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1. Introduction

This paper is concerned with the existence result for a fractional integro-
differential equations of the type

cDα
0+y(t) = h(y(t)) + f(t, y(t)) +

 t

0
K(t, s, y(s))ds, t ∈ [0, 1], (1)

with the initial condition
y(0) = y0. (2)
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where 0 < α  1, cDα
0+ denotes the Caputo fractional derivative opera-

tor, f : [0, 1]×X → X, K : [0, 1]× [0, 1]×X → X and h : C([0, 1]→ X

appropriate functions satisfying some conditions which will be stated
later.

Fractional differential equations are linked with extensive applications
such as continuum phenomena mechanics, electrochemistry, biophysics,
biotechnology engineering and so forth. For more details see studies of
Guo et al. [14], Kilbas et al. [18], Miller and Ross [20] Oldham and
Spanier [23] and many other references.

Integro-differential equations emerge in many scientific and engineering
specialties, oftentimes be an approximation to partial differential equa-
tions, that represent a lot of the incessant phenomena. Recently, the
existence and uniqueness of solutions to fractional differential equations
have studied in [1, 2, 3, 4, 10, 11, 12, 19], and the various fractional
integro-differential equations have been taken into consideration by some
authors, for extra information, see [5, 6, 7, 8, 9, 21, 22, 25, 27]. For ex-
ample in [22] Momani et al. studied the local and global uniqueness
results by applying Bihari’s inequality and Gronwall’s inequality for the
following problem

cDαy(t) = f(t, y(t)) +
 t

t0

K(t, s, y(s))ds,

y(0) = y0

where 0 < α  1, f ∈ C([0, 1]× Rn,Rn), K ∈ C([0, 1]× [0, 1]× Rn,Rn)
and cDα is the Caputo fractional operator. In [6] Ahmad and Sivasun-
daram considered the integro-differential equations with fractional order
and nonlocal conditions

cDαy(t) = f(t, y(t)) +
 t

0
K(t, s, y(s))ds, t ∈ [0, T ],

y(0) = y0 − g(y),

where 0 < α < 1, cDα is the Caputo fractional operator, f : [0, T ]×X →
X, K : [0, T ]×[0, T ]×X → X are jointly continuous and g ∈ C([0, T ], X)
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is continuous. The authors employed the Banach contraction princi-
ple and Krasnoselskii’s fixed point theorem to establish the existence
and uniqueness results. Wu and Liu in [25] extended the results that
have been obtained in [6,7] by employed Krasnoselskii-Krein-type con-
ditions. In [27], Zhao discussed the collocation methods for fractional
integro-differential equations with weakly singular kernels

cDα
0 y(t) = p(t)y(t) + g(t) +

 t

0
q(t, s)y(s)ds, t ∈ [0, T ], (3)

y(i)(0) = y
(i)
0 , i = 0, 1, ..., n− 1,

where 0 < α < 1, g(t) and p(t) are bounded and continuous on [0, T ],
and q(t, s) might possess a weak singularity.

On the other hand, Heydari et al. proved the existence of a unique
solution for a class of system of nonlinear singular fractional integro-
differential equations and they also used many numerical methods in-
cluding Chebyshev, wavelet method to solving such these equations see
[15, 16, 17].

In this paper, we will prove the existence solution of the fractional
integro-differential equation (1) together with the initial condition (2)
via taking advantage of Krasnoselskii’s fixed point theorem on the in-
terval [0, 1]. The existence result obtained in Banach spaces. Moreover,
we also use one of the Krasnoselskii-Krein conditions.

The organization of this paper is as follows. In Section 2, we mention
some known notations and definitions and also we listing the hypotheses
which have advantage on this paper. The main Section 3 proves the exis-
tence of solution for the problem (1)-(2) in Banach space by Krasnosel-
skii fixed point theorem. Finally, an illustrative example is presented in
Section 4.

2. Preliminaries

In this section, we mainly demonstrate some essential notations, defini-
tions, and Lemmas which regard to fractional calculus and fixed point
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theorem. Let J = [0, 1], (X, .) is a Banach space and C(J,X) de-
notes the Banach space of all continuous bounded functions g : J →
X equipped with the norm gC(J,X) = sup{|g(t)| : t ∈ J}, for any
g(t) ∈ X. We consider the space Cn(J,X) consisting of all real valued
continuous functions which are continuously differentiable up to order
(n − 1) on J, and L1(J) denotes the space of all real functions defined
on J which are Lebesgue integrable. In the following, the Mittag-Leffler
function is given by

Eα,β(w) =
∞

k=0

wk

Γ(αk + β)
, Re(α), Re(β) > 0.

