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Abstract. We investigate approximate solutions for a nonlinear frac-
tional g-integro-difference equation with some boundary value condi-
tions including the g-derivative of the Caputo type derivation. By pro-
viding two examples, we illustrate our main result.
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1. Introduction

The subject of g-difference equations introduced in 1910 by Jackson ([17]). Later,
it published many works on fractional g-differential equations (see for example,
[7]-[8], [10], [14]-[19] and [21]). It is known that fractional calculus has numerous
applications in different sciences such as mechanics, electricity, biology, control
theory, signal and image processing ([1]-]6]).

a

1—¢
l1-g¢
([17)) and (a — b)© = a® [[;7 2552 If b = 0, then it is clear that a(®) =

Let g € (0,1), a € R and « be a non-zero real number. Define [a], =
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(1-q" Y

a®. The g-Gamma function is defined by I'y(x) = Toge-T Where x € R\

{0,—-1,-2,...} ([17]). Note that, I'y(x + 1) = [z],I'4(z). The g-derivative of a
function f is given by (D, f)(z) = W and (D, f)(0) = limg_o(Dy f)(x)
([1]). Also, the g-derivative of higher order of a function f is defined by

(Df)(x) = f(x) and (D} f)(x) = Dg(Dp~'f)(x) for all n > 1 ([1]). Also,
the q integral of a function f defined in the interval [0,d] is given by I, f(z) =
Jo F(s)dgs = (1 = q) > py f(xq")q" for x € [0,b], provided that the sum
converges absolutely ([1]). If a € [0, b], then

[ 16 = s~ 1@ = [ 165~ [ sy

[bf(bg") — af(aq®)lq"

NE

=(1-4q)

>
Il

0

whenever the series exists. The operator I is defined by I f(z) = f(z) and
17 f(x) = I,(I7 7" f)(x) for all n > 1 ([1]). It has been proved that (DyI,f)(z) =
f(z) and (I;Dq f)(z) = f(x)— f(0) whenever f is continuous at x = 0 ([1]). Let
a 2 0 and f be a function on [0,1]. The fractional Riemann-Liouville type
q-integral of the function f is defined by (I9f)(z) = f(z) and (I3 f)(x) =
m INCE qs) @V f(s)d,s for z € [0,1] and o > 0 ([9] and[13]). Also, the

fractional Caputo type g-derivative of the function f is defined by

(“Dg /() = (I Dl ) () = F([Cj_a} / " (a—gs) D (DI £) (5)ds
for z € [0,1] and « > 0 ([9] and[13]). It has been proved that (I71¢ f)(x) =
(Ig+0f)(x) and (DG Ig f)(z) = f(x), where o, § > 0 ([14]). Also, (I“fof)( ) =

(DRI f) (@) — S5z gr(ai%(pgf)(o), where a > 0 and n > 1 ([14]).

In 2012, Ahmad, Ntouyas and Purnaras investigated the g-difference equation
(°Dgu)(t) = f(t, u(t)) with nonlocal boundary conditions a;u(0) — 31 Dyu(0) =
yu(n) and agu(l) + BaDyu(l) = you(n2), where 0 <t < 1,1 < a < 2 and
ai, Bi,vi € R for all ¢ ([10]). In 2013, Zhao, Chen and Zhang reviewed the
nonlinear fractional g-difference equation (Dgu)(t) + f(t,u(t)) = 0 with the
nonlocal g-integral boundary value conditions u(0) = 0 and u(1) = plfu(n),
where 0 <t < 1,1 < a<2,0< f<2and p >0 ([21]). In 2015, Etemad,
Ettefagh and Rezapour investigated the qg-differential equation (“Dg)(t) =
f(t,u(t), Dgu(t)) with boundary conditions Aju(0) + p1 Dqu(0) = mIfu(&:)
and Aou(1) + peDgu(l) = mpllu(&y), where 0 <t < 1,1 < o < 2, q €
(0,1), B € (0,2], &1,82 € (0,1) with & < &2, A1, A2, g, a2, m1,m2 € R and
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f:[0,1] x R? — R is a continuous map ([9]). Recently, it has been published
some works about approximate solutions of some fractional differential equa-
tions ([11] and [12]). By using and mixing idea of the works, we study the
existence of approximate solutions for the fractional g-difference equation

(“Dgu)(t) = f(t,u(t), I]u(t)) (1)
with the g-integral boundary value conditions
u(0) = u(1) =0, (2)

where Dy denotes the fractional g-derivative of the Caputo type of order a,
0<t<1 1 < aleq2, ¢ € (0,1), 8 € (0,2]and f : [01]><R2—>Rlsa
continuous map.

