Approximate Additive Functional Equations in Closed Convex Cone

H. Azadi Kenary
Yasouj University

Abstract

In this paper, we introduce the following positive-additive functional equation in C^{*}-algebras $$
\begin{gathered} f\left(x+4 \sqrt[4]{x^{3} y}+6 \sqrt{x y}+4 \sqrt[4]{x y^{3}}+y\right)= \\ f(x)+4 f(x)^{\frac{3}{4}} \sqrt[4]{f(y)}+6 \sqrt{f(x) f(y)}+4 f(y)^{\frac{3}{4}} \sqrt[4]{f(x)}+f(y) . \end{gathered}
$$

Using the fixed point method, we prove the stability of the positiveadditive functional equation in C^{*}-algebras. Moreover, we prove the Hyers-Ulam stability of the above functional equation in C^{*}-algebras by the direct method of Hyers-Ulam.

AMS Subject Classification: 46L05; 47H10; 39B52.
Keywords and Phrases: Hyers-Ulam stability, C^{*}-algebra, fixed point, positive-additive functional equation.

1. Introduction

The stability problem of functional equations was originated from a question of Ulam ([43]) concerning the stability of group homomorphisms. Hyers ([24]) gave a first affirmative partial answer to the question of Ulam for Banach spaces. Hyers' Theorem was generalized by Aoki ([1]) for additive mappings and by Th.M. Rassias ([39]) for linear mappings by considering an unbounded Cauchy difference.

Theorem 1.1. (T. M. Rassias) Let f be an approximately additive mapping from a normed vector space E into a Banach space E^{\prime}, i.e., f

[^0]satisfies the inequality
$$
\frac{|f(x+y)-f(x)-f(y)|}{\|x\|^{r}+\|y\|^{r}} \leqslant \epsilon
$$
for all $x, y \in E-\{0\}$, where ϵ and r are constants with $\epsilon>0$ and $0 \leqslant r<$ 1. Then the mapping $L: E \rightarrow E^{\prime}$ defined by $L(x):=\lim _{n \rightarrow \infty} 2^{-n} f\left(2^{n} x\right)$ is the unique additive mapping which satisfies,
$$
\frac{|f(x)-L(x)|}{|x|^{r}} \leqslant \frac{2 \epsilon}{2-2^{r}},
$$
for all $x \in E-\{0\}$.
The paper of Th.M. Rassias ([39]) has provided a lot of influence in the development of what we call generalized Hyers-Ulam stability or Hyers-Ulam-Rassias stability of functional equations. A generalization of the Th.M. Rassias theorem was obtained by Găvruta ([20]) by replacing the unbounded Cauchy difference by a general control function in the spirit of the Th.M. Rassias' approach. J.M. Rassias [36]-[38] followed the innovative approach of the Th.M. Rassias' theorem [39] in which he replaced the factor $\|x\|^{p}+\|y\|^{p}$ by $\|x\|^{p} \cdot\|y\|^{q}$ for $p, q \in \mathbb{R}$ with $p+q \neq 1$. The stability problems of several functional equations have been extensively investigated by a number of authors and there are many interesting results concerning this problem (see [2]-[15],[17]-[42]).

Definition 1.2. [16] Let A be a C^{*}-algebra and $x \in A$ a self-adjoint element, i.e., $x^{*}=x$. Then x is said to be positive if it is of the form $y y^{*}$ for some $y \in A$. The set of positive elements of A is denoted by A^{+}.

Note that A^{+}is a closed convex cone (see [16]). It is well-known that for a positive element x and a positive integer n there exists a unique positive element $y \in A^{+}$such that $x=y^{n}$. We denote y by $x^{\frac{1}{n}}$ (see [16]).
In this paper, we introduce the following functional equation

$$
\begin{align*}
f\left(x+4 \sqrt[4]{x^{3} y}+6 \sqrt{x y}+4 \sqrt[4]{x y^{3}}+y\right) & =f(x)+4 f(x) \frac{3}{4} \sqrt[4]{f(y)} \\
& +6 \sqrt{f(x) f(y)} \\
& +4 f(y) \sqrt[\frac{3}{4}]{f(x)}+f(y) \tag{1}
\end{align*}
$$

in the set of for all $x, y \in A^{+}$, which is called a positive-additive functional equation. Each solution of the positive-additive functional equation is called a positive-additive mapping.
Note that the function $f(x)=c x, \quad c \geqslant 0$, in the set of non-negative real numbers is a solution of the functional equation (1).
Let X be a set. A function $d: X \times X \rightarrow[0, \infty]$ is called a generalized metric on X if d satisfies
(1) $d(x, y)=0$ if and only if $x=y$;
(2) $d(x, y)=d(y, x)$ for all $x, y \in X$;
(3) $d(x, z) \leqslant d(x, y)+d(y, z)$ for all $x, y, z \in X$.

