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1 Introduction

Through out this paper, p denotes a quasi-metric on a nonempty set X; that is, a real
valued function p on X x X such that for every x,y, 2z € X,

(1) plz,y) = 0;
(ii) x = y if and only if p(z,y) = p(y,z) = 0;

(iii) p(z,y) < plz, 2) + p(z,9).

A sequence {z,} in a quasi-metric space (X, p) is called p—convergence at a point
x € X if for every € > 0 there is an integer ny such that n > ng implies that p(x,z,) < .
It is said to be p— Cauchy if for every ¢ > 0 there exists ng € N such that p(z,, z,,) < ¢
if ng < n < m. A quasi-metric space (X, p) is called p—complete if every p—Cauchy
sequence in X is p—convergent. A point zy € X is called a limit point of set £ C X if
there exists a sequence {x,} in E such that

lim p(zo, 2,,) = 0.
We denote by E’ the set of all limit points of F in X, and set
E=FEUE.

A self-mapping A on a quasi-metric space (X, p) is called p—continuous at xo € X if

Tim p(A(zo), A(za)) = lim p(Alwa), Alzo)) = 0,
when for any sequence {z,} in X

Jim plro.,) = Jim pls. ) = 0.

Also, self-mappings A and S of a quasi-metric space (X, p) is said to be p—compatible if

1im p(SAx,, ASx,) = Jim p(ASx,, SAx,) =0,
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whenever {z, }is a sequence in X such that
lim p(zo, Azy) = lim p(zo, Szn) =0

for some zy € X. In particular, the pair (A, S) is said to be weakly compatible if Az = Sx
for some x € X, then ASx = SAx.

Schellekens [18] introduced the concept of quasi-metric spaces as a generalization of
the concept of metric spaces. Quasi-metric spaces have some applications in the study
of computer science; for example see [7, 9, 17| for the applications of this theory to the
asymptotic complexity analysis of Divide and Conquer algorithms. Some other authors
extended the fixed point theorems in metric spaces to quasi-metric spaces [4, 6, 11, 16,
10, 15]. For instance, Hick [10] proved if there exists 0 < v < 1 such that

p(Az, Ay) < ymax{p(x,y), p(z, Az), p(y, Ay), 1/2[p(z, Ay) + p(y, Az)]},

then A has a fixed point. He also proved a fixed point theorem for self-mappings A of a
p—complete quasi-metric (X, p) which satisfying the following condition.

p(y, Ay) < é(y) — ¢(Ay),

where ¢ is a positive function on X. Ciric [4] generalized this result by proving the
following common fixed point theorem.

Theorem 1.1 Suppose A,S : X — X and ¢ : X — [0,00), where X is a complete
quasi-metric space. Let there is xo € X such that

p(y, Ay) + p(Ay, SAy) < ¢(y) — ¢(SAy)

forally € {xy, Axg, SAxg, A(SA)xy, ..., (SA)"xo, A(SA) 20, ...}. If Gi(z) = p(x, Ax) and
Go(z) = p(x, Sz) are (S, A)—orbitally weak lower semi-continuous relative to xq, then
Ap =p = Sp for somep e X.

Jungck [12] and Jungck and Rhoades [13] introduced the notions of compatible and
weakly compatible mappings on metric spaces. These notions are a generalization of the
notion of commuting self-mappings. Using concepts of compatible and weakly compatible
mappings on metric spaces, Singh and Jain [19] proved the following result.

Theorem 1.2 Let P, and Q; be self-mappings of a complete metric space (X,d) for
1=1,...,4and 7=0,1. If

(i) Qo(X) € PP3(X), Q1(X) C PaPy(X).

(ii) PPy = PyP, PPy = P3P, QoPy = PyQo, Q1P3 = P3Q),.

(iii) for every x,y € X and for some 0 <y < 1

d(Qor,Q1y) < ymax{d(Quz, RPyx),d(Qvy, P P3y), d(P2Pyz, P Psy), (1)
1/2[d(Qoz, Py Psy) 4+ d(Qvy, PaPyx)]}.
(iv) the pair (Qo, Py Py) is compatible and the pair (Qq, Py P3) is weakly compatible.

