−1
|q=0, (17)

and

χm =
{

0, m 6 1,
1, m > 1.

Applying the Riemann-Liouville integral operator Jβ on both side of Eq.
(16), we have

ym(t) = χmym−1(t) + hJβ [H(t)Rm(~ym−1(t))], (18)

In this way, it is easy to obtain ym(t) for m > 1, at mth-order, we have

y(t) =
M∑

m=0

ym(t). (19)

When M → ∞, we get an accurate approximation of the original Eq.
(9).

Remark 1. In 2007, Yabushita et al. ([25]) applied the HAM to solve
two coupled nonlinear ODEs, and suggested the so-called optimization
method to find out two optimal convergence-control parameters by means
of the minimum of the square residual error integrated in the whole region
having physical meanings. Their approach is based on the square residual
error

∆(h) =
∫

Ω

(
N

[
M∑

k=0

yk(t)

])2

dΩ, (20)

of a nonlinear equation N [y(t)] = 0, where
M∑

k=0

yk(t) gives the M th-order

HAM approximation. Obviously, ∆(h) → 0 (as M → +∞) corresponds
to a convergent series solution. For given order M of approximation,
the optimal value of h is given by a nonlinear algebraic equation

d∆(h)
dh

= 0.
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We use exact square residual error (20) integrated in the whole region
of interest Ω, at the order of approximation M.

4. Application

In this section we apply homotopy analysis method for solving Bagley-
Torvik equation and the initial value problem, which are semi-differential
equations of order 4, ([22]).

Example 3.1. Consider the Bagley-Torvik equation

[D2 +D
3
2 +D0]y(t) = 2 + 4

√
t

π
+ t2, y(0) = y′(0) = 0. (21)

The exact solutions of Eq. (12) is

y(t) = t2, (22)

For application of homotopy analysis method, it in convenient to choose

y0(t) = 0, (23)

as the initial approximate of Eq. (26). By taking β = 2, we choose the
linear operator

L[φ(t; q)] =
d2φ(t; q)
dt2

, (24)

with the property L(c1t + c2) = 0 where c1 and c2 are constants of
integrations. Furthermore, we define nonlinear operators as

Nα[φ(t; q)] =
d2φ(t; q)
dt2

+D
3
2φ(t; q) + φ(t; q)− 2− 4

√
2
t

π
− t2,

We construct the zeroth-order and the mth-order deformation equations
where

Rm(~ym−1) =
d2ym−1

dt2
+D

3
2 ym−1 + ym−1 + (1− χm)(−2− 4

√
2
t

π
− t2),
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We now successively obtain the solution to each high order deformation
equations:

ym(t) = χmym−1(t) + L−1 [Rm(~ym−1)] ,m > 1, (25)

We now successively obtain

y1(t) = −ht2 − 16ht
5
2

15π
1
2
− 1

12
ht4,

y2(t) = −ht2 − 16ht
5
2

15π
1
2
− 1

12
ht4 − h2t2 − 1

6
h2t4 − 1

360
h2t6

− 5081767996463981
132996926495784960

h2t
9
2 ,−64h2t

9
2

945π
1
2
− 5081767996463981

8444249301319680
h2t

5
2

−16h2t
5
2

15π
1
2
− 5081767996463981

27021597764222976
h2t

5
2π

1
2

1
t

1
2

...

In this case, for given order of approximation n, the optimal value of h
is given by the minimum of ∆n, corresponding to a nonlinear algebraic
equation

∂∆m

∂h
= 0.

Thus, the optimal value of h is determined by the minimum of ∆8, cor-
responding to the nonlinear algebraic equation d∆8

dh = 0. According to
Table 1, ∆8 has its minimum value at −0.74689.

Table 1.
Optimal value of h at different order of approximation.

m Optimal value of h Minimum value of ∆m

3 -0.6113 9.0419e-004
4 -0.6765 1.3410e-005
5 -0.7178 2.2031e-007
6 -0.7464 3.9224e-009
7 -0.74661 1.1865e-011
8 -0.74689 1.1395e-012
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Fig. 1

Fig. 1. Comparison between the 8-term HAM solution and the exact solution.

Table 2.
The comparison of the results of the HAM(h = −0.74689, h = −1) and exact solution

t HAM (h = −0.74689)
t2 − y10

 HPM
t2 − y10


0.1 0.01 2.3265e-013 0.01 4.0215e-011
0.2 0.04 1.4385e-011 0.04 5.2739e-009
0.3 0.09 6.1890e-011 0.09 9.2959e-008
0.4 0.16 2.2736e-011 0.16 7.2230e-007
0.5 0.25 1.3680e-010 0.25 3.5881e-006
0.6 0.36 3.5678e-011 0.35999 1.3445e-005
0.7 0.49 2.6188e-010 0.48996 4.1497e-005
0.8 0.64 4.3416e-010 0.63989 1.1118e-004
0.9 0.81 1.0816e-010 0.80973 2.6745e-004
1.0 1.00 7.9195e-010 0.99941 5.9110e-004

Example 3.2. Consider the Bagley-Torvik equation

[D2 − 2D +D
1
2 +D0]y(t) = 6t− 6t2 +

16
5
√
π
t
5
2 + t3, y(0) = y(0) = 0. (26)

