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1 Introduction

Through out this paper, ρ denotes a quasi-metric on a nonempty set X; that is, a real
valued function ρ on X ×X such that for every x, y, z ∈ X,

(i) ρ(x, y) ≥ 0;
(ii) x = y if and only if ρ(x, y) = ρ(y, x) = 0;
(iii) ρ(x, y) ≤ ρ(x, z) + ρ(z, y).
A sequence {xn} in a quasi-metric space (X, ρ) is called ρ−convergence at a point

x ∈ X if for every ε > 0 there is an integer n0 such that n ≥ n0 implies that ρ(x, xn) < ε.
It is said to be ρ−Cauchy if for every ε > 0 there exists n0 ∈ N such that ρ(xn, xm) < ε
if n0 ≤ n ≤ m. A quasi-metric space (X, ρ) is called ρ−complete if every ρ−Cauchy
sequence in X is ρ−convergent. A point x0 ∈ X is called a limit point of set E ⊆ X if
there exists a sequence {xn} in E such that

lim
n→∞

ρ(x0, xn) = 0.

We denote by E ′ the set of all limit points of E in X, and set

E = E ∪ E ′.

A self-mapping A on a quasi-metric space (X, ρ) is called ρ−continuous at x0 ∈ X if

lim
n→∞

ρ(A(x0), A(xn)) = lim
n→∞

ρ(A(xn), A(x0)) = 0,

when for any sequence {xn} in X

lim
n→∞

ρ(x0, xn) = lim
n→∞

ρ(xn, x0) = 0.

Also, self-mappings A and S of a quasi-metric space (X, ρ) is said to be ρ−compatible if

lim
n→∞

ρ(SAxn, ASxn) = lim
n→∞

ρ(ASxn, SAxn) = 0,
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whenever {xn}is a sequence in X such that

lim
n→∞

ρ(x0, Axn) = lim
n→∞

ρ(x0, Sxn) = 0

for some x0 ∈ X. In particular, the pair (A, S) is said to be weakly compatible if Ax = Sx
for some x ∈ X, then ASx = SAx.

Schellekens [18] introduced the concept of quasi-metric spaces as a generalization of
the concept of metric spaces. Quasi-metric spaces have some applications in the study
of computer science; for example see [7, 9, 17] for the applications of this theory to the
asymptotic complexity analysis of Divide and Conquer algorithms. Some other authors
extended the fixed point theorems in metric spaces to quasi-metric spaces [4, 6, 11, 16,
10, 15]. For instance, Hick [10] proved if there exists 0 ≤ γ < 1 such that

ρ(Ax,Ay) ≤ γmax{ρ(x, y), ρ(x,Ax), ρ(y, Ay), 1/2[ρ(x,Ay) + ρ(y, Ax)]},

then A has a fixed point. He also proved a fixed point theorem for self-mappings A of a
ρ−complete quasi-metric (X, ρ) which satisfying the following condition.

ρ(y, Ay) ≤ φ(y)− φ(Ay),

where φ is a positive function on X. Ciric [4] generalized this result by proving the
following common fixed point theorem.

Theorem 1.1 Suppose A, S : X → X and φ : X → [0,∞), where X is a complete
quasi-metric space. Let there is x0 ∈ X such that

ρ(y, Ay) + ρ(Ay, SAy) ≤ φ(y)− φ(SAy)

for all y ∈ {x0, Ax0, SAx0, A(SA)x0, ..., (SA)nx0, A(SA)nx0, ...}. If G1(x) = ρ(x,Ax) and
G2(x) = ρ(x, Sx) are (S,A)−orbitally weak lower semi-continuous relative to x0, then
Ap = p = Sp for some p ∈ X.

Jungck [12] and Jungck and Rhoades [13] introduced the notions of compatible and
weakly compatible mappings on metric spaces. These notions are a generalization of the
notion of commuting self-mappings. Using concepts of compatible and weakly compatible
mappings on metric spaces, Singh and Jain [19] proved the following result.