Furthermore, if 0 < α < 2 and β > 1, we have [13]

Eα,β(w) 
1
α
w

(1−β)
α ew

1
α .

Definition 2.1. ([18]). Let α > 0 and g : J → X. The left sided
Riemann–Liouville fractional integral of order α of a function g is de-
fined as

Iα0+g(t) =
1

Γ(α)

 t

0
(t− s)α−1g(s)ds, t ∈ J,

provided the right-hand side is pointwisely defined, where Γ(.) is the Eu-
ler gamma function.

Definition 2.2. ([18]). Let n− 1 < α < n and g ∈ ACn(J,X). The left
sided Caputo fractional derivative of order α of a function g is defined
as

cDα
0+g(t) = In−α−1

0+
dn

dtn
g(t), t ∈ J,

where n = [α] + 1 and [α] denotes the integer part of the real number α.

Lemma 2.3. ([18, 24]). For α, β > 0 and g, p are appropriate functions
then, for t ∈ J, we have

1. Iα0+I
β
0+
g(t) = Iα+β

0+
g(t) = Iβ

0+
Iα0+g(t).

2. Iα0+(g(t) + p(t)) = Iα0+g(t) + Iα0+p(t).
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3. Iα0+
cDα

0+g(t) = g(t)− g(0), 0 < α < 1.

4. cDα
0+I

α
0+g(t) = g(t).

5. cDα
0+g(t) = I1−α

0+
d
dtg(t), 0 < α < 1.

6. cDα
0+C = 0, where C is a constant.

Lemma 2.4. ([26]) (Krasnoselskii fixed point theorem). Let E be bounded,
closed and convex subset of a Banach space X, and let T1, T2 : E → E

satisfying the following:

(1) T1x+ T2y ∈ E, for every x, y ∈ E.

(2) T1 is contraction.

(3) T2 is compact and continuous.

Then, there exists z ∈ E such that the equation z = T1z + T2z has a
solution on E.

3. Main Results

In this section, we shall demonstrate the existence result of (1)−(2). Fore-
most, we state the subsequent lemma without proof.

Lemma 3.1. The fractional integro-differential equation (1) with the
initial condition (2) is equivalent to the following nonlinear integral equa-
tion

y(t) = y0 +
1

Γ(α)

 t

0
(t− s)α−1h(y(s))ds+

1
Γ(α)

 t

0
(t− s)α−1

×f(s, y(s))ds+ 1
Γ(α)

 t

0
(t− s)α−1

 t

s
K(τ, s, y(s))dτds.(4)

On the other hand, each solution of the integral equation (4) is likewise
a solution of the problem (1)− (2) and vice versa.

For reader’s comfort, we list of hypotheses is supplied as follows:
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(A1) h : C(J,X) → X is continuous, bounded and there exists 0 <

M < 1 such that h(u)− h(v) M u− v , for u, v ∈ X.

(A2) f : J × X → X is continuous and there exist β ∈ (0, 1], L > 0
such that

f(t, u)− f(t, v)  L u− vβ , t ∈ J, u, v ∈ X.

(A3) K : D × X → X, is continuous on D and there exist γ ∈ (0, 1],
ρ ∈ L1(J) such that

K(τ, s, u(s))−K(τ, s, v(s))  ρ(τ) u− vγ , (τ, s) ∈ D, u, v ∈ X,

where D = {(t, s) : 0  s  t  1}.

Now, we give an existence result based on the Krasnoselskii’s fixed point
theorem.

Theorem 3.2. Assume that the hypotheses (A1),(A2) and (A3) hold.
Then the fractional integro-differential problem (1)− (2) has a solution
in C(J,X) on J.

Proof. Transform the problem (1) − (2) into a fixed point problem.
Consider the operator  : C(J,X)→ C(J,X) defined by

y(t) = y0 +
1

Γ(α)

 t

0
(t− s)α−1h(y(s))ds+

1
Γ(α)

 t

0
(t− s)α−1

×f(s, y(s))ds+ 1
Γ(α)

 t

0
(t− s)α−1

 t

s
K(τ, s, y(s))dτds.

