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Abstract. We develop a new empirical Bayes analysis in multiple
regression models. In the present work we consider multivariate skew-
normal as prior for coefficients of the model in a skew-normal population
and give empirical Bayes estimation for parameters of the model. The
marginal distribution of response is found to be a closed skew-normal
distribution. The empirical Bayes estimator is found in a closed form
and the model is applied on a data set.
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1. Introduction

The skew symmetric distributions have been used in many different ways
in Bayesian regression analysis. For example, De la Cruz ([8]) discussed
non-linear regression models for longitudinal data with errors that follow
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skew-elliptical distribution. Rodrigues and Bolfarine ([15]) used skew
priors where the observations contain measurement errors and a pos-
itive explanatory variable that causes a strong asymmetry on the re-
sponse variable. Ferreira and Steel ([9]) introduced multivariate skewed
regression with fat tails by considering a linear regression structure with
skewed and heavy-tailed error terms. In order to allow for heavy tails
they used skewed versions of t-student distribution. Sahu et al. ([16])
developed a new class of distributions by introducing skewness in multi-
variate elliptical symmetric distributions and gave practical applications
in Bayesian regression models. There are many other ideas in applica-
tion of skew elliptical distributions. For example Mukhopadhyhy and
Vidakovic ([14]) compared the performance of a linear Bayes rules in
estimating a normal mean with that of corresponding Bayes rules. They
used the family of standard skew normal distribution as prior. Here,
in multiple regression model we shall use skew-normal distribution as
prior for coefficient of linear regression models which can be empirically
predicted. The main advantage of this article is the application of mul-
tivariate skew-normal distribution as prior for the regression coefficients
with a marginal closed skew-normal response variable.
The plan of the remainder of this paper is as follows: In Section 2 we
introduce the model and the prior distributions. In Section 3 we ob-
tain the empirical Bayes estimates of the parameters of the model in a
closed form and in Section 4 an example is analyzed based on the results
obtained in the preceding sections.

2. Distributions, Model and Prior

2.1 Distributions

The skew-normal distribution introduced by Azzalini ([1]) refer to a
parametric class of probability distribution which includes the standard
normal as a special case, a random variable X has a standard skew-
normal distribution, written by X ∼ SN(λ), if its probability density
function (pdf) is given by

fX(x) = 2φ(x)Φ(λx) , λ ∈ R, , x ∈ R, (1)
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where φ and Φ are the pdf and cumulative distribution function (cdf)
of a standard normal, respectively, and λ is the skewness parameter.
For definition of multivariate version of this distribution consider the
following lemma (Azzalini, [1]).

Lemma 2.1. If f0 is the d-dimensional probability density function
such that f0(x) = f0(−x) for x ∈ Rd, and G is a one-dimensional
differentiable distribution function such that G′ is a density symmetric
about 0, and w is a real-valued function such that w(−x) = −w(x) for
all x ∈ Rd, then

f(x) = 2f0(x)G{w(x)}, x ∈ Rd, (2)

is a density function on Rd.
The above formulation is in the form presented by Azzalini and Capi-
tanio ([4]). Of course, the statement is more general but less operative
than this lemma. This lemma also proved in Azzalini and Capitanio
([3]). Consider the case that f0(x) in lemma 1.1 is φd(x; Ω) the density
function of an Nd(0,Ω) variable, where Ω is a positive definite matrix,
also take G = Φ (Where Φ is the cumulated distribution function (cdf)
of a standard normal distribution) and w to be a linear function. The
density function with location parameter ζ is

f(y) = 2φd(y − ζ; Ω)Φ(α′ω−1(y − ζ)), y ∈ Rd, (3)

where α is the shape (skewness) parameter vector (α ∈ Rd) and ω is
the diagonal matrix formed by the positive root of the diagonal elemnts
of Ω. In this case Y has multivariate SN distribution and we write
Y ∼ SNd(ζ, Ω, α).
In the following definition we review multivariate closed skew-normal
distribution from Gonzlez-Faras et. al. ([11])