Now, we provide some basic needed notions. Let (X,d) be a metric space,
a:X xX —[0,00) amap, F a selfmap on X and £ > 0. We say that F' is a-
admissible whenever «(z,y) > 1 implies a(Fz, Fy) > 1 ([12]). An element xo €
X is called e-fixed point of F' whenever d(Fxg,z) < &. We say that F' has the
approximate fixed point property whenever F' has an e-fixed point for all ¢ > 0
([12]). Some mappings have approximate fixed points while have no fixed points
([12]). Denote by R the set of all continuous mappings g : [0,00)° — [0, c0) sat-
isfying g(]-v 1, ]-7 21 0) = g(la L1, 07 2) =he (07 1)7 g(Mxlv K2, HT3, 44, ,uxS) <
pg(x1, x2, 23, 24,25), g(T1,22,23,0,24) < g(y1,%2,v3,0,y4) and

9($17$2,$3a$4,0) < g(y17y27y3ay470)

for all u > 0 and xy, w2, ¥3, T4, T5, Y1, Y2, Y3, Y4, Y5 € [0,00) with z; < y; for i =
1,2,3,4 ([20]). Finally, we say that F' is a generalized a-contractive mapping
whenever there exists g € R such that

a(z,y)d(Fr, Fy) < g(d(x,y),d(z, Fx), d(y, Fy), d(z, Fy), d(y, Fr))
for all z,y € X ([20]). We need next fixed point theorem for our main result.

Theorem 1.1. [20] Let (X,d) be a metric space, o : X x X — [0,00) a map
and F a generalized a-contractive and a-admissible selfmap on X. Assume
that there exists xog € X such that a(xg, Fxg) > 1. Then F has an approzimate
fized point.

Lemma 1.2. The function ug is a solution for the problem (1) with the bound-
ary value conditions (2) if and only if up is a solution for the fractional g¢-

integml equation
1

s 1 (1—gs)(@—
= [ gt o 2 £ (s, uo(s), Iuo(s))dys—t [, Bl F(s,u0 () Ifuo (s))dys.
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Proof. Let ug be a solution for the fractional g-difference equation (1) with
the g-integral boundary value conditions. Choose ¢y, c¢; € R such that ug(t) =

fg %f(s,uo(s),lguo(s))d s+ ¢o + it (see [13]). Since up(0) = 0 and

up(l) =0, we get co =0 and ¢; = — fo %f(s,u(s)]fu(s))dqs.

Thu57 we conclude that

_gs)@—1) 1 (a
= fot %f(s,uo(s)JguO( ))dgs— tf %f(&uo(s),lguo(s))dqs.
By using some easy calculation, one can get that the converse part is obvious.
This completes the proof. O

2. Main Results

Consider the space
X ={u:u, Ifu € Cr([0,1]),° Dgu(t) = f(t,u(t),Iun(t)),u(O) = u(l) =0}

via the metric d(u,v) = [lu — v||, where [u]| = sup,¢ 1] 112 (u(t)) |+ suprejo, i [u(t)].
As we know, (X, d) is not a Banach space. By considering Lemma 1.2, define
the operator F': X — X by

E(t— gs)(@D)
(Fue) = [ T (s, u(s))dys

_ 1% s.uls ,Bus S *
A e (CUCRATCIT R

It is easy to check that ug is aa approximate solution for the problem if and
only if ug is an approximate fixed point of F'.

Theorem 2.1. Suppose that f : [0,1] x X2 — X is a continuous function
and there exists a g-integrable function L : [0,1] — R such that |f(t, u1,v1) —
f(t ug,v2)] < L) [Jug — ug| + |va —v2|] for all t € [0,1] and uq, us,v1,v2 €
X. If h < 1, then the problem (1) has an approximate solution. Here, h =
2(12)L(1).