We recall a fundamental result in fixed point theory.
Theorem 1.3. Let (X, d) be a complete generalized metric space and let $J: X \rightarrow X$ be a strictly contractive mapping with Lipschitz constant $L<1$. Then for each given element $x \in X$, either

$$
d\left(J^{n} x, J^{n+1} x\right)=\infty
$$

for all nonnegative integers n or there exists a positive integer n_{0} such that
(1) $d\left(J^{n} x, J^{n+1} x\right)<\infty, \quad \forall n \geqslant n_{0}$;
(2) the sequence $\left\{J^{n} x\right\}$ converges to a fixed point y^{*} of J;
(3) y^{*} is the unique fixed point of J in the set $Y=\{y \in X \mid$ $\left.d\left(J^{n_{0}} x, y\right)<\infty\right\}$;
(4) $d\left(y, y^{*}\right) \leqslant \frac{1}{1-L} d(y, J y)$ for all $y \in Y$.

In 1991, Baker ([10]) used the Banach fixed point theorem to give generalized Hyers-Ulam stability results for a nonlinear functional equation. In 2003, Radu ([35]) applied the fixed point alternative theorem to prove the generalized Hyers-Ulam stability. Mihet ([29]) applied the Luxemburg-Jung fixed point theorem in generalized metric spaces to study the generalized Hyers-Ulam stability for two functional equations in a single variable and L. Găvruta ([19]) used the Matkowski's fixed point theorem to obtain a new general result concerning the generalized Hyers-Ulam stability of a functional equation in a single variable. In 1996, G. Isac and Th.M. Rassias ([26]) were the first to provide appli-
cations of stability theory of functional equations for the proof of new fixed point theorems with applications.
This paper is organized as follows: In Section 2, using the fixed point method, we prove the Hyers-Ulam stability of the functional equation (1) in C^{*}-algebras. In Section 3, using the direct method, we prove the Hyers-Ulam stability of the functional equation (1) in C^{*}-algebras.
Throughout this paper, let A^{+}and B^{+}be the sets of positive elements in C^{*}-algebras A and B, respectively.

2. Stability of Eq. (1): Fixed Point Approach

In this section, we investigate the positive-additive functional equation (1) in C^{*}-algebras.

Lemma 2.1. Let $T: A^{+} \rightarrow B^{+}$be a positive-additive mapping satisfying (1). Then T satisfies $T\left(16^{n} x\right)=16^{n} T(x)$ for all $x \in A^{+}$and all $n \in \mathbb{Z}$.

Proof. Putting $x=y$ in (1.1), we obtain $T(16 x)=16 T(x)$ for all $x \in A^{+}$. By induction on n, one can show that $T\left(16^{n} x\right)=16^{n} T(x)$ for all $x \in A^{+}$and all $n \in \mathbb{Z}$.
Using the fixed point method, we prove the Hyers-Ulam stability of the positive-additive functional equation (1) in C^{*}-algebras. Note that the fundamental ideas in the proofs of the main results in this section are contained in $[12,13]$.

Theorem 2.2. Let $\varphi: A^{+} \times A^{+} \rightarrow[0, \infty)$ be a function such that there exists an $L<1$ with

$$
\begin{equation*}
\frac{16}{L} \varphi\left(\frac{x}{16}, \frac{y}{16}\right) \leqslant \varphi(x, y) \tag{2}
\end{equation*}
$$

for all $x, y \in A^{+}$. Let $f: A^{+} \rightarrow B^{+}$be a mapping satisfying