Theorem 1.2 Let Pi and Qj be self-mappings of a complete metric space (X , d) for
i = 1, ..., 4 and j = 0, 1. If

(i) Q0(X ) ⊆ P1P3(X ), Q1(X ) ⊆ P2P4(X ).
(ii) P2P4 = P4P2, P1P3 = P3P1, Q0P4 = P4Q0, Q1P3 = P3Q1.
(iii) for every x, y ∈ X and for some 0 < γ < 1

d(Q0x,Q1y) ≤ γmax{d(Q0x, P2P4x), d(Q1y, P1P3y), d(P2P4x, P1P3y), (1)

1/2[d(Q0x, P1P3y) + d(Q1y, P2P4x)]}.

(iv) the pair (Q0, P2P4) is compatible and the pair (Q1, P1P3) is weakly compatible.
(v) either P2P4 or Q0 is continuous.
Then Pi and Qj have a unique common fixed point for i = 1, ..., 4 and j = 0, 1.
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Ciric et al. [5] obtained an extension of Theorem 1.2. In fact, they proved the theorem for
a countable family of compatible self-mappings of a complete metric space by replacing
relation (1) by

d(Q0x,Q1y) ≤ max{ϕ(d(Q0x, π
n
i=1P2ix)), ϕ(d(Q1y, π

n
i=1P2i−1y)),

ϕ(d(πni=1P2ix, π
n
i=1P2i−1y)), ϕ(1/2[d(Q0x, π

n
i=1P2i−1y)) (2)

+ ϕ(d(Q1y, π
n
i=1P2ix)])},

where πmi=`Pi = P`P`+1...Pm and ϕ is an element of Φ, the set of continuous non-decreasing
function ϕ : [0,∞)→ [0,∞) with ϕ(0) = 0 and ϕ(t) < t for all t > 0.

In this paper, we investigate the question and prove an analogue of Ciric et al. [5] for
quasi-metric spaces.

2 Main Results

We commence this section with the main result of the paper.

Theorem 2.1 Let S1, S2, . . . , S2n, A0 and A1 be self-mappings of a ρ−complete quasi-
metric space (X, d) such that

(i) A0(X) ⊆ πni=1S2i−1(X) and A1(X) ⊆ πni=1S2i(X);

(ii) π`i=1S2iπ
n
i=`+1S2i = πni=`+1S2iπ

`
i=1S2i for ` = 1, ..., n− 1;

(iii) A0(π
n
i=`S2i) = (πni=`S2i)A0 for ` = 2, ..., n;

(iv) π`i=1S2i−1π
n
i=`+1S2i−1 = πni=`+1S2i−1π

`
i=1S2i−1 for ` = 1, ..., n− 1;

(v) A1(π
n
i=`S2i−1) = (πni=`S2i−1)A1 for ` = 2, ..., n;

(vi) πni=1S2i or A0 is ρ−continuous;

(vii) the pair (A0, π
n
i=1S2i) is ρ−compatible and pair (A1, π

n
i=1S2i−1) is weakly compat-

ible;

(viii) there exists ϕ ∈ Φ such that for every u, v ∈ X, x ∈ πni=1S2i−1(X) and y ∈
πni=1S2i(X),

ρ(A0u, y) + ρ(A1v, x) ≤ max{ϕ(ρ(x,A0u)), ϕ(ρ(y, A1v)), ϕ(ρ(x, y)),

ϕ(1/2[ρ(x, πni=1S2i−1v)) + ρ(y, πni=1S2iu)])}. (3)

Then S1, S2, . . . , S2n, A0, A1 have a unique common fixed point in X.

Proof. Let x0 ∈ X. Choose x1, x2 ∈ X such that

A0x0 = πni=1S2i−1x1 := y0 and A1x1 = πni=1S2ix2 := y1.