Definition 2.2. Consider p > 1, q > 1, µ ∈ Rp, ν ∈ Rq, D an arbitrary
q× p matrix and Σ and ∆ positive definite matrices of dimensions p× p

and q × q, respectively. Then the probability density function (pdf) of a
CSN distribution is given by:

gp,q(y) = Cφp(y;µ,Σ)Φq(D(y − µ); ν,∆), y ∈ Rp (4)
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with:
C−1 = Φq(0; ν, ∆ + DΣD′)

where Φp(.; η, Ψ) is the cdf of the p-dimensional normal distribution,
with η ∈ Rp as the mean and Ψ a p× p covariance matrix. We denote a
p-dimensional random vector distributed according to a CSN distribution
with parameters q, µ, Σ, D, ν and ∆ by

y ∼ CSNp,q(µ,Σ, D, ν,∆).

The multivariate skew-normal distribution have been introduced as a
generalization of the normal distribution to model, in a natural way,
skewness features in the multi dimensional distribution. This families
also have properties similar to the normal distribution. However, two
important properties have been absent: the closure for the joint distri-
bution of independent members of the multivariate skew-normal family
and the closure under linear combinations other than those given by
non-singular matrices.
The CSN distribution, as defined in Definition 1.1, has more proper-
ties similar to the normal distribution than any other. Gonzlez-Faras et
al. ([11]) show that for a random vector with the CSN distribution, all
column (row) full rank linear transformations are in the family of CSN
distributions. They also prove closure under sum of independent CSN
random vectors and the closure for the joint distribution of independent
CSN distributions, thus providing a result that characterizes the CSN
distributions.

2.2 Model and Prior

We consider the following linear regression model that is

Y = Xβ + ε (5)

where Y is an n × 1 vector of observation, X is an n × p matrix of
known constants, β is a p× 1 vector of unknown parameters and ε is an
n × 1 vector of unobservable random errors, both Y and ε are random
vectors. We assume that Y |β ∼ N(Xβ, σ2I), ε|β ∼ N(0, σ2I) also
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β ∼ SN(ζ, Ω, α).
This model has two good properties, (1) when we use multivariate skew-
normal distribution as prior density for β, this includes multivariate
normal distribution (distribution with zero skewness parameters) as a
special case, and (2) with attention to marginal distribution of Y , Y

has CSN distribution, (we prove this in the next section) therefore this
model is a good descriptive for skew population.
In the following, we discuss the empirical Bayes for estimating parame-
ters of the model, given in (5).

3. Empirical Bayes Estimation

Assume that the multiple linear regression model is in the form of (5)
where Y is a random vector with

Y |β ∼ N(Xβ, σ2I).

The unknown parameters in the model are the set of coefficients β =
(β1, . . . , βp)t, we assume that σ2 is known until the end of the section
where we will discuss how to handle the case of unknown σ2.
For the Bayesian multiple linear regression model we consider mul-
tivariate skew-normal distribution as appropriate prior for β, that is
β ∼ SN(ζ, Ω, α), where ζ, Ω and α are vector of hyperparameters. Fol-
lowing Gonzalez-Farias et al. ([12])

β ∼ CSNp×1(ζ, Ω, α′ω−1, 0, 1),

and
ε ∼ CSNn×1(0, σ2I, 0, 0, 1).

Therefore

Xβ ∼ SSNn×1(Xζ, XΩX ′, α′ω−1(X ′X)−1X ′, 0, 1)

where SSN means singular skew-normal, and finally,

Y ∼ CSNn×2(Xζ, XΩX ′ + σ2I, D∗, V ∗,∆∗)
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where

V ∗ =
(

0
0

)
,

D∗ =
(

D1

0

)
2×n

; D1 = α′ω−1ΩX ′[XΩX ′ + σ2I]−1,

∆∗ =
(

A11 0
0 1

)
;

where,

A11 = 1 + α′ω−1Ωω−1α− α′ω−1ΩX ′(XΩX ′ + σ2I)−1XΩω−1α

= 1 + α′ω−1(I + ΩX ′(XΩX ′ + σ2I)−1X)Ωω−1α.