$$
\begin{align*}
& \| f\left(x+4 \sqrt[4]{x^{3} y}+6 \sqrt{x y}+4 \sqrt[4]{x y^{3}}+y\right)-f(x) \\
& -4 f(x) \frac{3}{4} \sqrt[4]{f(y)}-6 \sqrt{f(x) f(y)}-4 f(y)^{\frac{3}{4}} \sqrt[4]{f(x)}-f(y) \| \\
& \leqslant \varphi(x, y) \tag{3}
\end{align*}
$$

for all $x, y \in A^{+}$. Then there exists a unique positive-additive mapping $\mathbf{A}: A^{+} \rightarrow A^{+}$satisfying (1) and

$$
\begin{equation*}
\|f(x)-\mathbf{A}(x)\| \leqslant \frac{L \varphi(x, x)}{16-16 L} \tag{4}
\end{equation*}
$$

for all $x \in A^{+}$.
Proof. Letting $y=x$ in (3), we get

$$
\begin{equation*}
\|f(16 x)-16 f(x)\| \leqslant \varphi(x, x) \tag{5}
\end{equation*}
$$

for all $x \in A^{+}$. Consider the set

$$
X:=\left\{g: A^{+} \rightarrow B^{+}\right\}
$$

and introduce the generalized metric on X :

$$
d(g, h)=\inf \left\{\mu \in(0,+\infty):\|g(x)-h(x)\| \leqslant \mu \varphi(x, x), \quad \forall x \in A^{+}\right\},
$$

where, as usual, $\inf \phi=+\infty$. It is easy to show that (X, d) is complete (see [30]). Now we consider the linear mapping $J: X \rightarrow X$ such that

$$
J g(x):=16 g\left(\frac{x}{16}\right)
$$

for all $x \in A^{+}$. Let $g, h \in X$ be given such that $d(g, h)=\varepsilon$. Then, $\|g(x)-h(x)\| \leqslant \varphi(x, x)$ for all $x \in A^{+}$. Hence

$$
\|J g(x)-\operatorname{Jh}(x)\|=\left\|16 g\left(\frac{x}{16}\right)-16 h\left(\frac{x}{16}\right)\right\| \leqslant L \varphi(x, x)
$$

for all $x \in A^{+}$. So $d(g, h)=\varepsilon$ implies that $d(J g, J h) \leqslant L \varepsilon$. This means that, $d(J g, J h) \leqslant L d(g, h)$ for all $g, h \in X$.
It follows from (5) that

$$
\left\|f(x)-16 f\left(\frac{x}{16}\right)\right\| \leqslant \frac{L}{16} \varphi(x, x)
$$

for all $x \in A^{+}$. So $d(f, J f) \leqslant \frac{L}{16}$. By Theorem 1.3., there exists a mapping $A: A^{+} \rightarrow B^{+}$satisfying the following:
(1) A is a fixed point of J, i.e.,

$$
\begin{equation*}
A\left(\frac{x}{16}\right)=\frac{1}{16} A(x) \tag{6}
\end{equation*}
$$

for all $x \in A^{+}$. The mapping A is a unique fixed point of J in the set $M=\{g \in X: d(f, g)<\infty\}$. This implies that \mathbf{A} is a unique mapping satisfying (6) such that there exists a $\mu \in(0, \infty)$ satisfying $\|f(x)-A(x)\| \leqslant \mu \varphi(x, x)$ for all $x \in A^{+}$;
(2) $d\left(J^{n} f, A\right) \rightarrow 0$ as $n \rightarrow \infty$. This implies the equality

$$
\lim _{n \rightarrow \infty} 16^{n} f\left(\frac{x}{16^{n}}\right)=A(x)
$$

for all $x \in A^{+}$;
(3) $d(f, A) \leqslant \frac{1}{1-L} d(f, J f)$, which implies the inequality