(v) either PyPy or Qq is continuous.
Then P; and @; have a unique common fized point fori=1,...,4 and j =0, 1.
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Ciric et al. [5] obtained an extension of Theorem 1.2. In fact, they proved the theorem for
a countable family of compatible self-mappings of a complete metric space by replacing
relation (1) by

d(QOxa Q1y> S maX{@(d(QofE» 7T7721:1P2i$))ﬂ Sp(d(Qlya W?:1P2i—1y))>
p(d(miiy Py, miiy Pai1y)), o(1/2[d(Qo, 7y Pai-1y)) (2)
+ @(d(Q1y7 7T,?:1P2i$>])},

where 7", P; = PyPyy4... P, and ¢ is an element of @, the set of continuous non-decreasing
function ¢ : [0, 00) — [0, 00) with ¢(0) =0 and ¢(t) < t for all ¢t > 0.

In this paper, we investigate the question and prove an analogue of Ciric et al. [5] for
quasi-metric spaces.

2 Main Results

We commence this section with the main result of the paper.

Theorem 2.1 Let S1,95,...,59,,Ag and Ay be self-mappings of a p—complete quasi-
metric space (X, d) such that

(i) Ao(X) € mLyS2-1(X)  and Ay (X) C mLy 55(X);

(11) szngiW?:Hngi = W?:Z_,_ngﬂTf:lSQi fOT’ {= 1, = 1,‘

(111) AO(TF?:ZSQ’L') = (W?:eSQi)AO fO’l” (= 2, LNy

(iv) 71 Soi 1My Soi1 = T py 1S 1M1 S2i1 for{=1,..,n—1;

(V) A1(7TZTL:£SQZ’_1) = (W;LZKSQi_l)Al fOT (= 2, Ny

(vi) w1 Sa; or Ag is p—continuous;

(vii) the pair (Ao, w1 S2;) is p—compatible and pair (Ay, " 1S9_1) is weakly compat-
ble;

(viii) there exists ¢ € ® such that for every u,v € X, x € 7, 5%1(X) and y €
ity S2:(X),

p(Aou, y) + p(Arv, ) < max{p(p(z, Aou)), ¢(p(y, A1v)), w(p(z,y)),
(1/2[p(z, mL) S2—1v)) + p(y, iy Sesu)]) }- (3)

Then Sy,Ss, ..., S0, Ao, A1 have a unique common fixed point in X .
Proof. Let o € X. Choose 1, x5 € X such that

Aol'o = W?zngi,lxl =% and A1$1 = 77?:1521-:62 =Y.
For any k € N, set

n PO _ n .
Aozop = T S2i-1%ok41 = Yo and  AyTopy1 = T 2 Tokt2 1= Yokt1-
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From properties of ¢ and condition (viii) we see that

P(Yak, Yor1) +  p(Yort1, Yor)

< max{e(p(Aozar, AoTar)), P(P(A1Tors1, A1Tart1)),
(p(Aozar, A1ror11)), (1/2[p(Aowok, Tiy S2i—1T2k41)
p(A1Tok 1, Tl Saixar)]) }
max{@(p(yar, Yor+1)), (1/2[p(Yar, yor) + p(Y2r+1, Y2r-1)]) }
max{@(p(yar, Yor+1)), (1/2[p(Yar-+1, yor) + p(Y2r, Y2x-1)]) }
(max{p(yor, Yar+1), P(Yort1, Y2k), P(Yok, Yor—1)})
©(0(Yar, Y2r-1))-

+

IA A CINA

This shows that

P(Yort1, Yor) < (p(Yor, Yor—1)) < p(Yok, Y2k—1) (4)

and

P(Y2k, Y1) < p(Yars Yar—1)- (5)

A similar argument shows that

P(Yort2: Yort1) < @(p(Yar+1, Yor)) < p(Y2r+1, Yor) (6)

and
P(Yar+1, Yort2) < P(Yor+1, Yor)- (7)
By relation (4)—(7), we have
0 < p(Yn+1,Yn) < @(P(Yn: Yn-1)) < p(Yn; Yn-1) (8)

and

0 < p(Wn, Ynt1) < P(Yns Yn_1) (9)

for all n € N. Hence {p(Yn+1,¥n)} is a non-increasing sequence. Thus there exists a > 0
such that lim, o p(Yn+1,Yn) = . This together with (8) and continuity of ¢ shows that
a = lim o(p(yni1,yn)) = ¢(a).