Therefore the marginal distribution of Y is multivariate closed skew-
normal (CSN) distribution.
As in equation (4), V = 0, the parameters of the multivariate closed
skew-normal distribution can be identifiable (Flecher et. al., ([10]), pp.
1979). Because of this property in our model, all of the parameters are
identifiable.
In empirical Bayes methodology we estimate hyperparameters of prior
distribution, by maximization of marginal distribution of Y with respect
to θ = (ζ, Ω, α), therefore numerical maximization of ln[m(Y |X, θ] (log-
arithm of marginal distribution) is required. One may use “R” software
to find this maximum point. For this purpose, at first we have to define
the logarithm of marginal distribution to “R” as a function of its param-
eters, then we have to use “nlminb” routine for optimizing (minimizing)
the function.
Now let we get this numerical estimates and recall them θ̂ = (ζ̂, Ω̂, α̂).We
now present the empirical Bayes estimation for β, following Lehmann
([13], pp. 241).

f(y|X, β) =
1

(2πσ2)n/2
e−

1
2σ2 (y−Xβ)′(y−Xβ)

=
1

(2πσ2)n/2
e−

1
2σ2 (y′y−2β′X′y+β′X′Xβ)

=
e−

1
2σ2 y′y

(2πσ2)n/2
e

1
σ2 β′X′ye−

1
2σ2 β′X′Xβ.
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Therefore

E[
∂

∂Y

β′X ′Y

σ2
|Y, X] =

1

m(y|θ̂, X)

∫
(

∂

∂Y

β′X ′Y

σ2
)f(Y |β)π(β)dβ

=
1

m(y|θ̂, X)

∫
(

∂

∂Y

β′X ′Y

σ2
)e

1
σ2 β′X′Y

e
− 1

2σ2 β′X′Xβ
h(Y )π(β)dβ

=
1

m(y|θ̂, X)

∫
[(

∂

∂Y
e

1
σ2 β′X′Y

h(Y ))

−(
∂h(Y )

∂Y
)e

1
σ2 β′X′Y

]e
− 1

2σ2 β′X′Xβ
π(β)dβ

=
∂ ln(m(y|θ̂, X))

∂Y
− ∂ln(h(Y ))

∂Y
.

We have ∂ln(h(Y ))
∂Y = − y

σ2 , for finding ∂ ln(m(y|θ̂,X))
∂Y as m(y|θ̂, X) has

multivariate closed skew-normal density (CSN(µ̂, Σ̂, D̂∗, V ∗, ∆̂∗)) with
µ̂ = Xζ̂, Σ̂ = XΩ̂X ′ + σ2I, we have

m(y|θ̂, X) = φn(y; µ̂, Σ̂)
Φ2(D̂

∗(y − µ̂), V ∗, ∆̂∗)

Φ2(0, V ∗, ∆̂∗ + D̂∗ΣD̂∗t)

=
φn(y; µ̂, Σ̂)

Φ2(0, V ∗, ∆̂∗ + D̂∗Σ̂D̂∗′)
× 1

2
× Φ(

D̂1(y − µ̂)√
Â11

).

Since

Φ2(D̂∗(y − µ̂), V ∗, ∆̂∗) =

D̂1(y−µ̂)∫
−∞

0∫
−∞

φ2((t1, t2), V ∗, ∆̂∗) dt1 dt2

=

D̂1(y−µ̂)∫
−∞

0∫
−∞

e
− 1

2Â11
t21√

2πÂ11

e−
1
2 t22

√
2π

dt1 dt2

=
1
2

D̂1(y−µ̂)∫
−∞

e
− 1

2Â11
t21√

2πÂ11

dt1

=
1
2
× Φ(

D̂1(y − µ̂)√
Â11

),
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thus
ln(m(y|θ̂, X)) = ln(φn(y; µ̂, Σ̂))− ln(Φ2(0, V ∗, ∆̂∗ + D̂∗Σ̂D̂∗′))

− ln(2) + ln(Φ(
D̂1(y − µ̂)√

Â11

))

and

∂ ln(m(y|θ̂, X))

∂y
=

∂ ln(φn(y; µ̂, Σ̂))

∂y
+

D̂′
1√

Â11
φ( D̂1(y−µ̂)√

Â11
)

Φ( D̂1(y−µ̂)√
Â11

)

= −Σ̂−1(y − µ̂) +

D̂′
1√

Â11
φ( D̂1(y−µ̂)√

Â11
)

Φ( D̂1(y−µ̂)√
Â11

)
.