$$
d(f, A) \leqslant \frac{L}{16-16 L}
$$

This implies that the inequality (4) holds. By (2) and (3),

$$
\begin{aligned}
& \| A\left(x+4 \sqrt[4]{x^{3} y}+6 \sqrt{x y}+4 \sqrt[4]{x y^{3}}+y\right)-A(x) \\
& -4 A(x)^{\frac{3}{4}} \sqrt[4]{A(y)}-6 \sqrt{A(x) A(y)}-4 A(y)^{\frac{3}{4}} \sqrt[4]{A(x)}-A(y) \| \\
& =\lim _{n \rightarrow+\infty} \| 16^{n}\left[f\left(\frac{x}{16^{n}}+4 \sqrt[4]{\frac{x^{3} y}{65536^{n}}}+6 \sqrt{\frac{x y}{256^{n}}}+4 \sqrt[4]{\frac{x y^{3}}{65536^{n}}}+\frac{y}{16^{n}}\right)\right. \\
& -f\left(\frac{x}{16^{n}}\right)-4 f\left(\frac{x}{16^{n}}\right)^{\frac{3}{4}} \sqrt[4]{f\left(\frac{y}{16^{n}}\right)}-6 \sqrt{f\left(\frac{x}{16^{n}}\right) f\left(\frac{y}{16^{n}}\right)} \\
& \left.-4 f\left(\frac{y}{16^{n}}\right)^{\frac{3}{4}} \sqrt[4]{f\left(\frac{x}{16^{n}}\right)}-f\left(\frac{y}{16^{n}}\right)\right] \| \\
& \leqslant \lim _{n \rightarrow+\infty} 16^{n} \varphi\left(\frac{x}{16^{n}}, \frac{y}{16^{n}}\right) \\
& \leqslant \lim _{n \rightarrow+\infty} 16^{n} \times \frac{L^{n}}{16^{n}} \varphi(x, y) \\
& =0
\end{aligned}
$$

for all $x, y \in A^{+}$. So

$$
A\left(x+4 \sqrt[4]{x^{3} y}+6 \sqrt{x y}+4 \sqrt[4]{x y^{3}}+y\right)=A(x)+4 A(x) \frac{\frac{3}{4}}{\sqrt[4]{A(y)}}
$$

$$
+6 \sqrt{A(x) A(y)}+4 A(y)^{\frac{3}{4}} \sqrt[4]{A(x)}+A(y)
$$

for all $x, y \in A^{+}$. Thus the mapping $A: A^{+} \rightarrow B^{+}$is positive-additive, as desired.

Corollary 2.3. Let $p>1$ and θ_{1}, θ_{2} be non-negative real numbers, and let $f: A^{+} \rightarrow B^{+}$be a mapping such that

$$
\begin{align*}
& \| f\left(x+4 \sqrt[4]{x^{3} y}+6 \sqrt{x y}+4 \sqrt[4]{x y^{3}}+y\right)-f(x) \tag{7}\\
& -4 f(x)^{\frac{3}{4}} \sqrt[4]{f(y)}-6 \sqrt{f(x) f(y)}-4 f(y)^{\frac{3}{4}} \sqrt[4]{f(x)}-f(y) \| \\
& \leqslant \theta_{1}\left(\|x\|^{p}+\|y\|^{p}\right)+\theta_{2} \cdot\|x\|^{\frac{p}{2}} \cdot\|y\|^{\frac{p}{2}}
\end{align*}
$$

for all $x, y \in A^{+}$. Then there exists a unique positive-additive mapping $A: A^{+} \rightarrow B^{+}$satisfying (1) and

$$
\|f(x)-A(x)\| \leqslant \frac{\left(2 \theta_{1}+\theta_{2}\right)\|x\|^{p}}{16^{p}-16}
$$

for all $x \in A^{+}$.
Proof. The proof follows from Theorem 2.2 by taking $\varphi(x, y)=\theta_{1}\left(\|x\|^{p}+\right.$ $\left.\|y\|^{p}\right)+\theta_{2} \cdot\|x\|^{\frac{p}{2}} \cdot\|y\|^{\frac{p}{2}}$ for all $x, y \in A^{+}$. Then we can choose $L=16^{1-p}$ and we get the desired result.

Theorem 2.4. Let $\varphi: A^{+} \times A^{+} \rightarrow[0, \infty)$ be a function such that there exists an $\alpha<1$ with

$$
\varphi(x, y) \leqslant 16 L \varphi\left(\frac{x}{16}, \frac{y}{16}\right)
$$

for all $x, y \in A^{+}$. Let $f: A^{+} \rightarrow B^{+}$be a mapping satisfying (3). Then there exists a unique positive-additive mapping $A: A^{+} \rightarrow A^{+}$satisfying (1) and

$$
\|f(x)-A(x)\| \leqslant \frac{\varphi(x, x)}{16-16 L}
$$

for all $x \in A^{+}$.