For any k ∈ N, set

A0x2k = πni=1S2i−1x2k+1 := y2k and A1x2k+1 = πni=1S2ix2k+2 := y2k+1.
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From properties of ϕ and condition (viii) we see that

ρ(y2k, y2k+1) + ρ(y2k+1, y2k)

≤ max{ϕ(ρ(A0x2k, A0x2k)), ϕ(ρ(A1x2k+1, A1x2k+1)),

ϕ(ρ(A0x2k, A1x2k+1)), ϕ(1/2[ρ(A0x2k, π
n
i=1S2i−1x2k+1)

+ ρ(A1x2k+1, π
n
i=1S2ix2k)])}

= max{ϕ(ρ(y2k, y2k+1)), ϕ(1/2[ρ(y2k, y2k) + ρ(y2k+1, y2k−1)])}
≤ max{ϕ(ρ(y2k, y2k+1)), ϕ(1/2[ρ(y2k+1, y2k) + ρ(y2k, y2k−1)])}
≤ ϕ(max{ρ(y2k, y2k+1), ρ(y2k+1, y2k), ρ(y2k, y2k−1)})
≤ ϕ(ρ(y2k, y2k−1)).

This shows that

ρ(y2k+1, y2k) ≤ ϕ(ρ(y2k, y2k−1)) ≤ ρ(y2k, y2k−1) (4)

and

ρ(y2k, y2k+1) ≤ ρ(y2k, y2k−1). (5)

A similar argument shows that

ρ(y2k+2, y2k+1) ≤ ϕ(ρ(y2k+1, y2k)) ≤ ρ(y2k+1, y2k) (6)

and

ρ(y2k+1, y2k+2) ≤ ρ(y2k+1, y2k). (7)

By relation (4)–(7), we have

0 ≤ ρ(yn+1, yn) ≤ ϕ(ρ(yn, yn−1)) ≤ ρ(yn, yn−1) (8)

and

0 ≤ ρ(yn, yn+1) ≤ ρ(yn, yn−1) (9)

for all n ∈ N. Hence {ρ(yn+1, yn)} is a non-increasing sequence. Thus there exists α ≥ 0
such that limn→∞ ρ(yn+1, yn) = α. This together with (8) and continuity of φ shows that

α = lim
n→∞

ϕ(ρ(yn+1, yn)) = ϕ(α).

So α = 0. Thus

lim
n→∞

ρ(yn+1, yn) = lim
n→∞

ρ(yn, yn−1) = 0.

From (9) we see that

lim
n→∞

ρ(yn, yn+1) = 0.
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Let ε and δ be positive numbers with δ < (ε− ϕ(ε))/3. By

lim
n→∞

ρ(yn, yn+1) = lim
n→∞

ρ(yn+1, yn) = 0,

choose N ∈ N such that ρ(yn, yn+1) < δ and ρ(yn+1, yn) < δ for all n ≥ N . If k, q ∈ N,
then by (viii) we have

ρ(y2q+1, y2k+1) ≤ ρ(A1x2q+1, A0x2k+2) + ρ(A0x2k+2, y2k+1)

≤ max{ϕ(ρ(A0x2k+2, A0x2k+2)), ϕ(ρ(y2k+1, A1x2q+1)),

ϕ(ρ(A0x2k+2, y2k+1)), ϕ(1/2[ρ(A0x2k+2, π
n
i=1S2i−1x2q+1)

+ ρ(y2k+1, π
n
i=1S2ix2k+2)])}

= max{ϕ(ρ(y2k+1, y2q+1)), ϕ(ρ(y2k+2, y2k+1)),

ϕ(1/2[ρ(y2k+2, y2q) + ρ(y2k+1, y2k+1)])} (10)

≤ max{ϕ(ρ(y2k+1, y2q+1)), ϕ(ρ(y2k+2, y2k+1)),

ϕ(ρ(y2k+2, y2k+1) + ρ(y2k+1, y2q+1) + ρ(y2q+1, y2q)}
≤ ϕ(ρ(y2k+2, y2k+1) + ρ(y2k+1, y2q+1) + ρ(y2q+1, y2q))

≤ 2δ + ρ(y2k+1, y2q+1).

