Journal of Mathematical Extension Vol. 13, No. 3, (2019), 109-120

ISSN: 1735-8299

URL: http://www.ijmex.com

Approximate Solutions For a Fractional Q-Integro-Difference Equation

N. Balkani

Payame Noor University

R. H. Haghi

Payame Noor University

Sh. Rezapour^{*}

Azarbaijan Shahid Madani University China Medical University

Abstract. We investigate approximate solutions for a nonlinear fractional q-integro-difference equation with some boundary value conditions including the q-derivative of the Caputo type derivation. By providing two examples, we illustrate our main result.

AMS Subject Classification: 34A08; 39A12; 39A13

Keywords and Phrases: Approximate solution, boundary value problem, fractional q-difference equation

1. Introduction

The subject of q-difference equations introduced in 1910 by Jackson ([17]). Later, it published many works on fractional q-differential equations (see for example, [7]-[8], [10], [14]-[19] and [21]). It is known that fractional calculus has numerous applications in different sciences such as mechanics, electricity, biology, control theory, signal and image processing ([1]-[6]).

Let $q \in (0,1)$, $a \in \mathbb{R}$ and α be a non-zero real number. Define $[a]_q = \frac{1-q^a}{1-q}$ ([17]) and $(a-b)^{(\alpha)} = a^{\alpha} \prod_{k=0}^{\infty} \frac{a-bq^k}{a-bq^{\alpha+k}}$. If b=0, then it is clear that $a^{(\alpha)} = a^{\alpha} \prod_{k=0}^{\infty} \frac{a-bq^k}{a-bq^{\alpha+k}}$.

Received: March 2018; Accepted: July 2018

^{*}Corresponding author

 a^{α} . The q-Gamma function is defined by $\Gamma_q(x)=\frac{(1-q)^{(x-1)}}{(1-q)^{x-1}}$ where $x\in\mathbb{R}\setminus\{0,-1,-2,\ldots\}$ ([17]). Note that, $\Gamma_q(x+1)=[x]_q\Gamma_q(x)$. The q-derivative of a function f is given by $(D_qf)(x)=\frac{f(x)-f(qx)}{(1-q)x}$ and $(D_qf)(0)=\lim_{x\to 0}(D_qf)(x)$ ([1]). Also, the q-derivative of higher order of a function f is defined by $(D_q^0f)(x)=f(x)$ and $(D_q^nf)(x)=D_q(D_q^{n-1}f)(x)$ for all $n\geqslant 1$ ([1]). Also, the q-integral of a function f defined in the interval [0,b] is given by $I_qf(x)=\int_0^x f(s)d_qs=x(1-q)\sum_{k=0}^\infty f(xq^k)q^k$ for $x\in[0,b]$, provided that the sum converges absolutely ([1]). If $a\in[0,b]$, then

$$\int_{a}^{b} f(s)d_{q}s = I_{q}f(b) - I_{q}f(a) = \int_{0}^{b} f(s)d_{q}s - \int_{0}^{a} f(s)d_{q}s$$
$$= (1 - q)\sum_{k=0}^{\infty} [bf(bq^{k}) - af(aq^{k})]q^{k}$$

whenever the series exists. The operator I_q^n is defined by $I_q^0 f(x) = f(x)$ and $I_q^n f(x) = I_q(I_q^{n-1}f)(x)$ for all $n \ge 1$ ([1]). It has been proved that $(D_q I_q f)(x) = f(x)$ and $(I_q D_q f)(x) = f(x) - f(0)$ whenever f is continuous at x = 0 ([1]). Let $\alpha \ge 0$ and f be a function on [0,1]. The fractional Riemann-Liouville type q-integral of the function f is defined by $(I_q^0 f)(x) = f(x)$ and $(I_q^{\alpha} f)(x) = \frac{1}{\Gamma_q(\alpha)} \int_0^x (x - qs)^{(\alpha - 1)} f(s) d_q s$ for $x \in [0,1]$ and $\alpha > 0$ ([9] and[13]). Also, the fractional Caputo type q-derivative of the function f is defined by

$$({}^{c}D_{q}^{\alpha}f)(x) = (I_{q}^{[\alpha]-\alpha}D_{q}^{[\alpha]}f)(x) = \frac{1}{\Gamma_{q}([\alpha]-\alpha)}\int_{0}^{x}(x-qs)^{([\alpha]-\alpha-1)}(D_{q}^{[\alpha]}f)(s)d_{q}s$$

for $x \in [0,1]$ and $\alpha > 0$ ([9] and[13]). It has been proved that $(I_q^{\beta}I_q^{\alpha}f)(x) = (I_q^{\alpha+\beta}f)(x)$ and $(D_q^{\alpha}I_q^{\alpha}f)(x) = f(x)$, where $\alpha,\beta \geqslant 0$ ([14]). Also, $(I_q^{\alpha}D_q^{n}f)(x) = (D_q^{n}I_q^{\alpha}f)(x) - \sum_{k=0}^{n-1} \frac{x^{\alpha-n+k}}{\Gamma_q(\alpha+k-n+1)}(D_q^kf)(0)$, where $\alpha > 0$ and $n \geqslant 1$ ([14]).