Proof. Let (X, d) be the generalized metric space defined in the proof of Theorem 2.2.
Consider the linear mapping $J: X \rightarrow X$ such that

$$
J g(x):=\frac{1}{16} g(16 x)
$$

for all $x \in A^{+}$.
It follows from (5) that

$$
\left\|f(x)-\frac{f(16 x)}{16}\right\| \leqslant \frac{1}{16} \varphi(x, x)
$$

for all $x \in A^{+}$. So $d(f, J f) \leqslant \frac{1}{16}$.
The rest of the proof is similar to the proof of Theorem 2.2.
Corollary 2.5. Let $0<p<1$ and θ_{1}, θ_{2} be non-negative real numbers, and let $f: A^{+} \rightarrow B^{+}$be a mapping satisfying (7). Then there exists a unique positive-additive mapping $A: A^{+} \rightarrow B^{+}$satisfying (1) and

$$
\|f(x)-A(x)\| \leqslant \frac{2 \theta_{1}+\theta_{2}}{16-16^{p}}\|x\|^{p}
$$

for all $x \in A^{+}$.
Proof. The proof follows from Theorem 2.4 by taking $\varphi(x, y)=$ $\theta_{1}\left(\|x\|^{p}+\|y\|^{p}\right)+\theta_{2} \cdot\|x\|^{\frac{p}{2}} \cdot\|y\|^{\frac{p}{2}}$ for all $x, y \in A^{+}$. Then we can choose $L=16^{p-1}$ and we get the desired result.

3. Stability of Eq. (1): Direct Method

In this section, using the direct method, we prove the Hyers-Ulam stability of the positive-additive functional equation (1) in C^{*}-algebras.

Theorem 3.1. Let $f: A^{+} \rightarrow B^{+}$be a mapping for which there exists a function $\varphi: A^{+} \times A^{+} \rightarrow[0, \infty)$ satisfying (3) and

$$
\begin{equation*}
\widetilde{\varphi}(x, y):=\sum_{j=0}^{\infty} 16^{j} \varphi\left(\frac{x}{16^{j}}, \frac{y}{16^{j}}\right)<\infty \tag{8}
\end{equation*}
$$

for all $x, y \in A^{+}$. Then there exists a unique positive-additive mapping $A: A^{+} \rightarrow A^{+}$satisfying (1) and

$$
\begin{equation*}
\|f(x)-A(x)\| \leqslant \frac{1}{16} \widetilde{\varphi}(x, x) \tag{9}
\end{equation*}
$$

for all $x \in A^{+}$.
Proof. It follows from (5) that

$$
\left\|f(x)-16 f\left(\frac{x}{16}\right)\right\| \leqslant \varphi\left(\frac{x}{16}, \frac{x}{16}\right)
$$

for all $x \in A^{+}$. Hence

$$
\begin{equation*}
\left\|16^{l} f\left(\frac{x}{16^{l}}\right)-16^{k} f\left(\frac{x}{16^{k}}\right)\right\| \leqslant \frac{1}{16} \sum_{j=l+1}^{k} 16^{j} \varphi\left(\frac{x}{16^{j}}, \frac{x}{16^{j}}\right) \tag{10}
\end{equation*}
$$

for all nonnegative integers k and l with $k>l$ and all $x \in A^{+}$. It follows from (8) and (10) that the sequence $\left\{16^{j} f\left(\frac{x}{16^{j}}\right)\right\}$ is Cauchy for all $x \in A^{+}$. Since B^{+}is complete, the sequence $\left\{16^{j} f\left(\frac{x}{16^{j}}\right)\right\}$ converges. So one can define the mapping $A: A^{+} \rightarrow B^{+}$by