Therefore empirical Bayes estimation is given by

E(
Xβ

σ2
|Y ) =

y

σ2
− Σ−1(y − µ̂) +

D̂′
1√

Â11
φ( D̂1(y−µ̂)√

Â11
)

Φ( D̂1(y−µ̂)√
Â11

)
,

XE(β|Y ) = y − σ2Σ̂−1(y − µ̂) + σ2

D̂′
1√

Â11
φ( D̂1(y−µ̂)√

Â11
)

Φ( D̂1(y−µ̂)√
Â11

)
,

thus

E(β|Y ) = (X ′X)−1X ′y − σ2(X ′X)−1X ′Σ̂−1(y − µ̂)

+ σ2(X ′X)−1X ′

D̂′
1√

Â11
φ( D̂1(y−µ̂)√

Â11
)

Φ(D1(y−µ̂)√
Â11

)
. (6)

It’s clear that, this estimator is an extension of the empirical Bayes estimation
for multiple regression when we select multivariate normal distribution (α = 0
then D̂1 = 0) as prior distribution for β.
For computing MSE(β, β̂), we have

MSE(β, β̂) = (X ′X)−1X ′MSE(Xβ, Xβ̂)X(X ′X)−1

which MSE(Xβ, Xβ̂) given by:
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R(Xβ, E[Xβ|Y ]) = E
[
(Xβ − E[Xβ|Y ]) (Xβ − E[Xβ|Y ])′

]
= E

[(
Xβ − σ2

(
∂ ln(m(Y |θ̂, X))

∂Y
− ∂ ln(h(Y ))

∂Y

))

×

(
Xβ − σ2

(
∂ ln(m(Y |θ̂, X))

∂Y
− ∂ ln(h(Y ))

∂Y

))′]

= E

[(
Xβ − Y − σ2

(
∂ ln(m(Y |θ̂, X))

∂Y

))

×

(
Xβ − Y − σ2

(
∂ ln(m(Y |θ̂, X))

∂Y

))′]
= E

[
(Xβ − Y ) (Xβ − Y )′

]
− 2σ2E

[
(Xβ − Y )

(
∂ ln(m(Y |θ̂, X))

∂Y

)′]

+ σ4E

[(
∂ ln(m(Y |θ̂, X))

∂Y

)(
∂ ln(m(Y |θ̂, X))

∂Y

)′]
∗
= E

[
(Xβ − Y ) (Xβ − Y )′

]
− 2σ4E

[
∂2 ln(m(Y |θ̂, X))

∂Y ∂Y ′

]

+ σ4E

[(
∂ ln(m(Y |θ̂, X))

∂Y

)(
∂ ln(m(Y |θ̂, X))

∂Y

)′]
= E[Y Y ′]− 2EY ]β′X ′ + Xββ′X ′ + 2σ4Σ−1

+ σ4Σ−1 {EY Y ′]− 2EY ]β′X ′ + Xββ′X ′}Σ−1

− 2σ4 × D1
′D1

A11
× E

 φ
(

D1(Y−µ)√
A11

)
Φ
(

D1(Y−µ)√
A11

)


+ 2σ4 × D1
′

√
A11

E

(Y − µ)
φ
(

D1(Y−µ)√
A11

)
Φ
(

D1(Y−µ)√
A11

)


+ 3σ4 × D1
′D1

A11
× E

 φ
(

D1(Y−µ)√
A11

)
Φ
(

D1(Y−µ)√
A11

)
2

which * equality is a straight consequence of Stein’s identity. Also



46 M. KHOUNSIAVASH, T. BAGHFALAKI, AND M. GANJALI

E[Y Y ′] and E[Y ] had given by equation (4) − (5) from Flecher et.
al. [10], the other expectation have to calculate by an approximation
method, such as Monte-Carlo integration.