In 2012, Ahmad, Ntouyas and Purnaras investigated the q-difference equation $(^cD_q^\alpha u)(t)=f(t,u(t))$ with nonlocal boundary conditions $\alpha_1 u(0)-\beta_1 D_q u(0)=\gamma_1 u(\eta_1)$ and $\alpha_2 u(1)+\beta_2 D_q u(1)=\gamma_2 u(\eta_2)$, where $0\leqslant t\leqslant 1,\ 1<\alpha\leqslant 2$ and $\alpha_i,\beta_i,\gamma_i\in\mathbb{R}$ for all i ([10]). In 2013, Zhao, Chen and Zhang reviewed the nonlinear fractional q-difference equation $(D_q^\alpha u)(t)+f(t,u(t))=0$ with the nonlocal q-integral boundary value conditions u(0)=0 and $u(1)=\mu I_q^\beta u(\eta)$, where $0< t<1,\ 1<\alpha\leqslant 2,\ 0<\beta\leqslant 2$ and $\mu>0$ ([21]). In 2015, Etemad, Ettefagh and Rezapour investigated the q-differential equation $(^cD_q^\alpha)(t)=f(t,u(t),D_qu(t))$ with boundary conditions $\lambda_1 u(0)+\mu_1 D_q u(0)=\eta_1 I_q^\beta u(\xi_1)$ and $\lambda_2 u(1)+\mu_2 D_q u(1)=\eta_2 I_q^\beta u(\xi_2)$, where $0\leqslant t\leqslant 1,\ 1<\alpha\leqslant 2,\ q\in (0,1),\ \beta\in (0,2],\ \xi_1,\xi_2\in (0,1)$ with $\xi_1<\xi_2,\ \lambda_1,\lambda_2,\mu_1,\mu_2,\eta_1,\eta_2\in\mathbb{R}$ and

 $f:[0,1]\times\mathbb{R}^2\to\mathbb{R}$ is a continuous map ([9]). Recently, it has been published some works about approximate solutions of some fractional differential equations ([11] and [12]). By using and mixing idea of the works, we study the existence of approximate solutions for the fractional q-difference equation

$$(^{c}D_{q}^{\alpha}u)(t) = f(t, u(t), I_{q}^{\beta}u(t)) \tag{1}$$

with the q-integral boundary value conditions

$$u(0) = u(1) = 0, (2)$$

where ${}^cD_q^{\alpha}$ denotes the fractional q-derivative of the Caputo type of order α , $0 \leq t \leq 1, \ 1 < \alpha \ leq 2, \ q \in (0,1), \ \beta \in (0,2] \text{and} \ f: [0,1] \times \mathbb{R}^2 \to \mathbb{R}$ is a continuous map.

Now, we provide some basic needed notions. Let (X,d) be a metric space, $\alpha: X \times X \to [0,\infty)$ a map, F a selfmap on X and $\varepsilon > 0$. We say that F is α -admissible whenever $\alpha(x,y) \geqslant 1$ implies $\alpha(Fx,Fy) \geqslant 1$ ([12]). An element $x_0 \in X$ is called ε -fixed point of F whenever $d(Fx_0,x_0) \leqslant \varepsilon$. We say that F has the approximate fixed point property whenever F has an ε -fixed point for all $\varepsilon > 0$ ([12]). Some mappings have approximate fixed points while have no fixed points ([12]). Denote by \Re the set of all continuous mappings $g:[0,\infty)^5 \to [0,\infty)$ satisfying $g(1,1,1,2,0)=g(1,1,1,0,2):=h\in(0,1), g(\mu x_1,\mu x_2,\mu x_3,\mu x_4,\mu x_5) \leqslant \mu g(x_1,x_2,x_3,x_4,x_5), g(x_1,x_2,x_3,0,x_4) \leqslant g(y_1,y_2,y_3,0,y_4)$ and

$$q(x_1, x_2, x_3, x_4, 0) \leq q(y_1, y_2, y_3, y_4, 0)$$

for all $\mu \geqslant 0$ and $x_1, x_2, x_3, x_4, x_5, y_1, y_2, y_3, y_4, y_5 \in [0, \infty)$ with $x_i \leqslant y_i$ for i = 1, 2, 3, 4 ([20]). Finally, we say that F is a generalized α -contractive mapping whenever there exists $g \in \Re$ such that

$$\alpha(x,y)d(Fx,Fy) \leqslant g(d(x,y),d(x,Fx),d(y,Fy),d(x,Fy),d(y,Fx))$$

for all $x, y \in X([20])$. We need next fixed point theorem for our main result.

Theorem 1.1. [20] Let (X,d) be a metric space, $\alpha: X \times X \to [0,\infty)$ a map and F a generalized α -contractive and α -admissible selfmap on X. Assume that there exists $x_0 \in X$ such that $\alpha(x_0, Fx_0) \geqslant 1$. Then F has an approximate fixed point.