The exact solutions of Eq. (12) is

y(t) = t3, (27)

For application of homotopy analysis method, it in convenient to choose

y0(t) = 0, (28)
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as the initial approximate of Eq. (26). By taking β = 2, we choose the
linear operator

L[φ(t; q)] =
d2φ(t; q)
dt2

, (29)

with the property L(c1t + c2) = 0 where c1 and c2 are constants of
integrations. Furthermore, we define nonlinear operators as

Nα[φ(t; q)] =
d2φ(t; q)

dt2
− 2

dφ(t; q)

dt
+ D

1
2 φ(t; q) + φ(t; q)− 6t + 6t2 − 16

5
√

π
t
5
2 − t3,

We construct the zeroth-order and the mth-order deformation equations
where

Rm(~ym−1) =
d2ym−1

dt2
− 2

dym−1

dt
+D

1
2 ym−1 + ym−1 − 6t+ 6t2

+(1− χm)(− 16
5
√
π
t

5
2 − t3),

We now successively obtain the solution to each high order deformation
equations:

ym(t) = χmym−1(t) + L−1 [Rm(~ym−1)] ,m > 1, (30)

We now successively obtain

y1(t) = −ht2 − 16ht
5
2

15π
1
2
− 1

12
ht4,

y2(t) = −ht2 − 16ht
5
2

15π
1
2
− 1

12
ht4 − h2t2 − 1

6
h2t4 − 1

360
h2t6

− 5081767996463981
132996926495784960

h2t
9
2 ,−64h2t

9
2

945π
1
2
− 5081767996463981

8444249301319680
h2t

5
2

−16h2t
5
2

15π
1
2
− 5081767996463981

27021597764222976
h2t

5
2π

1
2

1
t

1
2

...

In this case, for given order of approximation n, the optimal value of h
is given by the minimum of ∆n, corresponding to a nonlinear algebraic
equation

∂∆m

∂h
= 0.
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Thus the optimal value of h is determined by the minimum of ∆8, cor-
responding to the nonlinear algebraic equation d∆8

dh = 0. According to
Table 3, ∆8 has its minimum value at h = −1.1014. Fig. 2 discussed
the numerical comparison between the 8th-order HAM with the exact
solution. The absolute error of the 8th-order HAM and analytic solution
with h = −1.1014, h = −1 as shown in Table 4.

Table 3.
Optimal value of h at different order of approximation.

m Optimal value of h Minimum value of ∆m

3 -1.2580 2.3474e-004
4 -1.1814 5.0780e-006
5 -1.2349 4.0954e-007
6 -1.1761 3.2435e-009
7 -1.1406 2.5118e-011
8 -1.1014 2.0748e-012

Fig. 2
Fig. 2. Comparison between the 8-term HAM solution and the exact solution.
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Table 4.
The comparison of the results of the HAM(h = −1.1014, h = −1) and exact solution

t HAM (h = −1.1014)
∣∣t3 − y8

∣∣ HPM
∣∣t3 − y8

∣∣
0.1 0.001 3.5997e-013 0.001 2.5435e-016
0.2 0.008 1.5021e-012 0.008 4.2573e-013
0.3 0.027 9.6606e-012 0.027 3.1145e-011
0.4 0.064 2.9515e-011 0.064 6.3416e-010
0.5 0.125 4.1907e-011 0.125 6.4131e-009
0.6 0.216 3.3163e-010 0.216 4.1671e-008
0.7 0.343 5.0078e-010 0.343 1.9955e-007
0.8 0.512 2.0880e-009 0.512 7.6424e-007
0.9 0.729 8.0036e-009 0.729 2.4674e-006
1.0 1.0 4.4094e-009 0.99999 6.9604e-006

Remark 2. Now We will compare numerical solution semi-differential
equations of order 4, by collocation spline method based on Lagrange
interpolation as Showed Rawashdeh in [22]. It is clear that the main
disadvantage of the collocation spline method is its complex and difficult
procedure. Also Rawashdeh in [22] reported the computed absolute error
( error between exact and approximate value) with N = 100 (N is the
division number of the given interval) for Examples 3.1 and 3.2, see
Table 5. In the studies by Rawashdeh, much time was spent and boring
operations were done by collocation spline method based on Lagrange
interpolation to get approximate solutions.

Table 5.
Numerical solution of y(t) in Examples 3.1 and 3.2.

tn(T = 5) h = T
N

Absolute error of Example 3.1 Absolute error of Example 3.2

0.1 100 0.2e-010 0.18e-010
1 100 0.44e-007 0.534e-009

2.5 100 0.25e-005 0.25e-006
4 100 0.15e-006 0.88e-005
5 100 0.22e-004 0.39e-004
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5. Conclusion

In this paper, we have successfully developed an optimal homotopy-
analysis approach for solving Semi-Differential Equations of nth Order.
An optimal value of the convergence control parameter h has also been
given by means of the exact square residual error integrated in the whole
region of interest Ω. We show that HAM provides accurate numerical
solution for Semi-Differential Equations of nth Order in comparison with
the homotopy perturbation method. The results show that HAM is a
powerful mathematical tool and HPM is a special case of HAM.

Matlab has been used for computations in this paper.
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