Before move ahead, we need to analyze the operator  into sum two
operators P +Q as follows

Py(t) = y0 +
1

Γ(α)

 t

0
(t− s)α−1h(y(s))ds (5)

and

Qy(t) =
1

Γ(α)

 t

0
(t− s)α−1f(s, y(s))ds+

1
Γ(α)

 t

0
(t− s)α−1

×
 t

s
K(τ, s, y(s))dτds. (6)
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For any function z ∈ C(J,X) and for som j ∈ N, we define the norm
zj = sup{e−jt z(t) : t ∈ J}. Notice that the norm zj is equivalent
to the norm zC for z ∈ C(J,X). Now, we present the proof in several
steps:

Step 1: We prove that Pz +Qz∗ ∈ Sr ⊂ C(J,X), for every z, z∗ ∈ Sr.
Let us set

µ = sup
(s,z∗)∈J×Sr

f(s, z∗(s))

µ∗ = sup
(τ,s,z∗)∈D×Sr

 t

s
K(τ, s, z∗(s)) dτ , η = sup

z∈Sr
h(z)

and there exists r = z0 + η+µ+µ∗

Γ(α+1) + 1 such that Sr = {z ∈ C(J,X) :
zj  r}. From the previous assumptions, then for z, z∗ ∈ Sr and t ∈ J ,
we have

Pz(t) +Qz∗(t)

 z0+
1

Γ(α)

 t

0
(t− s)α−1 h(z(s)) ds

+
1

Γ(α)

 t

0
(t− s)α−1 f(s, z∗(s)) ds+ 1

Γ(α)

 t

0
(t− s)α−1

×
 t

s
K(τ, s, z∗(s)) dτds

 z0+
1

Γ(α)

 t

0
(t− s)α−1 sup

z∈Sr
h(z(s)) ds

+
1

Γ(α)

 t

0
(t− s)α−1 sup

(s,z∗)∈J×Sr
f(s, z∗(s)) ds

+
1

Γ(α)

 t

0
(t− s)α−1 sup

(τ,s,z∗)∈D×Sr

 t

s
K(τ, s, z∗(s)) dτds

 z0+
ηtα

Γ(α+ 1)
+

µtα

Γ(α+ 1)
+

µ∗tα

Γ(α+ 1)

 z0+
η + µ+ µ∗

Γ(α+ 1)
.
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Consequently,

Pz +Qz∗j  e−j

z0+

η + µ+ µ∗

Γ(α+ 1)


< r.

This means that, Pz +Qz∗ ∈ Sr.

Step 2: We prove that operator P is a contraction map on Sr.
Let us make Sr as in step 1, by the preceding assumptions, then for
z, z∗ ∈ Sr and for t ∈ J , we have

Pz(t)− Pz∗(t)  1
Γ(α)

 t

0
(t− s)α−1 h(z(s))− h(z∗(s)) ds

 1
Γ(α)

 t

0
(t− s)α−1M z(s)− z∗(s) ds

 M
1

Γ(α)

 t

0
(t− s)α−1ejssup

s∈J
e−js z(s)− z∗(s) ds

= M

Iα0 e

jt

z − z∗j

= MtαE1,α+1(jt)

 M
ejt

jα
z − z∗j

 Mejt z − z∗j .

Thus,

Pz − Pz∗j M z − z∗j .

Since M < 1, we conclude that P is a contraction map on Sr.

Step 3: We show that operator Q is completely continuous on Sr.
For this end, we consider Sr defined as in step 1, and we prove that
(QSr) is uniformly bounded, (QSr) is equicontinuous and Q : Sr → Sr
is continuous.

Firstly, we show that (QSr) is uniformly bounded. By our hypotheses,



AN EXISTENCE RESULT FOR FRACTIONAL... 27

then for z ∈ Sr and t ∈ J, we have

Qz(t)

 1
Γ(α)

 t

0
(t− s)α−1 f(s, z(s))− f(s, 0) ds

+
1

Γ(α)

 t

0
(t− s)α−1 f(s, 0) ds

+
1

Γ(α)

 t

0
(t− s)α−1

 t

s
K(τ, s, z(s))−K(τ, s, 0) dτds

+
1

Γ(α)

 t

0
(t− s)α−1

 t

s
K(τ, s, 0) dτds

 1
Γ(α)

 t

0
(t− s)α−1Leβjs zβj +

1
Γ(α)

 t

0
(t− s)α−1Rds

+
1

Γ(α)

 t

0
(t− s)α−1

 t

s
ρ(τ)dτeγjs zγj ds+

1
Γ(α)

 t

0
(t− s)α−1R∗ds



L zβj + ρL1 zγj

 1
Γ(α)

 t

0
(t− s)α−1ejsds+

R+R∗

Γ(α)

 t

0
(t− s)α−1ds



Lrβ + ρL1 r

γ
 ejt
jα

+
R+R∗

Γ(α+ 1)
tα.