Lemma 1.2. The function u_0 is a solution for the problem (1) with the boundary value conditions (2) if and only if u_0 is a solution for the fractional q-integral equation

$$u_0(t) = \int_0^t \frac{(t-qs)^{(\alpha-1)}}{\Gamma_q(\alpha)} f(s,u_0(s),I_q^\beta u_0(s)) d_q s - t \int_0^1 \frac{(1-qs)^{(\alpha-1)}}{\Gamma_q(\alpha)} f(s,u_0(s)I_q^\beta u_0(s)) d_q s.$$

Proof. Let u_0 be a solution for the fractional q-difference equation (1) with the q-integral boundary value conditions. Choose $c_0, c_1 \in \mathbb{R}$ such that $u_0(t) = \int_0^t \frac{(t-qs)^{(\alpha-1)}}{\Gamma_q(\alpha)} f(s,u_0(s),I_q^\beta u_0(s)) d_q s + c_0 + c_1 t$ (see [13]). Since $u_0(0) = 0$ and $u_0(1) = 0$, we get $c_0 = 0$ and $c_1 = -\int_0^1 \frac{(1-qs)^{(\alpha-1)}}{\Gamma_q(\alpha)} f(s,u(s),I_q^\beta u(s)) d_q s$. Thus, we conclude that $u_0(t) = \int_0^t \frac{(t-qs)^{(\alpha-1)}}{\Gamma_q(\alpha)} f(s,u_0(s),I_q^\beta u_0(s)) d_q s - t \int_0^1 \frac{(1-qs)^{(\alpha-1)}}{\Gamma_q(\alpha)} f(s,u_0(s),I_q^\beta u_0(s)) d_q s$. By using some easy calculation, one can get that the converse part is obvious.

2. Main Results

This completes the proof.

Consider the space

$$X = \{u : u, I_q^{\beta} u \in C_{\mathbb{R}}([0,1]), {}^{c}D_q^{\alpha}u(t) = f(t, u(t), I_q^{\beta}u(t)), u(0) = u(1) = 0\}$$

via the metric d(u, v) = ||u - v||, where $||u|| = \sup_{t \in [0,1]} |I_q^{\beta}(u(t))| + \sup_{t \in [0,1]} |u(t)|$. As we know, (X, d) is not a Banach space. By considering Lemma 1.2, define the operator $F: X \to X$ by

$$(Fu)(t) = \int_0^t \frac{(t - qs)^{(\alpha - 1)}}{\Gamma_q(\alpha)} f(s, u(s), I_q^{\beta} u(s)) d_q s$$

$$-t\int_0^1 \frac{(1-qs)^{(\alpha-1)}}{\Gamma_q(\alpha)} f(s, u(s), I_q^{\beta} u(s)) d_q s. \quad (*)$$

It is easy to check that u_0 is an approximate solution for the problem if and only if u_0 is an approximate fixed point of F.

Theorem 2.1. Suppose that $f:[0,1]\times X^2\to X$ is a continuous function and there exists a q-integrable function $L:[0,1]\to\mathbb{R}$ such that $|f(t,u_1,v_1)-f(t,u_2,v_2)|\leqslant L(t)\left[|u_1-u_2|+|v_2-v_2|\right]$ for all $t\in[0,1]$ and $u_1,u_2,v_1,v_2\in X$. If h<1, then the problem (1) has an approximate solution. Here, $h=2(I_q^\alpha)L(1)$.

Proof. Choose $r \geqslant \frac{KN}{1-h}$, where $K = \sup_{t \in [0,1]} |f(t,0,0)|$ and $N = \frac{2}{\Gamma_q(\alpha+1)}$. Put $B_r = \{u \in X : ||u|| \leqslant r\}$. Consider the operator $F: X \to X$ defined by (*). We show that $FB_r \subset B_r$. Let $u \in B_r$ and $t \in [0,1]$. Then,

$$|(Fu)(t)| \leqslant \Big| \int_0^t \frac{(t-qs)^{(\alpha-1)}}{\Gamma_q(\alpha)} f(s, u(s), I_q^{\beta} u(s)) d_q s \Big|$$

$$\begin{split} +t \int_0^1 \frac{(1-qs)^{(\alpha-1)}}{\Gamma_q(\alpha)} |f(s,u(s),I_q^\beta u(s))| d_q s \\ &\leqslant \sup_{t \in [0,1]} (\int_0^t \frac{(t-qs)^{(\alpha-1)}}{\Gamma_q(\alpha)} |f(s,u(s),I_q^\beta u(s)) - f(s,0,0) + f(s,0,0)| d_q s \\ &+ \int_0^1 \frac{(1-qs)^{(\alpha-1)}}{\Gamma_q(\alpha)} |f(s,u(s),I_q^\beta u(s)) - f(s,0,0) + f(s,0,0)| d_q s) \\ &\leqslant \int_0^1 \frac{(1-qs)^{(\alpha-1)}}{\Gamma_q(\alpha)} \left[L(s)(|I_q^\beta u(s)| + K) \right] d_q s \\ &+ \int_0^1 \frac{(1-qs)^{(\alpha-1)}}{\Gamma_q(\alpha)} \left[L(s)(|I_q^\beta u(s)| + K) \right] d_q s \\ &\leqslant K(2 \int_0^1 \frac{(1-qs)^{(\alpha-1)}}{\Gamma_q(\alpha)} d_q s) + r(2 \int_0^1 \frac{(1-qs)^{(\alpha-1)}}{\Gamma_q(\alpha)} L(s) d_q s) \leqslant r. \end{split}$$

