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Abstract. In this paper, we consider integro-differential equations with
fractional order including the Caputo fractional derivative. We shall rely
on the Krasnoselskii fixed point theorem to obtain the existence result in
Banach space. Moreover, we apply Krasnoselskii-Krein-type conditions
to get the desired result.
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1 Introduction

This paper is concerned with the existence result for fractional integro-
differential equations of the type

“Dey(t) = hiy(t)) + F(t.y(t)) + /0 K(t,s,y(s)ds, te01, (1)
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with initial condition
y(0) = yo. (2)

where 0 < a < 1, “D? is the Caputo fractional derivative, f : [0,1]x X —
X, K:[0,1] x [0,1] x X — X) and h : C([0,1],X) — X appropriate
functions satisfying some conditions which will be stated later.

Fractional differential equations are linked with extensive applica-
tions such as continuum phenomena mechanics, electrochemistry, bio-
physics, biotechnology engineering and so forth. For more details see
studies of Guo et al. [I1], Kilbas et al. [12], Miller and Ross [14] Old-
ham and Spanier [17] and many other references.

Integro-differential equations emerge in many scientific and engineer-
ing specialties, oftentimes be an approximation to partial differential
equations, that represent a lot of the incessant phenomena.

Recently, the existence and uniqueness of solutions to fractional dif-
ferential equations have studied in [1, 7, 8, 9, 13], and the various frac-
tional integro-differential equations have been taken into consideration
by some authors, for extra information, (see [2, 3, 4, 5, 6, 15, 16, 19]).
For example in [16] Momani et al. studied the local and global unique-
ness results by applying Bihari’s inequality and Gronwall’s inequality
for the following problem

‘Dy(t) = flt,yt) + [ Kt s,y(s))ds,

to
y(0) = yo
where 0 < o < 1, f € C([0,1] x R",R"™), K € C([0,1] x [0,1] x R™ R")
and ¢D® is the Caputo fractional operator.

In [3] Ahmad and Sivasundaram, considered the integro-differential
equations with fractional order and nonlocal conditions

Do) = flt.vle)+ [ CK(t s, y(s))ds), 1€ 0.T],

y(0) = yo — 9(y),
where 0 < o < 1, “D® is the Caputo fractional operator, f : [0,7T] x
X — X, K :[0,7T] x[0,T] x X — X are jointly continuous and g €
C([0,T] x X) — X is continuous. The authors employed the Banach
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contraction principle and Krasnoselskii’s fixed point theorem to establish
the existence and uniqueness results. Wu and Liu in [19], extended the
results that have been obtained in [3],[1] by employed Krasnoselskii-
Krein-type conditions.

In this paper, we prove the existence result of the fractional integro-
differential equations (1)-(2) via taking advantage of Krasnoselskii’s fixed
point theorem. Moreover, we use Krasnoselskii-Krein type conditions.

The organization of this paper is as follows. In Section 2, we mention
some known notations and definitions and also we listing the hypothe-
ses which have advantage on this paper. The main Section 3 proves
the existence of solutions for the problem (1)-(2) in Banach space by
Krasnoselskii fixed point theorem.

2 Preliminaries

In this section, we present some essential notations and definitions con-
cerning fractional calculus and fractional differential equations.

Let J = [0,1] and X is Banach space with norm |.||. C'(J, X) de-
notes the Banach space of all continuous bounded functions g : J — X
equipped with the norm ||gll¢(;x) = max{[g(t)] : ¢ € J}, for any
g(t) € X, we also C™(J, X) be space of all real valued continuous func-
tion which are continuously differentiable up to order (n — 1) on J. In
the following, the Mittag-Leffler function is given by

wk

I'(ak + B)

M8

Eq,p(w) = , Re(a),Re(B) > 0.

e
Il

0

Furthermore, if 0 < o« < 1 and 8 > 1, then

. (See [10]).

Definition 2.1. ([12]). Let a > 0 and g € C(J,X). The Riemann-
Liouville fractional integral operator of order « is defined as

1 a-p
E,p(w) < —w o e
a

Q=

w

ealt) = o [ =9 gis. te

where I'(.) is the Euler gamma function.
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Definition 2.2. ([12]). Let n—1 < o < n,n € Nand g € C"(J, X).
The Caputo fractional derivative operator of order « is defined as

a1 d”
‘Dgrg(t) = I 1@9@), teld
Lemma 2.3. ([12, 18]). For a,f > 0 and g,p are convenient functions

then, fort € J, we have,
1oIg 00 g(t) =I5 P g(t) = 10, 1¢, g(t).
2. I3 (g(t) + p(1)) = I3 g(t) + 15, p(0).
3. 15:°Dgg(t) = g(t) — g(0), 0 < < 1.
4. “DgIgg(t) = g(t).
5. °Dg.g(t) = 1,7%q(t), 0 < a < 1.
6. “Dg,C = 0, where C' is a constant.