$$
A(x):=\lim _{j \rightarrow \infty} 16^{j} f\left(\frac{x}{16^{j}}\right)
$$

for all $x \in A^{+}$. By (3) and (8),

$$
\begin{aligned}
& \| A\left(x+4 \sqrt[4]{x^{3} y}+6 \sqrt{x y}+4 \sqrt[4]{x y^{3}}+y\right)-A(x) \\
& -4 A(x)^{\frac{3}{4}} \sqrt[4]{A(y)}-6 \sqrt{A(x) A(y)}-4 A(y)^{\frac{3}{4}} \sqrt[4]{A(x)}-A(y) \| \\
& =\lim _{n \rightarrow+\infty} \| 16^{n}\left[f\left(\frac{x}{16^{n}}+4 \sqrt[4]{\frac{x^{3} y}{65536^{n}}}+6 \sqrt{\frac{x y}{256^{n}}}+4 \sqrt[4]{\frac{x y^{3}}{65536^{n}}}+\frac{y}{16^{n}}\right)\right. \\
& -f\left(\frac{x}{16^{n}}\right)-4 f\left(\frac{x}{16^{n}}\right)^{\frac{3}{4}} \sqrt[4]{f\left(\frac{y}{16^{n}}\right)}-6 \sqrt{f\left(\frac{x}{16^{n}}\right) f\left(\frac{y}{16^{n}}\right)} \\
& \left.-4 f\left(\frac{y}{16^{n}}\right) \sqrt[4]{\frac{3}{4}} \sqrt{f\left(\frac{x}{16^{n}}\right)}-f\left(\frac{y}{16^{n}}\right)\right] \| \\
& \leqslant \lim _{n \rightarrow+\infty} 16^{n} \varphi\left(\frac{x}{16^{n}}, \frac{y}{16^{n}}\right) \\
& =0
\end{aligned}
$$

for all $x, y \in A^{+}$. So

$$
\begin{gathered}
\| A\left(x+4 \sqrt[4]{x^{3} y}+6 \sqrt{x y}+4 \sqrt[4]{x y^{3}}+y\right)-A(x)-4 A(x)^{\frac{3}{4}} \\
\sqrt[4]{A(y)}-6 \sqrt{A(x) A(y)}-4 A(y)^{\frac{3}{4}} \sqrt[4]{A(x)}-A(y) \|=0
\end{gathered}
$$

for all $x, y \in A^{+}$. Hence the mapping $A: A^{+} \rightarrow B^{+}$is positive-additive. Moreover, letting $l=0$ and passing the limit $k \rightarrow \infty$ in (10), we get (9). So there exists a positive-additive mapping $A: A^{+} \rightarrow B^{+}$satisfying (1) and (9).
Now, let $B: A^{+} \rightarrow B^{+}$be another positive-additive mapping satisfying (1) and (9). Then we have

$$
\begin{aligned}
\|A(x)-B(x)\| & =16^{q}\left\|A\left(\frac{x}{16^{q}}\right)-B\left(\frac{x}{16^{q}}\right)\right\| \\
& \leqslant 16^{q}\left\|A\left(\frac{x}{16^{q}}\right)-f\left(\frac{x}{16^{q}}\right)\right\|+16^{q}\left\|B\left(\frac{x}{16^{q}}\right)-f\left(\frac{x}{16^{q}}\right)\right\| \\
& \leqslant 2 \cdot 16^{q-1} \widetilde{\varphi}\left(\frac{x}{16^{q}}, \frac{x}{16^{q}}\right),
\end{aligned}
$$

which tends to zero as $q \rightarrow \infty$ for all $x \in A^{+}$. So we can conclude that $A(x)=B(x)$ for all $x \in A^{+}$. This proves the uniqueness of \mathbf{A}.

Corollary 3.2. Let $p>1$ and θ_{1}, θ_{2} be non-negative real numbers, and let $f: A^{+} \rightarrow B^{+}$be a mapping satisfying (7). Then there exists a unique positive-additive mapping $A: A^{+} \rightarrow B^{+}$satisfying (1) and

$$
\|f(x)-A(x)\| \leqslant \frac{2 \theta_{1}+\theta_{2}}{16^{p}-16}\|x\|^{p}
$$

for all $x \in A^{+}$.
Proof. Define $\varphi(x, y)=\theta_{1}\left(\|x\|^{p}+\|y\|^{p}\right)+\theta_{2} \cdot\|x\|^{\frac{p}{2}} \cdot\|y\|^{\frac{p}{2}}$, and apply Theorem 3.1. Then we get the desired result.