Also, we have

$$\begin{split} |(I_q^{\beta} F u)(t)| &\leqslant \int_0^t \frac{(t-qs)^{(\alpha+\beta-1)}}{\Gamma_q(\alpha+\beta)} |f(s,u(s),I_q^{\beta} u(s))| d_q s \\ &+ \frac{t^{(\beta+1)}}{\Gamma_q(\beta+2)} \int_0^1 \frac{(1-qs)^{(\alpha-1)}}{\Gamma_q(\alpha)} |f(s,u(s),I_q^{\beta} u(s))| d_q s \\ &\leqslant \sup_{t \in [0,1]} \int_0^t \frac{(t-qs)^{(\alpha+\beta-1)}}{\Gamma_q(\alpha+\beta)} |f(s,u(s),I_q^{\beta} u(s)) - f(s,0,0) + f(s,0,0)| d_q s \\ &+ \sup_{t \in [0,1]} \frac{t^{(\beta+1)}}{\Gamma_q(\beta+2)} \int_0^1 \frac{(1-qs)^{(\alpha-1)}}{\Gamma_q(\alpha)} |f(s,u(s),I_q^{\beta} u(s)) - f(s,0,0) + f(s,0,0)| d_q s \\ &\leqslant \int_0^1 \frac{(1-qs)^{(\alpha+\beta-1)}}{\Gamma_q(\alpha+\beta)} [L(s)r + K] d_q s + \frac{1}{\Gamma_q(\beta+2)} \int_0^1 \frac{(1-qs)^{(\alpha-1)}}{\Gamma_q(\alpha)} [L(s)r + K] d_q s \\ &= K(\int_0^1 \frac{(1-qs)^{(\alpha+\beta-1)}}{\Gamma_q(\alpha+\beta)} d_q s + \frac{1}{\Gamma_q(\beta+2)} \int_0^1 \frac{(1-qs)^{(\alpha-1)}}{\Gamma_q(\alpha)} d_q s) \\ &+ r(\int_0^1 \frac{(1-qs)^{(\alpha+\beta-1)}}{\Gamma_q(\alpha+\beta)} L(s) d_q s + \frac{1}{\Gamma_q(\beta+2)} \int_0^1 \frac{(1-qs)^{(\alpha-1)}}{\Gamma_q(\alpha)} L(s) d_q s) \\ &= K(\frac{1}{\Gamma_q(\alpha+\beta+1)} + \frac{1}{\Gamma_q(\beta+2)} \times \frac{1}{\Gamma_q(\alpha+1)}) + r((I_q^{\alpha+\beta} L)(1) + \frac{1}{\Gamma_q(\beta+2)} (I_q^{\alpha} L)(1)) \\ &\leqslant K(\frac{2}{\Gamma_q(\alpha+1)}) + r(2(I_q^{\alpha} L)(1)) \leqslant r. \end{split}$$

This implies that $FB_r \subset B_r$. Let $u, v \in X$ be given. Then, we have

$$\begin{split} |Fu - Fv| &\leqslant \int_{0}^{t} \frac{(t - qs)^{(\alpha - 1)}}{\Gamma_{q}(\alpha)} |f(s, u(s), I_{q}^{\beta}u(s)) - f(s, v(s), I_{q}^{\beta}v(s))| d_{q}s \\ &+ \frac{t^{(\beta + 1)}}{\Gamma_{q}(\beta + 2)} \int_{0}^{1} \frac{(1 - qs)^{(\alpha - 1)}}{\Gamma_{q}(\alpha)} |f(s, u(s), I_{q}^{\beta}u(s)) - f(s, v(s), I_{q}^{\beta}v(s))| d_{q}s \\ &\leqslant \|u - v\| \sup_{t \in [0, 1]} \Big\{ \int_{0}^{t} \frac{(t - qs)^{(\alpha - 1)}}{\Gamma_{q}(\alpha)} l(s) d_{q}s + \frac{t^{(\beta + 1)}}{\Gamma_{q}(\beta + 2)} \int_{0}^{1} \frac{(1 - qs)^{(\alpha - 1)}}{\Gamma_{q}(\alpha)} l(s) d_{q}s \Big\} \\ &\leqslant \|u - v\| \Big\{ \int_{0}^{1} \frac{(t - qs)^{(\alpha - 1)}}{\Gamma_{q}(\alpha)} l(s) d_{q}s + \frac{1}{\Gamma_{q}(\beta + 2)} \int_{0}^{1} \frac{(1 - qs)^{(\alpha - 1)}}{\Gamma_{q}(\alpha)} l(s) d_{q}s \Big\} \\ &\leqslant h \|u - v\|. \end{split}$$