n—o0

So o = 0. Thus
nhargo p(yn+17 yn) = nhg& p(yn’ yn_l) = 0.
From (9) we see that

m p(yn, ynia) = 0.
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Let € and d be positive numbers with § < (¢ — ¢(¢))/3. By

A p(ns Y1) = Jim p(Yns1,9n) = 0,

choose N € N such that p(Yn, Yns1) < 0 and p(ypi1,yn) < d for all m > N. If k,q € N,

then by (viii) we have

P(yzq+1> y2k:+1)

IN A

IN +

IA A

p(A1T2g41, Aoory2) + p(AoTarta, Yort1)

max{p(p(AoTar+2, AoTar+2)), P(P(Yor+1, A1Tag41)),
@(p(AoTart2, Yor+1)), (1/2[p(AoTakt2, Ty S2i-1T2g+1)
P(Yokt1, Ty S2iTor+2)]) b

max{Q(p(Yak+1, Y2q+1)), L(P(Y2k+2, Yor+1)),

©(1/2[p(Yart2: Y2q) + P(Y2r+15 Y2rs1)]) } (10)
max{p(p(Yar+1, Y2q+1))s P(P(Yor+2: Yor+1)),

(P(Yanr2; Yort1) + P(Yart1, Y2gr1) + P(Y2q11, Y2q) }

©(P(Yart2, Yors1) + P(Y2r41, Yogr1) + P(Y2q+1, Y2q))

20 + p(Yor-+1: Y2g+1)-

From properties of ¢ and (viii) with z = yox, y = A1@9441,u = T9; and v = 9,11, we infer

that

:0<y2k7 y2q+1)

where

p(Aozok, A1agi1) + p(A1Tok41, Yor)
max{o(p(yar, Aozar), P(P(A1T2g41, A1Toki1)),
(p(Yar: A12g+1)), (1/2[p(Yor, Ty S2i-122k+1)
P(A1Z2g11, Ty S2iar)]) }

max{@(p(Yz2g+1, Y2r+1))s P(P(Y2ks Yog+1)),
©(1/2[p(yar, yor) + p(Y2q+1: Yor—1)]) }

So(tn,m)>

IAIA

+

IN

Zfn,m = max{p(qu—Ha y2k+l)> 1/2(p(y2q+la y2k’—l)}-

In view of (10), we conclude that

tn,m

Now, we prove that if

< max{p(yag+1, Yor+1),

max{p(Yaq+1, Yok+1)s P(Y2kt1, Yor—1) }
max{p(Yag+1, Yok+1)s P(Y2k11, Yor—1) }
max{20 + p(Yok+1, Y2g+1), 20}

20 + p(York+1, Y2+1)-

IN

PYn; Ym) < @(e) + (¢ = ¢(€))/3 + 20 (11)
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for any m > n > N, then ¢, ,, < ¢+ 6J. For this end, we consider the following cases.
Case 1. Let n = 2r and m = 2s for some r, s € N. Then

P(Yart1, Yor) + p(Y2r, Yas) + P(Y2ss Y2st1)
w(e) + (e — ¢(e))/3 + 40.

P(Yori1, Yasi1) <
<

Hence t,,,, <€+ 60.
Case 2. Let n = 2r and m = 2s 4+ 1 for some r, s € N. Then

P(Yori1,Yas+1) < p(Yar+1, Yor) + p(Yor, Yasi1)
< p(e) + (e —ple))/3 + 30.

S0 tym < €+ 69.
Case 3. Let n = 2r + 1 and m = 2s for some r, s € N. Then

P(Y2r11, Y2s) + P(Y2s, Y2s11)
p(e) + (e — »(g))/3 + 30.

p<y2'r+17 st+1)

IAIA

Thus ¢, < €+ 69.

Case 4. Let n =2r + 1 and m = 2s + 1 for some 7, s € N. According to (11), we get
tom < €+ 69.