3.1 Unknown σ2 Cases

When σ2 is unknown, we can define model with two approaches. In
Bayesian methodology we assign prior on every unknown parameter,
therefore we can use inverse-gamma distribution or Jeffryes prior for
σ2 in Bayesian model. Also, Berger ([6], pp. 172) suggested a method
for estimating σ2 based on repeated ys. In multiple linear regression
responses are given by

yi = β′xi + εi; i : 1, . . . ,n

such that
εi|β ∼ N(0, σ2),

that is
yi|β ∼ N(β′xi, σ

2); i : 1, . . . ,n.

In the presence of replication of y, suppose,
{

yj
i , i : 1, 2, . . . , n

}
are the

replicated observations for each j (j : 1, . . . ,K) and

yj
i ∼ N(β′xi, σ

2), β ∼ SN(ξ,Ω, α)

then

ȳj |β =
1
n

∑n

i=1
yj

i , S2 =
1
K

K∑
j=1

S2
j

where
S2

j =
1

n− 1

∑n

i=1
(yj

i − ȳj)2,

and this is a sufficient statistics. As suggested by Berger [6], for the
normal population, the method discussed above can be used by replacing
σ2 by s2, where s2 is a realization of S2.
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4. An Application

To illustrate the approaches developed in the previous sections, we use a
data set from the Australian institute of sport. In paticular, we consider
the body fat percentage (%Bfat) as dependent variable. The data were
collected from 202 athletes at the Australian institute of sport and are
described in Cook and Weisberg (1994). Besides a constant term we use
information on four covariates: sex (=1, for female and =0, for male),
red cell plasma (RCC), white cell plasma (WCC), plasma ferritin con-
centration (Ferr). These data, in multivariate situation, have been used
previously in the context of skewed distribution, Azzalini and Capitanio
[4] and Ferreira and Steel [9].
In previous sections, we let yi|β ∼ N(x′iβ, σ2), β ∼ SN(ζ, Ω, α), thus
by using this model if we observe skewness in distribution of popula-
tion, this skewness belongs to prior distribution of mean parameter that
shifted to population distribution, Bansal et al. ([5]).
As we have discussed in section 3.1, for unknown σ2 case, Berger ([6])
had proposed a methodology for estimating σ2 . His method has an
straight linkage to the Bootstrap method. In consequence when we
don’t have any repeated samples, one way for estimating σ2 can be re-
sampling from origin sample, calculating s2

i for each samples and then
estimating σ2 with σ̂2 = 1

K

∑K
i=1 s2

i . Using this method for our data
set, with K = 10000, σ̂2 = 8.157. Also by maximization of the marginal
distribution estimates of hyper parameters for skew-normal scenario are:

ζ=


13.104
1.598
0.305
−0.898
0.008

 , α=


4.396
0.692
1.683
3.544
−0.018

 ,

Ω =


63.625 −11.958 −1.768 0.207 0.063

2.247 0.332 −0.039 −0.012
0.049 −0.006 −0.002

0.001 0.0002
0.623× 104

 .
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These for normal scenario are:

ζ=


16.031
1.072
0.204
−0.800
0.011

 ,

Ω =


42.056 −5.732 −2.248 −2.484 0.002

0.782 0.306 0.339 −2.969× 10−3

0.120 0.132 −1.177× 10−3

0.147 −1.287× 10−3

1.273× 10−5

 .

We obtain empirical Bayes estimation for these data by (6), the results
for these methods are given in Table 1, where a Bootstrap approach is
used to find the standard error of the parameter estimates. This table
has two important results, (1) standard error of parameters in skew-
normal scenario is smaller than those of normal one, (2) The important
result about sex variable, this parameter is significant in skew-normal
scenario while is not significant under normal one. Table 1 shows that
the body fat for males is higher than that for females, also the more RCC
(WCC) the more body fat and the more plasma ferritin concentration
the more body fat.

Table 1. Empirical Bayes estimation of parameters using Sport data set.

Skew-Normal Scenario Normal Scenario
parameter Estimate S.D. Estimate S.D.
constant 14.164 2.650 10.046 2.740

RCC 1.385 0.096 2.616 0.531
WCC 0.151 0.021 -0.018 0.106
Sex -0.353 0.084 -0.013 0.485
Ferr 0.016 0.001 0.009 0.004
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