Also, we have

$$\begin{split} |(I_q^{\beta}F)(u) - (I_q^{\beta}F)(v)| \\ \leqslant & \int_0^t \frac{(t-qs)^{(\alpha+\beta-1)}}{\Gamma_q(\alpha+1)} |f(s,u(s),I_q^{\beta}u(s)) - f(s,v(s),I_q^{\beta}v(s))| d_qs \\ + \frac{t^{(\beta+1)}}{\Gamma_q(\beta+2)} & \int_0^1 \frac{(1-qs)^{(\alpha-1)}}{\Gamma_q(\alpha)} |f(s,u(s),I_q^{\beta}u(s)) - f(s,v(s),I_q^{\beta}v(s))| d_qs \\ \leqslant & \|u-v\| \Big\{ \int_0^t \frac{(t-qs)^{(\alpha+\beta-1)}}{\Gamma_q(\alpha+1)} l(s) d_qs + \frac{t^{(\beta+1)}}{\Gamma_q(\beta+2)} & \int_0^1 \frac{(1-qs)^{(\alpha-1)}}{\Gamma_q(\alpha)} l(s) d_qs \Big\} \\ \leqslant & \|u-v\| \Big\{ \int_0^1 \frac{(1-qs)^{(\alpha+\beta-1)}}{\Gamma_q(\alpha+1)} l(s) d_qs + \frac{1}{\Gamma_q(\beta+2)} & \int_0^1 \frac{(1-qs)^{(\alpha-1)}}{\Gamma_q(\alpha)} l(s) d_qs \Big\} \\ \leqslant & \|u-v\| \Big\{ \int_0^1 \frac{(1-qs)^{(\alpha+\beta-1)}}{\Gamma_q(\alpha+1)} l(s) d_qs + \frac{1}{\Gamma_q(\beta+2)} & \int_0^1 \frac{(1-qs)^{(\alpha-1)}}{\Gamma_q(\alpha)} l(s) d_qs \Big\} \\ \leqslant & h \|u-v\|. \end{split}$$

Now, consider the maps $g:[0,\infty)^5\to [0,\infty)$ and $\alpha:X\times X\to [0,\infty)$ defined by $g(t_1,t_2,t_3,t_4,t_5)=ht_1$ and $\alpha(x,y)=1$ for all $x,y\in X$. One can easily check that $g\in\Re$ and F is a generalized α -contraction. By using Theorem 1.1, F has an approximate fixed point which is approximate solution for the problem. \square

Theorem 2.2. Let M>0 be given and $f:[0,1]\times X^2\to X$ a continuous function such that

$$|f(t, u_1, v_1) - f(t, u_2, v_2)| \le M(|u_1 - u_2| + |v_2 - v_2|)$$

for all $t \in [0,1]$ and $u_1, u_2, v_1, v_2 \in X$. Then the problem (1) has an approximate solution whenever $\Lambda = M\Lambda_1 < 1$, where $\Lambda_1 = 2(I_q^{\alpha}1)(1)$.

Proof. Define map $F: X \to X$ by

$$(Fu)(t) = \int_0^t \frac{(t - qs)^{(\alpha - 1)}}{\Gamma_q(\alpha)} f(s, u(s), I_q^{\beta} u(s)) d_q s$$
$$-t \int_0^1 \frac{(1 - qs)^{(\alpha - 1)}}{\Gamma_q(\alpha)} f(s, u(s), I_q^{\beta} u(s)) d_q s.$$

Put $M_0 = \sup_{t \in [0,1]} |f(t,0,0)|$ and $r \geqslant \frac{M_0 \Lambda_1}{1-\delta}$, where δ is such that $\Lambda \leqslant \delta < 1$. We show that $FB_r \subset B_r$, where $B_r = \{u \in X : ||u|| \leqslant r\}$. Let $u \in B_r$ and $t \in [0,1]$. Then, we have

$$\begin{split} |(Fu)(t)| &\leqslant \Big| \int_0^t \frac{(t-qs)^{(\alpha-1)}}{\Gamma_q(\alpha)} f(s,u(s),I_q^\beta u(s)) d_q s \Big| \\ &+ t \int_0^1 \frac{(1-qs)^{(\alpha-1)}}{\Gamma_q(\alpha)} |f(s,u(s),I_q^\beta u(s))| d_q s \\ &\leqslant \int_0^t \frac{(t-qs)^{(\alpha-1)}}{\Gamma_q(\alpha)} |f(s,u(s),I_q^\beta u(s)) - f(s,0,0) + f(s,0,0)| d_q s \\ &+ t \int_0^1 \frac{(1-qs)^{(\alpha-1)}}{\Gamma_q(\alpha)} |f(s,u(s),I_q^\beta u(s)) - f(s,0,0) + f(s,0,0)| d_q s \\ &\leqslant \int_0^t \frac{(1-qs)^{(\alpha-1)}}{\Gamma_q(\alpha)} [M(|u(s)| + |I_q^\beta u(s)|) + M_0] d_q s \\ &+ t \int_0^1 \frac{(1-qs)^{(\alpha-1)}}{\Gamma_q(\alpha)} [M(|u(s)| + |I_q^\beta u(s)|) + M_0] d_q s \\ &\leqslant (M\|u\| + M_0) (2 \int_0^1 \frac{(1-qs)^{(\alpha-1)}}{\Gamma_q(\alpha)} d_q s) \leqslant (Mr + M_0) \Lambda_1 \leqslant \Lambda r + r(1-\delta) \leqslant r. \end{split}$$