From properties of ϕ and (viii) with x = y2k, y = A1x2q+1, u = x2k and v = x2q+1, we infer
that

ρ(y2k, y2q+1) ≤ ρ(A0x2k, A1x2q+1) + ρ(A1x2k+1, y2k)

≤ max{ϕ(ρ(y2k, A0x2k), ϕ(ρ(A1x2q+1, A1x2k+1)),

ϕ(ρ(y2k, A1x2q+1)), ϕ(1/2[ρ(y2k, π
n
i=1S2i−1x2k+1)

+ ρ(A1x2q+1, π
n
i=1S2ix2k)])}

= max{ϕ(ρ(y2q+1, y2k+1)), ϕ(ρ(y2k, y2q+1)),

ϕ(1/2[ρ(y2k, y2k) + ρ(y2q+1, y2k−1)])}
≤ ϕ(tn,m),

where
tn,m = max{ρ(y2q+1, y2k+1), 1/2(ρ(y2q+1, y2k−1)}.

In view of (10), we conclude that

tn,m ≤ max{ρ(y2q+1, y2k+1),

max{ρ(y2q+1, y2k+1), ρ(y2k+1, y2k−1)}}
= max{ρ(y2q+1, y2k+1), ρ(y2k+1, y2k−1)}
≤ max{2δ + ρ(y2k+1, y2q+1), 2δ}
= 2δ + ρ(y2k+1, y2q+1).

Now, we prove that if

ρ(yn, ym) < ϕ(ε) + (ε− ϕ(ε))/3 + 2δ (11)
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for any m ≥ n ≥ N , then tn,m < ε+ 6δ. For this end, we consider the following cases.
Case 1. Let n = 2r and m = 2s for some r, s ∈ N. Then

ρ(y2r+1, y2s+1) ≤ ρ(y2r+1, y2r) + ρ(y2r, y2s) + ρ(y2s, y2s+1)

≤ ϕ(ε) + (ε− ϕ(ε))/3 + 4δ.

Hence tn,m < ε+ 6δ.
Case 2. Let n = 2r and m = 2s+ 1 for some r, s ∈ N. Then

ρ(y2r+1, y2s+1) ≤ ρ(y2r+1, y2r) + ρ(y2r, y2s+1)

≤ ϕ(ε) + (ε− ϕ(ε))/3 + 3δ.

So tn,m < ε+ 6δ.
Case 3. Let n = 2r + 1 and m = 2s for some r, s ∈ N. Then

ρ(y2r+1, y2s+1) ≤ ρ(y2r+1, y2s) + ρ(y2s, y2s+1)

≤ ϕ(ε) + (ε− ϕ(ε))/3 + 3δ.

Thus tn,m < ε+ 6δ.
Case 4. Let n = 2r + 1 and m = 2s+ 1 for some r, s ∈ N. According to (11), we get

tn,m < ε+ 6δ.
By a similar argument as given in [5], we can show that the sequence {yn} is ρ−Cauchy.

Hence from the ρ−completeness of X, it follows that there exists z ∈ X such that
limn→∞ ρ(z, yn) = 0. Hence

lim
k→∞

ρ(z, A1x2k+1) = lim
k→∞

ρ(z, πni=1S2i−1x2k+1)

= lim
k→∞

ρ(z, A0x2k) = lim
k→∞

ρ(z, πni=1S2ix2k) = 0 (12)

and so

lim
k→∞

(ρ(A0x2k, z) + ρ(A1x2k+1, z))

≤ lim
k→∞

(max{ϕ(ρ(z, A0x2k)), ϕ(ρ(z, A1x2k+1)), ϕ(ρ(z, z)),

ϕ(1/2[ρ(z, πni=1S2i−1x2k+1) + ρ(z, πni=1S2ix2k)])})
= 0.