KN
Proof. Choose r > - where K = sup;¢(o 11| f(¢,0,0)[ and N = m Put

B, ={u € X : |lu|]| <r}. Consider the operator F' : X — X defined by (x).
We show that FB, C B,.. Let u € B, and t € [0,1]. Then,

(a—1)
<| / U8 b5 uls), Iu(s))dys|
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1% S, u(s ﬂ’U/S S
ot [ B ute) Tl

b (t—gs)Y 8 _
< tgtér,)l](/o Ty |f(s,u(s), IJu(s)) — f(s,0,0) + f(s,0,0)|dys

lw S, U(S ’BUS — S S S
+/0 Pq(a) |f( ’ ( )’Iq ( )) f( 7050)+f( 7070)|dq )

1 7(1 _qs)(a—l) $)(|TPu(s S
< [ S + )4,

1 7(1 qu)(o‘*l) $) (|18 u(s s
+ [ L ute) + K,

1 _ a—1) 1 _ (a—1)
(1—gs)! / (1-gs)
<K2/ dgs) + (2 L(s)dys) <.

( 0 Ly(a) o) 0 Ly(a) Jda)
Also, we have

t _ 8((x+ﬂ—1)
o< [ S

+(B+1) (1 —gs)le—V
BVCES) / ey

|f($, U(S), Iqﬂu<5)>|dqs

|f(s,u(s), I u(s))|dgs

" (t —gs)>th

RSO B _

+ sup [f (s, u(s), I('fu(s))—f(s, 0,0)+f(s,0,0)|dgs

+(B+1) /1 (1- qs)(afl)
tefo) Da(B+2) Jo

Ly(e)

1 (1 — gs)(@+6-1) 1 (] — gs)(a-D)
<[ Ciarar oKl gy [ oK

1 _ 1 _
_ (1 —gs)lotFi—D 1 (1—gs)leV
- K(/o O R L Wy / (o) )

L (1 —gs)(e Py 1 P (1 —gs)e
ool NP A R W) | Tyla)  L(e)da®)

1 1 1 .
T3 ) 0y Ty L)1)+

1
Ly(B+2)

= K( (I L) (1))

< K(

T s TAELDM) <
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This implies that F'B,. C B,.. Let u,v € X be given. Then, we have

t(f_ gs)@—1)
Pu— ol < [ u(s) 1) = £5. 0000, T o)

(B+1) (1 gs)(eD . ,
+rq(5+2) /O T.(a) |f(s,u(s), IJu(s)) — f(s,v(s), Iv(s))|dgs

bt —gs)@D +(B+1) (1 = gs)le=D
<”””“£Ei{o Sy [ e )
B (a 1) 1 1 = qs)(a—l)
<ol [ B g s [ O )
< hu o).

Also, we have
(15 F)(u) = (I} F)(v)]

t o — gg)(atf—1)
<[;@rii+1>M@a@xﬁwww—f@w@%ﬁ“@”%s

N +(B+1) /1 (1 —gs)@=b
0

T,(3+2) T, (@) |f(s,u(s),[§u(s)) - f(s,v(s),[fv(s)ﬂdqs
B (t — gs)@th=1) +(B+1) 1 (1 —gs)@=b
<=l | TR+ iy [ i)
g [ gty R
< Jlu vll{/ S e /0 L 1(s)dys)
< hflu = v

Now, consider the maps g : [0,00)° — [0,00) and o : X x X — [0,00) defined
by g(t1,t2,t3,t4,t5) = ht; and a(z,y) = 1 for all z,y € X. One can easily check
that g € ® and F is a generalized a-contraction. By using Theorem 1.1, F' has
an approximate fixed point which is approximate solution for the problem. [

Theorem 2.2. Let M > 0 be given and f : [0,1] x X?> — X a continuous
function such that

|f(t,ur,v1) — f(t,uz,v2)| < M(Jup — ua| + |va — v2])

for all t € [0,1] and uy,us,v1,v2 € X. Then the problem (1) has an approzi-
mate solution whenever A = M Ay <1, where Ay = 2(IF1)(1).
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Proof. Define map F': X — X by

t —gs (a—1)
(Fue) = [ S s uto) 1),

_ 17(1_(]8)(&71) s,u(s), IPu(s))dys
A e (CUORATOI

MyA
Put My = supycpo,1) [ f(2,0,0)] and r > . 0 51, where 0 is such that A < § <

1. We show that F'B, C B,, where B, = {u € X : |u|]| < r}. Let u € B, and
t € [0,1]. Then, we have

a—1)

t(t— as)
(P < | [ (e L),

FOa) Y s P ds
st [ B s ), ),

tw S, u(s ﬁ’U,S — S S S
< [ S e u(e) 2 u(s) = 7(5.0.0) + f(5.0.0)ld,

1% s uls). IPu(s)) — f(s . .
+t/o B oy (5 () Lu(s)) = £(5.0,0) + 1 (5,0,0)ldg

" —gs)eD Bu(s s
< [ S M) + 1 u(s)) + Mol

1 —as (a—1)
th/o %[M(u(s) + |I(’?u(5)|) + Moldys

1
(

< (M Mp)(2
(Ml + Mo)( /

Also, we have

t —1
5 (tqu)(oé‘kﬁ )
aroo|< [ S

+(B+1) 1 (1-— qs)(a—l)
) / Ty(a)