Thus,

Qzj 
Lrβ + ρL1 rγ

jα
+

R+R∗

Γ(α+ 1)ej
:= ,

where R = sup
s∈J

f(s, 0) and R∗ = sup
(τ,s)∈D

 t
s K(τ, s, 0) dτ. This means
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 t
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 t

0
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Γ(α)

 t

0
(t− s)α−1

 t

s
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 t
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(t− s)α−1

 t

s
K(τ, s, 0) dτds
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 t

0
(t− s)α−1Leβjs zβj +

1
Γ(α)

 t

0
(t− s)α−1Rds

+
1

Γ(α)

 t

0
(t− s)α−1

 t

s
ρ(τ)dτeγjs zγj ds+

1
Γ(α)

 t

0
(t− s)α−1R∗ds
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|t2 − t1| < δ, we conclude that

Qz(t2)−Qz(t1)

 1
Γ(α)

 t2

0

(t2 − s)α−1 − (t1 − s)α−1
 f(s, z(s)) ds

+
1

Γ(α)

 t2

t1

(t2 − s)α−1 f(s, z(s)) ds

+
1

Γ(α)

 t1

0

(t2 − s)α−1 − (t1 − s)α−1

 t2

s
K(τ, s, z(s)) dτds

+
1

Γ(α)

 t2

t1

(t2 − s)α−1
 t2

s
K(τ, s, z(s)) dτds

+
1

Γ(α)

 t1

0
((t1 − s)α−1

 t2

t1

K(τ, s, z(s)) dτds

 1
Γ(α)

 t1

0
((t1 − s)α−1 − (t2 − s)α−1) f(s, z(s)) ds

+
1

Γ(α)

 t2

t1

(t2 − s)α−1 f(s, z(s)) ds

+
1

Γ(α)

 t1

0
((t1 − s)α−1 − (t2 − s)α−1)

 t2

s
K(τ, s, z(s)) dτds

+
1

Γ(α)

 t2

t1

(t2 − s)α−1
 t2

s
K(τ, s, z(s)) dτds

+
1

Γ(α)

 t1

0
(t1 − s)α−1

 t2

s
K(τ, s, z(s)) dτ −

 t1

s
K(τ, s, z(s)) dτ


ds



(tα1 − tα2 ) + 2(t2 − t1)α

Γ(α+ 1)


µ+


(tα1 − tα2 ) + 2(t2 − t1)α

Γ(α+ 1)


µ∗

 2(µ+ µ∗)(t2 − t1)α

Γ(α+ 1)

<
2(µ+ µ∗)δα

Γ(α+ 1)
= .

where µ and µ∗ are defined as in step 1. Therefore, (QSr) is equicontin-
uous.

Finally, from the continuity of f and K, we can directly reach that

28 H. A. WAHASH, M. S. ABDO AND S. K. PANCHAL

|t2 − t1| < δ, we conclude that

Qz(t2)−Qz(t1)

 1
Γ(α)

 t2

0

(t2 − s)α−1 − (t1 − s)α−1
 f(s, z(s)) ds

+
1

Γ(α)

 t2

t1

(t2 − s)α−1 f(s, z(s)) ds

+
1

Γ(α)

 t1

0

(t2 − s)α−1 − (t1 − s)α−1

 t2

s
K(τ, s, z(s)) dτds

+
1

Γ(α)

 t2

t1

(t2 − s)α−1
 t2

s
K(τ, s, z(s)) dτds

+
1

Γ(α)

 t1

0
((t1 − s)α−1

 t2

t1

K(τ, s, z(s)) dτds

 1
Γ(α)

 t1

0
((t1 − s)α−1 − (t2 − s)α−1) f(s, z(s)) ds

+
1

Γ(α)

 t2

t1

(t2 − s)α−1 f(s, z(s)) ds

+
1

Γ(α)

 t1

0
((t1 − s)α−1 − (t2 − s)α−1)

 t2

s
K(τ, s, z(s)) dτds

+
1

Γ(α)

 t2

t1

(t2 − s)α−1
 t2

s
K(τ, s, z(s)) dτds

+
1

Γ(α)

 t1

0
(t1 − s)α−1

 t2

s
K(τ, s, z(s)) dτ −

 t1

s
K(τ, s, z(s)) dτ


ds



(tα1 − tα2 ) + 2(t2 − t1)α

Γ(α+ 1)


µ+


(tα1 − tα2 ) + 2(t2 − t1)α

Γ(α+ 1)


µ∗

 2(µ+ µ∗)(t2 − t1)α

Γ(α+ 1)

<
2(µ+ µ∗)δα

Γ(α+ 1)
= .

where µ and µ∗ are defined as in step 1. Therefore, (QSr) is equicontin-
uous.