Thus

lim
k→∞

ρ(A1x2k+1, z) = lim
k→∞

ρ(πni=1S2i−1x2k+1, z)

= lim
k→∞

ρ(A0x2k, z) = lim
k→∞

ρ(πni=1S2ix2k, z) (13)

= 0.

Now, we consider the following cases.
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Case I. Let πni=1S2i is ρ−continuous. From (12) and (13) we see that

lim
k→∞

ρ(πni=1S2iπ
n
i=1S2ix2k, π

n
i=1S2iz) = lim

k→∞
ρ(πni=1S2iz, π

n
i=1S2iπ

n
i=1S2ix2k) = 0

and

lim
k→∞

ρ(πni=1S2iA0x2k, π
n
i=1S2iz) = lim

k→∞
ρ(πni=1S2iz, π

n
i=1S2iA0x2k) = 0.

Since (A0, π
n
i=1S2i) is ρ−compatible, we have

lim
k→∞

ρ(A0π
n
i=1S2ix2k, π

n
i=1S2iz) = lim

k→∞
ρ(πni=1S2iz, A0π

n
i=1S2ix2k) = 0.

Step 1. From (viii) with u = πni=1S2ix2k, v = x2k+1, x = A0π
n
i=1S2ix2k and y = A1x2k+1,

we have

ρ(A0π
n
i=1S2ix2k, A1x2k+1) + ρ(A1x2k+1, A0π

n
i=1S2ix2k)

≤ max{ϕ(ρ(A0π
n
i=1S2ix2k, A0π

n
i=1S2ix2k)),

ϕ(ρ(A1x2k+1, A1x2k+1)),

ϕ(ρ(A0π
n
i=1S2ix2k, A1x2k+1)),

ϕ(1/2[ρ(A0π
n
i=1S2ix2k, π

n
i=1S2i−1x2k+1)

+ ρ(A1x2k+1, π
n
i=1S2iπ

n
i=1S2ix2k)])}.

Letting k →∞, we see that

ρ(πni=1S2iz, z) + ρ(z, πni=1S2iz)

≤ max{ϕ(ρ(πni=1S2iz, z)),

ϕ(1/2[ρ(πni=1S2iz, z) + ρ(z, πni=1S2iz)])}
≤ ϕ(max{ρ(z, πni=1S2iz), ρ(πni=1S2iz, z)}).

If

max{ρ(z, πni=1S2iz), ρ(πni=1S2iz, z)} = ρ(z, πni=1S2iz), (14)

then

ρ(z, πni=1S2iz) ≤ ρ(πni=1S2iz, z) + ρ(z, πni=1S2iz) ≤ ϕ(ρ(z, πni=1S2iz)).

So ρ(z, πni=1S2iz) = 0. By (14), we have

0 ≤ ρ(πni=1S2iz, z) ≤ ρ(z, πni=1S2iz) = 0.

It follows that

ρ(πni=1S2iz, z) = ρ(z, πni=1S2iz) = 0.

Thus πni=1S2iz = z. Similarly, if

max{ρ(z, πni=1S2iz), ρ(πni=1S2iz, z)} = ρ(πni=1S2iz, z),
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then πni=1S2iz = z.

Step 2. Put u = z, v = x2k+1, x = A0z and y = A1x2k+1 in condition (viii). Then

ρ(A0z, A1x2k+1) + ρ(A1x2k+1, A0z)

≤ max{ϕ(ρ(A0z, A0z)), ϕ(ρ(A1x2k+1, A1x2k+1)),

ϕ(ρ(A0z, A1x2k+1)), ϕ(1/2[ρ(A0z, π
n
i=1S2i−1x2k+1)

+ ρ(A1x2k+1, π
n
i=1S2iz)])}.