1 _ «@ -1) t _ (a—1)
(1—gs)let? 1 / (1—gs)
< (M +M/ dgs + dgs <.
Mr+do) | 5 0T p) TGy Tya)

|f (s, uls), I u(s))|dys

|f(s,u(s), 1] u(s))ldgs
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This implies that F'B,, C B,. Let u,v € X be given. Then, we obtain

t(— gg) @1
|Fu— Fol g/o “qu()a)u(s,u(swfu(s)) — f(s,0(s), 1] v(s))|dys

1% S,uls BUS - S, V(s ﬁ’US S
ot [ B (s ). o) = s, 000). 25l

su tw u\s) — vis BU.S*B’US S
< s [ S ) o)+ 1) — (o))

te[0,1
1 t—as (a—1)
+ sup / %[M(\U(S)—v(8)|+|15U(8)—va(S)l)}qu
tefo,1] Jo I‘q(a)
< M|lu—v||A; = Alju — v]|.

Also, we have
(17 F)(u) — (I F)(v)]

tw S, u(s ﬂus — S,V(S ﬂ’US S
< [ s ). Bute) = s, 0(6), (sl

$(B+1)

1 (1_q8)(a_1) S, u(s B/LL S)) — S, V(S B’U S S
ey s Ifue) = £ o) (sl

su tw u\s) — vis Bus—ﬁvs S
[ M uts) = oo + 1uts) — o)l

su t(ﬁ+1) t (1 _QS)(Q_I) uls) —vls 51,6 S) — 51} S S
+ o my ey MG) o)+ ) ~ ()l

(1 — gs)l@tA=1) 1 (1= gs)le—V)
<M d d
e = “”{/ T+ TG | Ty )

< Mlu—v||A = Allu — |

Now, consider the maps g : [0,00)° — [0,00) and o : X x X — [0,00) defined
by g(t1,t2,t3,t4,t5) = Aty and a(x,y) = 1 for all z,y € X. One can easily
check that ¢ € ® and F is a generalized a -contraction. By using Theorem
1.1, F' has an approximate fixed point which is approximate solution for the

problem. [

Example 2.3. Consider the fractional g-difference equation

(“D3u)(t) = f(t,u(t), I} u(t))
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1
with the g-integral boundary value conditions u(0) = u(1) = 0. Put ¢ = 3

1
azZ,ﬁzgand

ftu(t), I

[SEg
2
~—~
~
~—
~
I
~
N
—~
[
+
~+
)
+
92}
.
[=}
S
+
~
[l
I~
—
~
~
=

-

for all t € [0,1]. Then, |f(¢, u(t), [Zu(t) — f(t,v(t),]%v(t)ﬂ < 2(lu — v +
2 2
[T3u(t) — Il%v(t)D. Define L(t) = t? for all t. Then, an easy calculations shows
2 2

that h = % < 1. Now by using Theorem 1.1, the problem has an approximate

solution.

Example 2.4. Consider the fractional g-difference equation
1

(“D3u)(t) = M(t* +cost + 1 + tan™ u(t) + IZ u(t))
2 2

. . o 1

with the g-integral boundary V&hl? conditions u(0) = u(1) = 0. Put ¢ = 3,

B =3 and o = 2. Then, Ay = (2I7)(1) = 5. Choose M < 4~ = 3. Consider
2 1

the function

F(tu(t), I2u(t)) = M(£2 + cost + 1 + tan— u(t) + Igu(t))

NI o=

for all ¢ € [0,1). Then, |f(t,u(t), [2u(t)) — f(t,0(t), [2v(t))| < M(ju— v| +
2 2
[ u(t)—1
2
solution.

v(t)|). Now by using Theorem ?7?, the problem has an approximate

NI pof=
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