Lemma 2.4. ([20]) (Krasnoselskii fized point theorem). Let K be bounded,
closed and convex subset of a Banach space X, Let T1,T5 : K — K sat-
isfying the following:

(1) Thx 4+ Thy € K, for every x,y € K.
(2) Ty is contraction.
(3) Ty is compact and continuous.
Then, there exists z € K such that the equation z = Tz + Thz has a
solution on K.
3 Main results

In this section, we shall demonstrate the existence result of (1) — (2).
Foremost, we state the subsequent lemma without proof.
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Lemma 3.1. The fractional integro-differential equations (1) — (2) is
equivalent to the nonlinear integral equation

y(t) = yo+r<1a> /0 <t—s>a—1h<y<s>>ds+r(1® /0 (t — )2 f(s,y(s))ds
L t —s)el t 7. 8. y(8))drds
+P(a)/0(t ) /SK( s, y(s))drds, teJ. (3)

In other hand, each solution of the integral equation (3) is likewise a
solution of the problem (1) — (2) and vice versa.

For reader’s comfort, we list of hypotheses is supplied as follows:

(A1) h: C(J,X) — X is continuous, bounded and there exists 0 <
M < 1 such that ||h(u) — h(0)|| < M ||u— o], for u,v € X.

(A2) f:Jx X — X is continuous and there exist 5 € (0,1], L > 0
such that

1F(tu) = f(t )| < Llu—o], te ], uoveX.

(A3) K:JxJxX — X, is continuous on D and there exist vy € (0, 1],
p € L'(J) such that

1K (7, 5,u(s)) = Ki(7,8,v(s))| < p(7) lu =], (7, 5) € D, u,v € X,

where D = {(t,s) : 0 < s <t <1}.
Our first result depends on Krasnoselskii’s fixed point theorem.

Theorem 3.2. Assume that the hypotheses (A1),(A2) and (AS3) hold.
Then the fractional integro-differential equation (1) — (2) has a solution
in C(J,X) on J.

Proof. In the inception, we convert the Cauchy problem (1) — (2) to
be applicable to fixed point problem with the operator f : C(J, X) —
C(J, X) defined by

Fyt) = y0+F(1a) /O <t—s>a1h<y<s>>ds+F(1a) /0 (t— )2 f(s,y(s))ds

1

t t
R —g)o ! 7.5, 9(5))drds .
e [ =0 [ Krsyanas, te
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Before move ahead, we need to analyze the operator F into sum two
operators P + @) as follows

Py(t):ywr(la) /O (t — 52 h(y(s))ds (4)
and
Qy(t)=r(1a) /0 (t—s)a‘lf(s,y(s))derF(la) /O (t—5)°! / K (r, s, y(s))drds.

(5)

For any function z € C(J,X) and for som j € N, we define the

norm |z|[; = max{e 7t ||z(t)|| : t € J}. Notice that the norm [[2]]; is

equivalent to the norm |[|z]|, for z € C(J,X). Now, we present the
proof in numerous steps:

Step(1) we prove that Pz + Qz* € S, C C(J,X), for every z,2* €

S
t *
Letp= sup [If(s,z"(s))Il, w* = sup  [OK(7,5,2%(s))l dr,
(s,2*)€J XSy (7,8,2*)€ED XSy
n = sup ||h(z)] and there exists r = |z0| + 77;(51‘1‘)* + 1 such that
zeX

Sy ={z€eC(J,X): HzHJ <r}
For z,2z* € S, and t € J, from the previous assumptions, we have

1P=(t) + Q=" (1)

< ol + gy [ (€= 9 (et s
1 ' — ) f(s. 2%(s s b t —g)e L t T,8,2"(s Tds
e | =0 W @D ds g [ [ Kz @) drd
t
< ol + gy [ (=9 sup ) s

L t —s) gy s, 2%(s s
+ /O<t TR O

F(Ot) $,2*)EJ XSy

1 /t , t
+=— t—s)” sup K(1,s,2%(s))||drds
F(a) 0 ( (1,8,2*)EDX Sy J s H ( ) H
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2ol +

|20l +

*tOé

nt" pt* p
- -

(a+1) T(a+1) TI(a+1)

n+p+pt

Ila+1)

n+p+pt

1Pz 4+ Q27| <llzoll + =5 <7

MNa+1)

This means that, Pz + Qz* € S,.