Letting k →∞, we obtain

ρ(A0z, z) + ρ(z, A0z)

≤ max{ϕ(ρ(A0z, z)), ϕ(1/2[ρ(A0z, z) + ρ(z, πni=1S2iz)])}.

Since πni=1S2iz = z and ϕ is non-decreasing, it follows that

ρ(A0z, z) + ρ(z, A0z) ≤ ϕ(ρ(A0z, z)). (15)

This implies that ρ(A0z, z) = 0. From (15) and the fact that ϕ(0) = 0 we see that
ρ(z, A0z) = 0. Therefore,

A0z = πni=1S2iz = z.

Step 3. From (viii) with u = πni=2S2iz, v = x2k+1, x = A0π
n
i=2S2iz and y = A1x2k+1,

we see that

ρ(A0π
n
i=2S2iz, A1x2k+1) + ρ(A1x2k+1, A0π

n
i=2S2iz)

≤ max{ϕ(ρ(A0π
n
i=2S2iz, A0π

n
i=2S2iz)),

ϕ(ρ(A1x2k+1, A1x2k+1)),

ϕ(ρ(A0π
n
i=2S2iz, A1x2k+1)),

ϕ(1/2[ρ(A0π
n
i=2S2iz, π

n
i=1S2i−1x2k+1)

+ ρ(A1x2k+1, π
n
i=1S2iπ

n
i=2S2iz)])}.

Since A0z = z, by letting k →∞, we get

ρ(πni=2S2iz, z) + ρ(z, πni=2S2iz)

≤ max{ϕ(ρ(πni=2S2iz, z)), ϕ(1/2[ρ(πni=2S2iz, z)

+ ρ(z, πni=2S2iz)])}
≤ ϕ(max{ρ(πni=2S2iz, z), ρ(z, πni=2S2iz)}).

This shows that πni=2S2iz = z. Thus S2(π
n
i=2S2iz) = S2z and so S2z = πni=1S2iz = z.

Continuing this procedure, we obtain A0z = S2iz = z for i = 1, ..., n.

Step 4. By condition (i), there exists v ∈ X such that

z = A0z = πni=1S2i−1v.
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Putting u = x2k, x = A0x2k and y = A1v in condition (viii), we have

ρ(A0x2k, A1v) + ρ(A1v, A0x2k)

≤ max{ϕ(ρ(A0x2k, A0x2k)), ϕ(ρ(A1v, A1v)),

ϕ(ρ(A0x2k, A1v)), ϕ(1/2[ρ(A0x2k, π
n
i=1S2i−1v)

+ ρ(A1v, π
n
i=1S2ix2k)])}.

Letting k →∞, we find

ρ(z, A1v) + ρ(A1v, z)

≤ max{ϕ(ρ(z, A1v)), ϕ(1/2[ρ(z, πni=1S2i−1v) + ρ(A1v, z)])}
= max{ϕ(ρ(z, A1v)), ϕ(1/2[ρ(z, z) + ρ(A1v, z)])}
≤ ϕ(max{ρ(z, A1v), ρ(A1v, z)}).

Hence A1v = z and therefore

πni=1S2i−1v = A1v = z.

As (A1, π
n
i=1S2i−1) is weakly compatible, we have

πni=1S2i−1A1v = A1π
n
i=1S2i−1v.

Thus πni=1S2i−1z = A1z.
Step 5. Putting u = x2k, v = z, x = A0x2k and y = A1z in condition (viii), we have

ρ(A0x2k, A1z) + ρ(A1z, A0x2k)

≤ max{ϕ(ρ(A0x2k, A0x2k)), ϕ(ρ(A1z, A1z)),

ϕ(ρ(A0x2k, A1z)), ϕ(1/2[ρ(A0x2k, π
n
i=1S2i−1z)

+ ρ(A1z, π
n
i=1S2ix2k)])}.

Letting k →∞, we get

ρ(z, A1z) + ρ(A1z, z)

≤ max{ϕ(ρ(z, A1z)), ϕ(1/2[ρ(z, A1z) + ρ(A1z, z)])}
≤ ϕ(max{ρ(z, A1z), ρ(A1z, z)}).