Also, we have

$$|(I_{q}^{\beta}Fu)(t)| \leq \int_{0}^{t} \frac{(t-qs)^{(\alpha+\beta-1)}}{\Gamma_{q}(\alpha+\beta)} |f(s,u(s),I_{q}^{\beta}u(s))| d_{q}s$$

$$+ \frac{t^{(\beta+1)}}{\Gamma_{q}(\beta+2)} \int_{0}^{1} \frac{(1-qs)^{(\alpha-1)}}{\Gamma_{q}(\alpha)} |f(s,u(s),I_{q}^{\beta}u(s))| d_{q}s$$

$$\leq (Mr+M_{0}) \int_{0}^{1} \frac{(1-qs)^{(\alpha+\beta-1)}}{\Gamma_{q}(\alpha+\beta)} d_{q}s + \frac{1}{\Gamma_{q}(\beta+2)} \int_{0}^{t} \frac{(1-qs)^{(\alpha-1)}}{\Gamma_{q}(\alpha)} d_{q}s \leq r.$$

This implies that $FB_r \subset B_r$. Let $u, v \in X$ be given. Then, we obtain

$$\begin{split} |Fu - Fv| &\leqslant \int_0^t \frac{(t - qs)^{(\alpha - 1)}}{\Gamma_q(\alpha)} |f(s, u(s), I_q^\beta u(s)) - f(s, v(s), I_q^\beta v(s))| d_q s \\ &+ t \int_0^1 \frac{(1 - qs)^{(\alpha - 1)}}{\Gamma_q(\alpha)} |f(s, u(s), I_q^\beta u(s)) - f(s, v(s), I_q^\beta v(s))| d_q s \\ &\leqslant \sup_{t \in [0, 1]} \int_0^t \frac{(t - qs)^{(\alpha - 1)}}{\Gamma_q(\alpha)} \big[M(|u(s) - v(s)| + |I_q^\beta u(s) - I_q^\beta v(s)|) \big] d_q s \\ &+ \sup_{t \in [0, 1]} \int_0^1 \frac{(t - qs)^{(\alpha - 1)}}{\Gamma_q(\alpha)} [M(|u(s) - v(s)| + |I_q^\beta u(s) - I_q^\beta v(s)|)] d_q s \\ &\leqslant M \|u - v\| \Lambda_1 = \Lambda \|u - v\|. \end{split}$$

Also, we have

$$\begin{split} |(I_q^{\beta}F)(u) - (I_q^{\beta}F)(v)| \\ \leqslant \int_0^t \frac{(t - qs)^{(\alpha + \beta - 1)}}{\Gamma_q(\alpha + \beta)} |f(s, u(s), I_q^{\beta}u(s)) - f(s, v(s), I_q^{\beta}v(s))| d_qs \\ + \frac{t^{(\beta + 1)}}{\Gamma_q(\beta + 2)} \int_0^1 \frac{(1 - qs)^{(\alpha - 1)}}{\Gamma_q(\alpha)} |f(s, u(s), I_q^{\beta}u(s)) - f(s, v(s), I_q^{\beta}v(s))| d_qs \\ \sup_{t \in [0, 1]} \int_0^t \frac{(t - qs)^{(\alpha + \beta - 1)}}{\Gamma_q(\alpha + \beta)} [M(|u(s) - v(s)| + |I_q^{\beta}u(s) - I_q^{\beta}v(s)|)] d_qs \\ + \sup_{t \in [0, 1]} \frac{t^{(\beta + 1)}}{\Gamma_q(\beta + 2)} \int_0^t \frac{(1 - qs)^{(\alpha - 1)}}{\Gamma_q(\alpha)} [M(|u(s) - v(s)| + |I_q^{\beta}u(s) - I_q^{\beta}v(s)|)] d_qs \\ \leqslant M \|u - v\| \Big\{ \int_0^1 \frac{(1 - qs)^{(\alpha + \beta - 1)}}{\Gamma_q(\alpha + \beta)} d_qs + \frac{1}{\Gamma_q(\beta + 2)} \int_0^1 \frac{(1 - qs)^{(\alpha - 1)}}{\Gamma_q(\alpha)} d_qs \Big\} \\ \leqslant M \|u - v\| \Big\{ \int_0^1 \frac{(1 - qs)^{(\alpha + \beta - 1)}}{\Gamma_q(\alpha + \beta)} d_qs + \frac{1}{\Gamma_q(\beta + 2)} \int_0^1 \frac{(1 - qs)^{(\alpha - 1)}}{\Gamma_q(\alpha)} d_qs \Big\} \\ \leqslant M \|u - v\| \Big\{ \int_0^1 \frac{(1 - qs)^{(\alpha + \beta - 1)}}{\Gamma_q(\alpha + \beta)} d_qs + \frac{1}{\Gamma_q(\beta + 2)} \int_0^1 \frac{(1 - qs)^{(\alpha - 1)}}{\Gamma_q(\alpha)} d_qs \Big\} \\ \leqslant M \|u - v\| \Big\{ \int_0^1 \frac{(1 - qs)^{(\alpha + \beta - 1)}}{\Gamma_q(\alpha + \beta)} d_qs + \frac{1}{\Gamma_q(\beta + 2)} \int_0^1 \frac{(1 - qs)^{(\alpha - 1)}}{\Gamma_q(\alpha)} d_qs \Big\} \\ \leqslant M \|u - v\| \Big\{ \int_0^1 \frac{(1 - qs)^{(\alpha + \beta - 1)}}{\Gamma_q(\alpha + \beta)} d_qs + \frac{1}{\Gamma_q(\beta + 2)} \int_0^1 \frac{(1 - qs)^{(\alpha - 1)}}{\Gamma_q(\alpha)} d_qs \Big\} \\ \leqslant M \|u - v\| \Big\{ \int_0^1 \frac{(1 - qs)^{(\alpha + \beta - 1)}}{\Gamma_q(\alpha + \beta)} d_qs + \frac{1}{\Gamma_q(\beta + 2)} \int_0^1 \frac{(1 - qs)^{(\alpha - 1)}}{\Gamma_q(\alpha)} d_qs \Big\} \\ \leqslant M \|u - v\| \Big\{ \int_0^1 \frac{(1 - qs)^{(\alpha + \beta - 1)}}{\Gamma_q(\alpha + \beta)} d_qs + \frac{1}{\Gamma_q(\beta + 2)} \int_0^1 \frac{(1 - qs)^{(\alpha - 1)}}{\Gamma_q(\alpha)} d_qs \Big\} \Big\}$$