By a similar argument as given in [5], we can show that the sequence {y,} is p—Cauchy.
Hence from the p—completeness of X, it follows that there exists z € X such that
lim,, o p(2,9,) = 0. Hence

]}ggo P(Za A1$2k+1) = ]}g{)lo P(Z; 771-:1521—11102“1)
= lim p(z, Agzor) = lim p(z, 7w Seixar) = 0 (12)
k—o0 k—o0

and so

lim (p(Aozar, 2) + p(A122k41,2))

k—00

< ]}Lrgo(max{go(p(z, Aowar)), 0(p(z, Arrari1)), w(p(2, 2)),
e(1/2[p(z, M2 S2i1Tar11) + p(2, Ty S2iar)]) })

= 0.
Thus
]}LHQOP(AW%H,Z) = ]}L%lop(ﬂleszplﬂf%ﬂyz)
= lim p(Aozax, 2) = lim p(mi ) Soizay, 2) (13)
k—o0 k—o0
= 0.

Now, we consider the following cases.



AVAR, JAHEDI AND MEHDIPOUR 7

Case I. Let 72, 55; is p—continuous. From (12) and (13) we see that

: n n n : n n n
klggo p(miy Soim 1 Soiok, Ty 52i2) = klggo p(mi S92, iy ST Soixar) = 0

and
: n n : n n
lim p(7];So;AoTog, T S9i2) = lim p(mi,Sez, mi  SaiAgxar) = 0.
k—o0 k—oo

Since (A, 7}, S2;) is p—compatible, we have

: n n : n n
lim p(AgmiSeiTo, T 1S9;2) = lim p(mit S92z, Agmir 1 Seixay) = 0.
k—o0 k—o0

Step 1. From (viii) with u = 7l Se;Zok, v = Topy1, & = ATl S2Tor and y = Aok,
we have

p(AoW?:152i$2k,A1$2k+1) + P(A1x2k+1,A07T?:152i$2k)

max{p(p( Ao, SeiTor, Ao S2iTar)),
o(p(A1rop11, A1Tors1)),

(p(AoTiy S2iar, A1Tok 1)),
©(1/2[p(Aomiz) S2iar, Tiey S2i-1T2k11)
+ p(Arwopqr, T Soimi g Saior)]) }-

IN

Letting k — oo, we see that

p<7Tin:152iZ7 Z) + p(z, Tr;'n:lSQiZ)

< max{(tp(p(ﬂ?:lsﬁzaz))>
©(1/2[p(m;1 S22, 2) + p(2, i1 S2:2)]) }
< gp(max{p(z,77?2152iz),p(7r?:152iz,z)}).
If
max{p(z, m_;9%2), p(mie, S22, 2) } = p(2, 7=y S2:2), (14)
then

p(2, i1 92iz) < p(misy S22, 2) + pz, My S2i2) < p(p(z, mly52i2)).
So p(z, w1 Sez) = 0. By (14), we have

0 < p(m1S22,2) < p(z, 71 S22) = 0.

It follows that
p(ﬂ-znzl‘S’Qiza Z) = p(Z, 71-17'1:1‘SV21'Z> =0.

Thus 7" ;S92 = 2. Similarly, if

max{p(z, 1= 52i2), p(mil152i2, 2)} = p(mi1 522, 2),
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then 7' {592 = 2.
Step 2. Put u = z, v = w941, © = Apz and y = Ajx9x41 in condition (viii). Then

p(Aoz, Aizorpy1) +  p(AiToir, Ao2)

max{p(p(Aoz, A02)), p(p(A1T2x11, A1T2x11)),
@(p(Aoz, A1zais1)), p(1/2[p(Aoz, Ty S2i-1T2k11)
+  p(A1oks, T 1522)]) }

IN

Letting £ — oo, we obtain

p(Aoz,z) + p(z, Aoz)
< max{p(p(Aoz,2)), p(1/2[p(Aoz, 2) + p(z, ML, 522)]) }-

Since 7' ;S22 = z and ¢ is non-decreasing, it follows that

p(Aoz, 2) + p(z, Aoz) < p(p(Aoz, 2)). (15)

This implies that p(Agz,2z) = 0. From (15) and the fact that ¢(0) = 0 we see that
p(z, Agz) = 0. Therefore,
A()Z = W?:lsziz = Z.