So πni=1S2i−1z = A1z = z.

Step 6. Putting u = x2k, v = πni=2S2i−1z, x = A0x2k and y = A1π
n
i=2S2i−1z in condition

(viii), we have

ρ(A0x2k, A1π
n
i=2S2i−1z) + ρ(A1π

n
i=2S2i−1z, A0x2k)

≤ max{ϕ(ρ(A0x2k, A0x2k)), ϕ(ρ(A1π
n
i=2S2i−1z,

A1π
n
i=2S2i−1z)), ϕ(ρ(A0x2k, A1π

n
i=2S2i−1z)),

ϕ(1/2[ρ(A0x2k, π
n
i=1S2i−1π

n
i=2S2i−1z)

+ ρ(A1π
n
i=2S2i−1z, π

n
i=1S2ix2k)])}.
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Letting k →∞ shows that

ρ(z, πni=2S2i−1z) + ρ(πni=2S2i−1z, z) ≤ max{ϕ(ρ(z, πni=2S2i−1z)),

ϕ(1/2[ρ(z, πni=2S2i−1z) + ρ(πni=2S2i−1z, z)])}
≤ ϕ(max{ρ(z, πni=2S2i−1z), ρ(πni=2S2i−1z, z)}).

So πni=2S2i−1z = z and hence p3z = z. Continuing this procedure, we have A1z = S2i−1z
for i = 1, ..., n. Thus A0z = A1z = Siz = z for i = 1, ..., 2n. That is, z is a common fixed
point of A0, A1, S1, S2, ..., S2n.

Case II. Let A0 be ρ−continuous. By (12) and (13),

lim
k→∞

ρ(A0
2x2k, A0z) = lim

k→∞
ρ(A0z, A0

2x2k) = 0.

Since (A0, π
n
i=1S2i) is ρ−compatible, we have

lim
k→∞

ρ(πni=1S2iA0x2k, A0z) = lim
k→∞

ρ(A0z, π
n
i=1S2iA0x2k) = 0.

Step 7. Putting u = A0x2k, v = x2k+1, x = A2
0x2k and y = A1x2k+1 in condition (viii),

we have

ρ(A2
0x2k, A1x2k+1) + ρ(A1x2k+1, A

2
0x2k)

≤ max{ϕ(ρ(A2
0x2k, A

2
0x2k)), ϕ(ρ(A1x2k+1, A1x2k+1)),

ϕ(ρ(A2
0x2k, A1x2k+1)), ϕ(1/2[ρ(A2

0x2k, π
n
i=1S2i−1x2k+1)

+ ρ(A1x2k+1, π
n
i=1S2iA0x2k)])}.

Letting k →∞ gives that

ρ(A0z, z) + ρ(z, A0z)

≤ max{ϕ(ρ(A0z, z)), ϕ(1/2[ρ(A0z, z) + ρ(z, A0z)])}
≤ ϕ(max{ρ(A0z, z), ρ(z, A0z)}).

Hence A0z = z and therefore, for every i = 1, ..., n

A1z = S2i−1z = z,

by the same argument that was used in Steps 4–6.

Step 8. By condition (i), there exists u ∈ X such that

z = A1z = πni=1S2iu.

Putting v = x2k+1, x = A0u and y = A1x2k+1 in condition (viii), we have

ρ(A0u,A1x2k+1) + ρ(A1x2k+1, A0u)

≤ max{ϕ(ρ(A0u,A0u)), ϕ(ρ(A1x2k+1, A1x2k+1)),

ϕ(ρ(A0u,A1x2k+1)), ϕ(1/2[ρ(A0u, π
n
i=1S2i−1x2k+1)

+ ρ(A1x2k+1, π
n
i=1S2iu)])}.
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Letting k →∞ and using Step 7, we see that

ρ(A0u, z) + ρ(z, A0u)

≤ max{ϕ(ρ(A0u, z)), ϕ(1/2[ρ(A0u, z) + ρ(z, z)])}
= ϕ(ρ(A0u, z)).