Now, consider the maps $g:[0,\infty)^5 \to [0,\infty)$ and $\alpha:X\times X\to [0,\infty)$ defined by $g(t_1,t_2,t_3,t_4,t_5)=\Lambda t_1$ and $\alpha(x,y)=1$ for all $x,y\in X$. One can easily check that $g\in\Re$ and F is a generalized α -contraction. By using Theorem 1.1, F has an approximate fixed point which is approximate solution for the problem. \square

Example 2.3. Consider the fractional q-difference equation

$$(^cD^2_{\frac{1}{2}}u)(t)=f(t,u(t),I^{\frac{1}{3}}_{\frac{1}{2}}u(t))$$

with the q-integral boundary value conditions u(0) = u(1) = 0. Put $q = \frac{1}{2}$, $\alpha = 2$, $\beta = \frac{1}{3}$ and

$$f(t, u(t), I_{\frac{1}{2}}^{\frac{1}{3}}u(t)) = t^{2}(1 + t^{2} + \sin u + I_{\frac{1}{2}}^{\frac{1}{3}}u(t))$$

for all $t\in[0,1]$. Then, $|f(t,u(t),I_{\frac{1}{2}}^{\frac{1}{3}}u(t)-f(t,v(t),I_{\frac{1}{2}}^{\frac{1}{3}}v(t))|\leqslant t^2(|u-v|+|I_{\frac{1}{2}}^{\frac{1}{3}}u(t)-I_{\frac{1}{2}}^{\frac{1}{3}}v(t)|)$. Define $L(t)=t^2$ for all t. Then, an easy calculations shows that $h=\frac{64}{105}<1$. Now by using Theorem 1.1, the problem has an approximate solution.

Example 2.4. Consider the fractional q-difference equation

$$(^{c}D_{\frac{1}{2}}^{2}u)(t) = M(t^{2} + \cos t + 1 + \tan^{-1}u(t) + I_{\frac{1}{2}}^{\frac{1}{2}}u(t))$$

with the q-integral boundary value conditions u(0)=u(1)=0. Put $q=\frac{1}{2}$, $\beta=\frac{1}{2}$ and $\alpha=2$. Then, $\Lambda_1=(2I_{\frac{1}{2}}^{\frac{1}{2}})(1)=\frac{4}{3}$. Choose $M<\frac{1}{\Lambda_1}=\frac{3}{4}$. Consider the function

$$f(t, u(t), I_{\frac{1}{2}}^{\frac{1}{2}}u(t)) = M(t^2 + \cos t + 1 + \tan^{-1}u(t) + I_{\frac{1}{2}}^{\frac{1}{2}}u(t))$$

for all $t \in [0,1]$. Then, $|f(t,u(t),I_{\frac{1}{2}}^{\frac{1}{2}}u(t)) - f(t,v(t),I_{\frac{1}{2}}^{\frac{1}{2}}v(t))| \leq M(|u-v| + |I_{\frac{1}{2}}^{\frac{1}{2}}u(t) - I_{\frac{1}{2}}^{\frac{1}{2}}v(t)|)$. Now by using Theorem $\ref{eq:1}$, the problem has an approximate solution.