Theorem 3.3. Let $f: A^{+} \rightarrow B^{+}$be a mapping for which there exists a function $\varphi: A^{+} \times A^{+} \rightarrow[0, \infty)$ satisfying (3) such that

$$
\widetilde{\varphi}(x, y):=\sum_{j=0}^{\infty} \frac{\varphi\left(16^{j} x, 16^{j} y\right)}{16^{j}}<\infty
$$

for all $x, y \in A^{+}$. Then there exists a unique positive-additive mapping $A: A^{+} \rightarrow B^{+}$satisfying (1) and

$$
\|f(x)-A(x)\| \leqslant \frac{1}{16} \widetilde{\varphi}(x, x)
$$

for all $x \in A^{+}$.
Proof. It follows from (5) that

$$
\left\|f(x)-\frac{f(16 x)}{16}\right\| \leqslant \frac{1}{16} \varphi(x, x)
$$

for all $x \in A^{+}$. The rest of the proof is similar to the proof of Theorem 3.1.

Corollary 3.4. Let $0<p<1$ and θ_{1}, θ_{2} be non-negative real numbers, and let $f: A^{+} \rightarrow B^{+}$be a mapping satisfying (7). Then there exists a unique positive-additive mapping $A: A^{+} \rightarrow B^{+}$satisfying (1) and

$$
\|f(x)-A(x)\| \leqslant \frac{2 \theta_{1}+\theta_{2}}{16-16^{p}}\|x\|^{p}
$$

for all $x \in A^{+}$.
Proof. Define $\varphi(x, y)=\theta_{1}\left(\|x\|^{p}+\|y\|^{p}\right)+\theta_{2} \cdot\|x\|^{\frac{p}{2}} \cdot\|y\|^{\frac{p}{2}}$, and apply Theorem 3.3. Then we get the desired result.