Step 3. From (viii) with v = 72559 2,v = Zogt1, T = Agm) 5522 and y = A1ZTop 41,
we see that

p(AomiyS2iz, A1opgr) +  p(Ar1@opsr, Aoy S2i2)
< max{p(p(AomiLyS2iz, AoTilyS2i2)),
@(p(A1$2k+1,A1I2k+1)),
P(p(AomiioS2iz, A1Tok41)),
o(1/2[p(AomilySaiz, Ty S2i—1T241)
+ p(Aizoppr, Ty Samiin S2i2)]) }-

Since Agz = z, by letting k — oo, we get
p(ﬂ—zn:ZS?iZ7z) + p(za’]T?:QSQiZ)
max{p(p(mi_y52i2, 2)), (1/2[p(m}y 522, 2)

p(z, moS2i2)])}
p(max{p(myS2z2, 2), p(2, MLyS2i2)}).

IN + IA

This shows that 7" ,S%2 = z. Thus Sy(7},592) = Sez and so Syz = 7 Sz = 2.
Continuing this procedure, we obtain Agz = Sy;z = z fort =1, ..., n.

Step 4. By condition (i), there exists v € X such that

AR AoZ = W?ZISQZ'_fU.
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Putting u = x9y, * = Apxer and y = Ajv in condition (viii), we have

p(Aowar, A1v) +  p(Arw, Agway)
< max{e(p(Aozar, Aotar)), (p(Arv, Av)),
@(p(Agzar, A1v)), o(1/2[p(Aozak, Ty S2i-10)
+ p(Av, T Seizar)]) }-

Letting k — oo, we find
p(z, Av) + p(Aw,2)
< max{p(p(z, A1v)), p(1/2[p(z, Ty S2i—1v) + p(A1v, 2)])}
= max{p(p(z, A1v)), p(1/2[p(z, 2) + p(A1v,2)]) }
p(max{p(z, Arv), p(A;v, 2)}).

Hence A;v = z and therefore

IN

W?legi_lv == AIU = Z.
As (Ay, w1 S9-1) is weakly compatible, we have
W?ZISQi_lAl’U = A17T?:182¢_1’U.

Thus 7" ;5912 = Ay 2.
Step 5. Putting u = xoy, v = 2, x = Apxe, and y = A;z in condition (viii), we have
p(Aoor, A12) + p(Aiz, Aoxar)
< max{p(p(Aozar, Aozar)), p(p(A12, A12)),
@(p(Aowak, A12)), o(1/2[p(Aozak, Ty S2i-172)
+  p(Arz, m Sozar)]) }-

Letting k — oo, we get

p(z,A1z) + p(Aiz, 2)
< max{p(p(z, A12)), p(1/2[p(z, A12) + p(A12, 2)])}
<

p(max{p(z, A12), p(A12,2)}).

So W;LZISQZ'_LZ = Alz = Z.

Step 6. Putting u = xo, v = 7' 55912, = Agxao, and y = A7l 559,12 in condition
(viii), we have
p(Aowor, AimiySai12) +  p(A1miyS2i—12, AgTar)
max{p(p(Aozzk, Aowar)), (p(A1T 5212,
Ay Sai-12)), p(p(Aoak, A1y S2i-12)),
@(1/2[p(Aozar, Ty Sai17—pS2i-12)
+  p(AiTigSai12, Ty Saiwar)]) -

IN
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Letting k — oo shows that

p(2, Ty Soi—12) +  p(TigSai-12,2) < max{p(p(z, mLyS2-12)),
©0(1/2[p(z, miySa2i-12) + p(migS2i-12,2)]) }
< p(max{p(z, Ty S2i-12), p(Ti—yS2i-12, 2) }).

So 75,5912 = z and hence psz = 2. Continuing this procedure, we have A1z = Sy 12
fort=1,...,n. Thus Agz = A1z = S;z =z for i = 1,...,2n. That is, z is a common fixed
pOth of Ao, A17 Sla SQ, vy SQn'

Case II. Let Ay be p—continuous. By (12) and (13),
lim p(Ag*2ar, Agz) = lim p(Agz, Ag*war) = 0.
k—o0 k—o0
Since (Ag, 7j,S9;) is p—compatible, we have
lim p(ﬂ'inzlsonng,A()Z) = lim p(Aoz,WzbzlsgiAo.ka) =0.
k—o0 k—o0

Step 7. Putting u = Agzar, v = Topy1, T = Aiwg, and y = Ajx9ry1 in condition (viii),
we have
P(A(%JC%,AM%H) + ,0(141962k+17143$2k)
< maX{@(p(A(z)l"Qk, A(2)-T2k))7 o(p(A122k41, A19€2k+1)),
(p(Adwan, A1arin)), ©(1/2[p(Adaok, Ty Sai1T2k+41)
+  p(A1xopy1, T S2iAoTar)]) }
Letting k — oo gives that

p(Aoz,z) + plz,Ag2)
max{¢(p(Aoz, 2)), p(1/2[p(Aoz, 2) + p(2, Ao2)])}
p(max{p( Aoz, 2), plz, Av2)}).