Acknowledgment

The authors express their gratitude to the referees for their helpful suggestions which improved final version of this paper.

References

- [1] C. R. Adams, The general theory of a class of linear partial q-difference equations, *Trans. Amer. Math. Soc.*, 26 (3) (1924), 283–312.
- [2] C. R. Adams, Note on the existence of analytic solutions of non-homogeneous linear q-difference equations: ordinary and partial, *Ann. Math.*, 27 (2) (1925), 73–83.

- [3] C. R. Adams, On the linear ordinary q-difference equation, *Ann. Math.*, 30 (1-4) (1928/29), 195–205.
- [4] C. R. Adams, Note on the integro-q-difference equations, *Trans. Amer. Math. Soc.*, 31 (4) (1929), 861–867.
- [5] C. R. Adams, On the linear partial q-difference equation of general type, *Trans. Amer. Math. Soc.*, 31 (2) (1929), 360–371.
- [6] C. R. Adams, Linear q-difference equations, Bull. Amer. Math. Soc., 37 (6) (1931), 361–400.
- [7] R. P. Agarwal, Certain fractional q-integrals and q-derivatives, *Proc. Camb. Philos. Soc.*, 66 (1969), 365–370.
- [8] B. Ahmad, Boundary-value problems for nonlinear third-order q-difference equations, *Electron. J. Differ. Equ.*, 94 (2011), 1–7.
- [9] B. Ahmad, S. Etemad, M. Ettefagh, and Sh. Rezapour, On the existence of solutions for fractional q-difference inclusions with q-antiperiodic boundary conditions, *Bull. Math. Soc. Sci. Math. Roumanie Tome*, 59 (2) (2016), 119–134.
- [10] B. Ahmad, S. K. Ntouyas, and I. K. Purnaras, Existence results for non-local boundary value problems of nonlinear fractional q-difference equations, *Adv. Differ. Equ.*, (2012), 2012:140.
- [11] S. M. Aydogan, D. Baleanu, A. Mousalou, and S. Rezapour, On approximate solutions for two higher order fractional integro-differential equations via the Capotu-Fabrizio derivation, *Adv. Diff. Eq.*, (2017), 2017:221.
- [12] D. Baleanu, A. Mousalou, and S. Rezapour, A new method for investigating approximate solutions of some fractional integro-differential equations involving the Caputo-Fabrizio derivative, *Adv. Diff. Eq.*, (2017), 2017:51.
- [13] S. Etemad, M. Ettefagh, and Sh. Rezapour, On the existence of solutions for nonlinear fractional q-difference equations with q-integral boundary conditions, J. Adv. Math. Stud., 8 (2) (2015), 265–285.
- [14] R. A. C. Ferreira, Nontrivial solutions for fractional q-difference boundary value problems, *Electron. J. Qual. Theory Differ. Equ.*, 70 (2010), 1–10.
- [15] R. A. C. Ferreira, Positive solutions for a class of boundary value problems with fractional q-differences, *Comput. Math. Appl.*, 61 (2011), 367–373.
- [16] J. R. Graef and L. Kong, Positive solutions for a class of higher order boundary value problems with fractional q-derivatives, Appl. Math. Comput., 218 (2012), 9682–9689.

- [17] F. H. Jackson, Q-defference Equations, Amer. J. Math., 32 (1910), 305–314.
- [18] S. Liang and J. Zhang, Existence and uniqueness of positive solutions for three-point boundary value problem with fractional q-differences, J. Appl. Math. Comput., 40 (2012), 277–288.
- [19] J. Ma and J. Yang, Existence of solutions for multi-point boundary value problem of fractional q-difference equation, *Electron. J. Qual. Theory Dif-* fer. Equ., 92 (2011), 1–10.
- [20] M. A. Miandaragh, M. Postolache, and Sh. Rezapour, Some approximate fixed point results for generalized α -contractive mappings, *Politehn. Univ. Bucharest Sci. Bull. Ser. A.*, 75 (2) (2013), 3–10.
- [21] Y. Zhao, H. Chen, and Q. Zhang, Existence results for fractional q-difference equations with nonlocal q-integral boundary conditions, *Adv. Diff. Equ.*, (2013), 2013:48.

Nayyer Balkani

Ph.D Candidate
Department of Mathematics
Payame Noor University
P.O.Box 19395-3697
Tehran, Iran
E-mail: balkani_n@yahoo.com

Robab Hamlbarani Haghi

Assistant Professor of Mathematics Department of Mathematics Payame Noor University P.O.Box 19395-3697 Tehran, Iran

E-mail: robab.haghi@gmail.com

Shahram Rezapour

Professor of Mathematics
Department of Mathematics
Azarbaijan Shahid Madani University
Tabriz, Iran
and
Department of Medical Research
China Medical University Hospital
China Medical University
Taichung, Taiwan
E-mail: rezapourshahram@yahoo.ca