This implies that
A0u = z = πni=1S2iu.

As (A0, π
n
i=2S2i) is weakly compatible, we have

A0z = πni=1S2iz = z.

A discussion similar to Step 3 shows that S2iz = A0z = z for i = 1, ..., n. Thus A0z =
A1z = Siz = z for i = 1, ..., 2n. That is, z is a common fixed point of A0, A1, S1, S2, ..., S2n.

To prove the uniqueness theorem, let w be a common fixed point ofA0, A1, S1, S2, ..., S2n.
Hence

A0w = A1w = Siw = w

for i = 1, ..., 2n. Putting u = z, v = w, x = A0z and y = A1w in condition (viii), we have

ρ(A0z, A1w) + ρ(A1w,A0z)

≤ max{ϕ(ρ(A0z, A0z)), ϕ(ρ(A1w,A1w)), ϕ(ρ(A0z, A1w)),

ϕ(1/2[ρ(A0z, π
n
i=1S2i−1w) + ρ(A1w, π

n
i=1S2iz)])}

≤ ϕ(max{ρ(z, w), ρ(w, z)}).

Therefore, z = w. That is, z is a unique common fixed point of the mappings. �

We conclude the paper with the following result.

Proposition 2.2 Let {S2i}ni=1 and {Tα}α∈J be two families of self-mappings of a ρ−complete
quasi-metric space (X, d). If there exists β ∈ J such that

(i) Tβ(X) ⊆ πni=1S2i−1(X) and Tα(X) ⊆ πni=1S2i(X) for all α ∈ J .
(ii) π`i=1S2iπ

n
i=`+1S2i = πni=`+1S2iπ

`
i=1S2i for ` = 1, ..., n− 1;

(iii) Tβ(πni=`S2i) = (πni=`S2i)Tβ for ` = 2, ..., n;
(iv) π`i=1S2i−1π

n
i=`+1S2i−1 = πni=`+1S2i−1π

`
i=1S2i−1 for ` = 1, ..., n− 1;

(v) Tα(πni=`S2i−1) = (πni=`S2i−1)Tα for ` = 2, ..., n;
(vi) πni=1S2i or Tβ is ρ−continuous;
(vii) the pair (Tβ, π

n
i=1S2i) is ρ−compatible and pair (Tα, π

n
i=1S2i−1) is weakly compat-

ible;
(viii) there exists ϕ ∈ Φ such that for every u, v ∈ X, x ∈ πni=1S2i−1(X), y ∈ πni=1S2i(X)

and α ∈ J

ρ(Tβu, y) + ρ(Tαv, x) ≤ max{ϕ(ρ(x, Tβu)), ϕ(ρ(y, Tαv)), ϕ(ρ(x, y)),

ϕ(1/2[ρ(x, πni=1S2i−1v)) + ρ(y, πni=1S2iu)])},

then {Tα} and {S2i}ni=1 have a unique common fixed point in X.
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Proof. Let α0 ∈ J . In Theorem 2.1, set A0 = Tβ and A1 = Tα0 . Then Tα0 , Tβ, S1, ..., S2n

have a unique fixed point, say z. Now, let α ∈ J . Then

ρ(Tβz, Tαz) + ρ(Tαz, Tβz)

≤ max{ϕ(ρ(Tβz, Tβz)), ϕ(ρ(Tαz, Tαz)), ϕ(ρ(Tβz, Tαz)),

ϕ(1/2[ρ(Tβz, π
n
i=1S2i−1z) + ρ(Tαz, π

n
i=1S2iz)])}

≤ ϕ(max{ρ(z, Tαz), ρ(Tαz, z)}).

Since Tβz = z, it follows that Tαz = z for all α ∈ J . �
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