Hence Agz = z and therefore, for every i =1, ...,n

<
<

Alz = 521;12 =z,

by the same argument that was used in Steps 4-6.

Step 8. By condition (i), there exists u € X such that
z = A1z =7 Su.
Putting v = w11, © = Apu and y = Ajx9,41 in condition (viii), we have

p(Aou, A1wory1) +  p(Armaky, Aou)
< max{p(p(Aou, Agu)), p(p(A1Zok+1, A1Tok41)),
@(p(Aou, A1zar11)), p(1/2[p(Aou, iy Sai122k41)
+  p(A1Zopi1, Ty Saiu)]) b
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Letting £k — oo and using Step 7, we see that

p(Aou, 2) + p(z, Agu)
< max{p(p(Aou, 2)), o(1/2[p(Aou, 2) + p(2,2)]) }
= ¢(p(Aou, 2)).

This implies that
Agu = z = ;- Syu.

As (Ag, T4 S5;) is weakly compatible, we have
Aoz = 1592 = 2.

A discussion similar to Step 3 shows that Sg;z = Agz = 2z for i = 1,...,n. Thus Ayz =
A1z =8,z=zfori=1,...,2n. That is, z is a common fixed point of Ay, Ay, S1, Ss, ..., Son.
To prove the uniqueness theorem, let w be a common fixed point of Ay, A1, S1, 5, ..., Sop.
Hence
Agw = Ajw = S;w = w

fori=1,...,2n. Putting u = z,v = w,x = Apz and y = Ajw in condition (viii), we have

p(Aoz, Ayw) +  p(Ajw, Agz)

< max{p(p(Aoz, Aoz)), p(p(A1w, Ajw)), o(p(Aoz, A1w)),
©(1/2[p(Aoz, mZy Saimaw) + p(Arw, T 52:2)]) }

< p(max{p(z,w), p(w, 2)}).

Therefore, z = w. That is, z is a unique common fixed point of the mappings. O

We conclude the paper with the following result.

Proposition 2.2 Let { Sy}, and {T,}aecy be two families of self-mappings of a p—complete
quasi-metric space (X, d). If there exists € J such that

(i) TB(X) - 7rz 152i-1(X) and T (X) C a1 S%(X) for alla € J.

(ii) m_ 1527, = g+1SQz = . g+152, 15 fOTf =1,...n—1;

(iii) 7, ( L yS9i) = (T ySo) T for £ = 2

(iv) mi_ 1522 T ZHSQZ 1= Mg Sai 1T 15’21 1 for (=1,..,n-1;

(v) T. ( LpSai1) = (Mg Sei-1)Ta  for £=2,....,n;

(vi) mo ISQZ or T is p—continuous;
(vil) the pair (T, w1 S2) is p—compatible and pair (T, 7)1 S2i—1) is weakly compat-
ble;

(viii) there exists ¢ € ® such that for everyu,v € X, x € "1 S9;_1(X),y € 71 59(X)
and o € J

p(Tpu,y) + p(Tov,z) < max{p(p(z, Tsu)), p(p(y, Tav)), p(p(z,y))
(1/2[p(z, m S21v)) + p(y, iy Saiu)]) },

then {T,} and {S9;}?_, have a unique common fized point in X.

)
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Proof. Let oy € J. In Theorem 2.1, set Ay = T and Ay = T,,. Then T,,,T5, 51, ..., Son
have a unique fixed point, say z. Now, let a € J. Then

p(Tsz,Thz) + p(Taz, Tsz)
< max{p(p(Ts2, Tp2)), p(p(Taz, Tu2)), ¢(p(Ts2, Tuz)),
e(1/2[p(Tpz, w1 S2i-12) + p(Taz, 1 52i2)]) }
< p(max{p(z, Taz), p(1az, 2)}).

Since Tz = z, it follows that T,z = 2 for all o € J. O
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