Finally, from the continuity of f and K, we can directly reach that

28 H. A. WAHASH, M. S. ABDO AND S. K. PANCHAL

|t2 − t1| < δ, we conclude that

Qz(t2)−Qz(t1)

 1
Γ(α)

 t2

0

(t2 − s)α−1 − (t1 − s)α−1
 f(s, z(s)) ds

+
1

Γ(α)

 t2

t1

(t2 − s)α−1 f(s, z(s)) ds

+
1

Γ(α)

 t1

0

(t2 − s)α−1 − (t1 − s)α−1

 t2

s
K(τ, s, z(s)) dτds

+
1

Γ(α)

 t2

t1

(t2 − s)α−1
 t2

s
K(τ, s, z(s)) dτds

+
1

Γ(α)

 t1

0
((t1 − s)α−1

 t2

t1

K(τ, s, z(s)) dτds

 1
Γ(α)

 t1

0
((t1 − s)α−1 − (t2 − s)α−1) f(s, z(s)) ds

+
1

Γ(α)

 t2

t1

(t2 − s)α−1 f(s, z(s)) ds

+
1

Γ(α)

 t1

0
((t1 − s)α−1 − (t2 − s)α−1)

 t2

s
K(τ, s, z(s)) dτds

+
1

Γ(α)

 t2

t1

(t2 − s)α−1
 t2

s
K(τ, s, z(s)) dτds

+
1

Γ(α)

 t1

0
(t1 − s)α−1

 t2

s
K(τ, s, z(s)) dτ −

 t1

s
K(τ, s, z(s)) dτ


ds



(tα1 − tα2 ) + 2(t2 − t1)α

Γ(α+ 1)


µ+


(tα1 − tα2 ) + 2(t2 − t1)α

Γ(α+ 1)


µ∗

 2(µ+ µ∗)(t2 − t1)α

Γ(α+ 1)

<
2(µ+ µ∗)δα

Γ(α+ 1)
= .

where µ and µ∗ are defined as in step 1. Therefore, (QSr) is equicontin-
uous.

Finally, from the continuity of f and K, we can directly reach that



AN EXISTENCE RESULT FOR FRACTIONAL... 29

operator Q : Sr → Sr. As consequence of step 3 with Arzela-Ascoli
theorem, we easily infer that (QSr) is relatively compact set. Hence,
the operator Q is completely continuous. Thus all the assumptions of
Lemma 2.4 are satisfied. Consequently, the conclusion of Krasnoselskii’s
fixed point theorem shows that operator  = P +Q has a fixed point on
Sr. So the fractional integro-differential problem (1)− (2) has a solution
y(t) ∈ C(J,X). This proves the required. 

4. An Example

Consider the following nonlinear fractional integro-differential equation

cD
1
2

0+
y(t) =

1
2
sin y(t) + (cos t+ sin t) [y(t)]

1
2 +

 t

0
t sin [y(s)]

1
3 ds, (7)

with the initial condition
y(0) = 0. (8)

Here, α = 1
2 , h(y(t)) =

1
2 sin(y(t)), f(t, y(t)) = (cos t+sin t) [y(t)]

1
2 , and

K(t, s, y(s)) = t sin [y(s)]
1
3 . For u, v ∈ X = R+ and t ∈ [0, 1]. We can

see that
h(u)− h(v)  1

2
u− v ,

f(t, u)− f(t, v)  2
u

1
2 − v

1
2

  2 u− v
1
2 , (0 <

1
2
= β).

and

K(t, s, u)−K(t, s, v)  t
u

1
3 − v

1
3

  t u− v
1
3 , (γ =

1
3
< 1).

So, the conditions (A1), (A2) and (A3) are satisfied with M = 1
2 , L = 2,

and ρ(t) = t ∈ L1[0, 1]. By applying Theorem 3. the problem (2) (3) has
a solution on [0, 1].

5. Conclusions

This paper presents a class of nonlinear integro-differential equations
with Caputo fractional derivative. By using famous Krasnoselskii’s fixed
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point theorem, we have developed some adequate conditions for the ex-
istence of at least one solution to a class of nonlinear fractional integro-
differential equations. The respective result has been verified by provid-
ing a suitable example.
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