References

[1] T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc., Japan, 2 (1950), 64-66.
[2] H. Azadi Kenary, On the stability of a cubic functional equation in random normed spaces, J. Math. Extension, 4(1) (2009), 105-113.
[3] H. Azadi Kenary, On the Hyers-Ulam-Rassias stability of a functional equation in non-Archimedean and random normed spaces, Acta Univ. Apul., 27 (2011), 173-186.
[4] H. Azadi Kenary, Stability of a Pexiderial Functional Equation in Random Normed Spaces, Rend. Circ. Mat., Palermo, (2011), 59-68.
[5] H. Azadi Kenary and Y. J. Cho, Stability of mixed additive-quadratic Jensen type functional equation in various spaces, Computer and Mathematics with Applications, doi:10.1016/j.camwa.2011.03.024.
[6] H. Azadi Kenary, Sun Young Jang and Choonkil Park, A fixed point approach to the Hyers-Ulam stability of a functional equation in various normed spaces, Fixed Point Theory and Applications, 2011, 2011:67, doi:10.1186/1687-1812-2011-67.
[7] H. Azadi Kenary, Jung Rye Lee and Choonkil Park, Nonlinear approximation of an ACQ-functional equation in nan-spaces, Fixed Point Theory and Applications, 60 (2011), 1-22.
[8] H. Azadi Kenary, Choonkil Park and Jung Rye Lee, Non-Archimedean stability of an AQQ functional equation, J. Comp. Anal. Appl., (in press).
[9] H. Azadi Kenary Kh. Shafaat, M. Shafei and G. Takbiri, Hyers-UlamRassias Stability of the Apollonius type Quadratic Mapping in RN-Spaces, J. Nonlinear Sci. Appl., 4 (2011), 110-119.
[10] J. A. Baker, The stability of certain functional equations, Proc. Amer. Math. Soc., 112 (1991), 729-732.
[11] L. Cădariu and V. Radu, Fixed points and the stability of Jensen's functional equation, J. Inequal. Pure Appl. Math., 4 (1), Art. ID 4 (2003).
[12] L. Cădariu and V. Radu, On the stability of the Cauchy functional equation: a fixed point approach, Grazer Math. Ber., 346 (2004), 43-52.
[13] L. Cădariu and V. Radu, Fixed point methods for the generalized stability of functional equations in a single variable, Fixed Point Theory and Applications, 2008, Art. ID 749392 (2008).
[14] P. Czerwik, Functional Equations and Inequalities in Several Variables, World Scientific Publishing Company, New Jersey, Hong Kong, Singapore and London, 2002.
[15] J. Diaz and B. Margolis, A fixed point theorem of the alternative for contractions on a generalized complete metric space, Bull. Amer. Math. Soc., 74 (1968), 305-309.
[16] J. Dixmier, C^{*}-Algebras, North-Holland Publ. Com., Amsterdam, New York and Oxford, 1977.
[17] G. L. Forti, Comments on the core of the direct method for proving HyersUlam stability of functional equations, J. Math. Anal. Appl., 295 (2004), 127-133.
[18] G. L. Forti, Elementary remarks on Ulam-Hyers stability of linear functional equations, J. Math. Anal. Appl., 328 (2007), 109-118.
[19] L. Găvruta, Matkowski contractions and Hyers-Ulam stability, Bul. St. Univ. Politehnica Timisoara Mat. Fiz., 53 (2008), 32-35.
[20] P. Găvruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl., 184 (1994), 431-436.
[21] P. Găvruta and L. Găvruta, A new method for the generalized Hyers-Ulam-Rassias stability, Internat. J. Nonlinear Anal. Appl., 1 (2010), 1118.
[22] K. R. Goodearl, Notes on Real and Complex C ${ }^{*}$-Algebras, Shiva Math. Series IV, Shiva Publ. Limited, Cheshire, England, 1982.
[23] M. E. Gordji, C. Park, and M. B. Savadkouhi, The stability of a quartic type functional equation with the fixed point alternative, Fixed Point Theory, 11 (2010), 265-272.
[24] D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A., 27 (1941), 222-224.
[25] D. H. Hyers, G. Isac, and Th. M. Rassias, Stability of Functional Equations in Several Variables, Birkhäuser, Basel, 1998.
[26] G. Isac and Th. M. Rassias, Stability of ψ-additive mappings: Appications to nonlinear analysis, Internat. J. Math. Math. Sci., 19 (1996), 219-228.
[27] S. Jung, Hyers-Ulam-Rassias Stability of Functional Equations in Mathematical Analysis, Hadronic Press lnc., Palm Harbor, Florida, 2001.
[28] H. A. Kenary, Hyers-Ulam stability of some functional equations in nonArchimedean and random normed spaces, (preprint).
[29] D. Miheţ, The Hyers-Ulam stability for two functional equations in a single variable, Banach J. Math. Anal. Appl., 2 (2008), 48-52.
[30] D. Miheţ and V. Radu, On the stability of the additive Cauchy functional equation in random normed spaces, J. Math. Anal. Appl., 343 (2008), 567-572.
[31] A. K. Mirmostafaee, Non-Archimedean stability of quadratic equations, Fixed Point Theory, 11 (2010), 67-75.
[32] M. Mirzavaziri and M. S. Moslehian, A fixed point approach to stability of a quadratic equation, Bull. Braz. Math. Soc., 37 (2006), 361-376.
[33] C. Park, Fixed points and Hyers-Ulam-Rassias stability of Cauchy-Jensen functional equations in Banach algebras, Fixed Point Theory and Applications, 2007.
[34] C. Park, Generalized Hyers-Ulam-Rassias stability of quadratic functional equations: a fixed point approach, Fixed Point Theory and Applications, 2008.
[35] V. Radu, The fixed point alternative and the stability of functional equations, Fixed Point Theory, 4 (2003), 91-96.
[36] J. M. Rassias, On approximation of approximately linear mappings by linear mappings, Bull. Sci. Math., 108 (1984), 445-446.
[37] J. M. Rassias, On approximation of approximately linear mappings by linear mappings, J. Funct. Anal., 46 (1982), 126-130.
[38] J. M. Rassias, Solution of the Ulam stability problem for quartic mappings, Glas. Mat. Ser., 54 (1999), 243-252.
[39] Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., 72 (1978), 297-300.
[40] I. A. Rus, Principles and Applications of Fixed Point Theory, Ed. Dacia, Cluj-Napoca, 1979.
[41] I. A. Rus, Remarks on Ulam stability of the operatorial equations, Fixed Point Theory, 10 (2009), 305-320.
[42] I. A. Rus, A. Petruşel, and G. Petruşel, Fixed Point Theory, Cluj University Press, 2008.
[43] S. M. Ulam, A Collection of the Mathematical Problems, Interscience Publ., New York, 1960.

Hassan Azadi Kenary

Department of Mathematics
Assistant Professor of Mathematics
Yasouj University
Yasouj, Iran
E-mail: azadi@mail.yu.ac.ir

[^0]: Received November 2010; Final Revised January 2011