Step(2) we prove that the operator P is a contraction map on S;.

Let us make S, as in step (1), for z,z* € S, and for ¢t € J, by the
preceding assumptions, we have

1P=(t) = Pz* (1)

<

IN

IN

IN

<

L ' _Sa—l 2(8)) — h(z*(s S
F(a)/o(t )47 h(z(s)) — h(z7(s))]| d

1 t
g AR FORRBIT
ML /t(t — 5)* el maxe ™% ||z(s) — 2*(s)| ds
I'(a) Jo seJ
M [Ige!] ||z — 2|
Mt By a41(3)

eJt .
M=z 2 =271,

J

Met ||z — Z ;-

Since M < 1, we get

* *
1Pz — P22, < ||z - 2°1.-

So, P is contraction map on S,.
Step(3) we show that the operator @ is completely continuous on

Sh.

For this end, we consider S, defined as in step (1) and we prove that
(QS,) is uniformly bounded, (QS,) is equicontinuous and @ : S, — S,

is continuous.
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Firstly, we show that (QS,) is uniformly bounded.

For z € S, and t € J, then referring to previous assumptions, we
have

1 t a-1 1 ! a—1
Q=0 < Fo /0 (4= 97 (s, 2(5) = F(5.0) s + s /0 (t— )2 |f(s,0)]] ds
t t
+F(1a> /0 (t— ) / |K (7.5, 2(5)) — K(,5,0)| drds
1 t t
+F(a)/0 (t—s)a—l/ IK (7, 5,0)|| drds
1/ amty pisiof L L[ a1
< oy =0 el + s [ (=9 s
t t ) 1 t
ey | €= [ omarer z s+ s [e- o Reas
3 1 t o . R+R* t o1
< (L1 + Il ||z|y})r(a)/0(t_s) terds 4 TS /O(t—s) ds
8 €jt R+R* a
< (L7 +lpllr) e st
Thus,
Lr? + lplpar” | R+ R
[Qz]]; < S fatD l,

where R =sup || f(s,0)|| and R* = sup fst | K (7, s,0)| dr. This means
seJ (1,8)€D

that @S, C Sy, for any z € S,, i.e. the set {Qz : z € S,} is uniformly
bounded.

Next, we will prove that (QS;) is equicontinuous.

1
For z € S, and for t1,ts € J with t; < 9, and alsolet § = (g((/f:jzi) “
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then, when |t2 — ¢;| < 0, we conclude that

1Qz(t2) — Qz(t1)]|

! ” aml () —s)>! s, z(s s : —8) 1 f(s, 2(s s
= r(a)/o (b2 = )77 = (61 = 9" £ (s 20D ds + 755 / (t2 = )27V f(s, 2()) | d
+F(1a)/0 1 ‘(t2 —5) (4 — S)a_l‘ / : 1K (7, s,2(s))| drds
+I‘(1a)/t2(t2_s)a_1/2 |K(7,s,2(s))| drds
+I‘(1a)/0 1((t1 —S)o‘l/t2 | K (7, s,2(s))| drds
! ! ol (g — )t s, 2(s s ! : — )27 (s, 2(s s
= F(a)/o ((tr =) (t2 = 5)* ) 1f (s, 2(5)) Il d * ) /t (t2 =) | f (s, 2(5) Il d
t1 t
+F(1a)/0 ((tr—)*! —(tQ—s)a—l)/ |K (1,5, 2(s))| drds
+F(1a)/tQ(t2—s)°‘_1/2 K (7, 5, 2(s))| drds
i =0t [T - [T IR sl ar as
< [(t? —18) +2(t2 — t1)°‘] {(t? —18) +2(t2 — tl)a} \
B [a+1) T(a+1)
< 2(p + p*)(ta — 1)
- INa+1)
2pt p)o%
INa+1) ’

where p and p* are defined as in step (1). Therefore, (QS,) is
equicontinuous.

Finally, from the continuity of f and K, we can directly reach that
the operator @ : S, — S;.

As consequence of step 3 with Ascoli-Arzela theorem, we easily infer
that (QS,) is relatively compact set. Hence, the operator @ is complete
continuous.

Thus, Krasnoselskii’s fixed point theorem shows that the operator
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F = P+ @ has a fixed point on S, and hence the fractional integro-
differential equation (1) —(2). has a solution y(t) € C(J, X). This proves
the required. O
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