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A Sequence of Fourier Partial Sums not
Containing 2πQ

M. Taghavi
Shiraz University

Abstract. In this paper, we focus on the bounded sequences of Fourier
partial sums. Our interest is on the sequences which do not contain any
rational multiple of 2π. We construct a function on C[T] where its set of
points is one of such sequences. We will show that this set is of the first
category in R. Moreover the complement of this set in any arbitrary
real closed interval form an uncountable set.
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1. Introduction

In what follows R and Z are respectively the sets of real numbers and
integers. Define the circle group to be T = R/2πZ and we shall regard
a function on T as being a 2π-periodic function on R and vice-versa.
Let p > 1 be a real number and for any complex measurable function
f on T, let ‖f‖p, ‖f‖u, and ‖f‖∞ be the usual, sup, and infinity norms
respectively. We also define Lp(T), the set of all measurable functions f

on T so that ‖f‖p < ∞ and C(T), the set of all continuous functions on
T (or continuous 2π-periodic on R).
A trigonometric series is any series of the form
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∞∑
n=−∞

cneinx cn ∈ C, x ∈ R. (1)

The n-th partial sum of this series is

Sn(x) =
n∑

j=−n

cneijx. (2)

In view of the Euler’s formula, we also have

Sn(x) =
a0

2
+

n∑

j=1

(aj cos(jx) + bj sin(jx)), (3)

where an = cn + c−n and bn = i(cn − c−n). So we also write (1) as
a0
2 +

∑∞
j=1(aj cos(jx) + bj sin(jx)). Any function of the form (2) or

(3) is called a trigonometric polynomial. In case |cn| + |c−n| 6= 0 (or
|an|+ |bn| 6= 0), we say that sn has order n. The proof of the following
theorem can be found in any of the references [2], [5] or [8].

Theorem 1.1. Consider any trigonometric series having partial sums
of type (2) or (3). Suppose that there is a function f and a subsequence
Snk

such that either
(i): f ∈ C(T) and limk‖f − Snk

‖u = 0 or
(ii): f ∈ Lp(T) for some 1 6 p 6 ∞ and limk‖f − Snk

‖p = 0.
Then for each r ∈ Z, cr in (2) equals to 1

2π

∫ 2π
0 f(x)e−irxdx. More-

over for appropriate r, we have ar = 1
π

∫ 2π
0 f(x) cos rxdx and br =

1
π

∫ 2π
0 f(x) sin rxdx.

The numbers ar, br, and cr are called the Fourier coefficients of f . De-
note ar(f) = ar, br(f) = br, and cr(f) = cr. We also write f∧(j) = cj.
Thus f∧ is a complex function on Z. The trigonometric series having
the Fourier coefficients of f as coefficients is called a Fourier series of
f and is denoted by S(f). The partial sums of the Fourier series of f

are written as

Sn(f, x) =
n∑

k=−n

f∧(k)eikx.
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2. The Main Result

Theorem 2.1. If there exists a real-valued even function f ∈ C(T)
for which B = {x ∈ R : supn>0 |Sn(f, x)| < ∞}, then B is of the first
category in R and does not contain any rational multiple of 2π. Moreover
if α < β in R, then the set [α, β]−B is uncountable.

Note that B in the statement of theorem is the set of points that the
Fourier partial sums of f form a bounded sequence. Before proof of
theorem we need the following lemma.

Lemma 2.2. Let {bn}n>1 be a decreasing sequence of positive real
numbers and for each k > 0, put δk = sup

j>k
bj. If 0 6 k < n, then

|
n∑

j=k+1

bj sin jx| 6 (π + 2)δk, for all x ∈ R.

Proof. For any j > 1, let ∆bj = bj − bj+1 (so ∆bj > 0). For any n > 1,

define fn(x) =
n∑

j=1

sin jx and put f0(x) = 0. Then

fn(x) =
cos 1

2x− cos(n + 1
2)x

2 sin 1
2x

, for all x ∈ R\2πZ.

Note that for every j we have bj sin jx = ∆bjfj(x) + (bj+1fj(x) −
bjfj−1(x)) and so

|
n∑

j=k+1

bj sin jx| = |
n∑

j=k+1

∆bjfj(x) + bn+1fn(x)− bk+1fk(x)|

6
n∑

j=k+1

∆bj |fj(x)|+ bn+1|fn(x)|+ bk+1|fk(x)|.

Therefore for every x ∈ R\2πZ we have
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|
n∑

j=k+1

bj sin jx| 6 2
2 sin 1

2x
[

n∑

j=k+1

∆bj + bn+1 + bk+1]

=
1

sin 1
2x

[bk+1 − bn+1 + bn+1 + bk+1].

Thus for every x ∈ R\2πZ,

|
n∑

j=k+1

bj sin jx| 6 2bk+1

sin 1
2x

. (4)

Suppose that 0 6 k < n and fix x ∈ R so that 0 < x < π. Choose the
positive integer m so that π

m+1 6 x < π
m . If 0 6 k < n 6 m, then

|
n∑

j=k+1

bj sin jx| 6
n∑

j=k+1

bj | sin jx| 6
n∑

j=k+1

bjx

6 δk

n∑

j=k+1

x 6 δk

n∑

j=k+1

π

m
6 πδk. (5)

If 0 6 m 6 k < n, then

|
n∑

j=k+1

bj sin jx| 6 2bk+1

sin 1
2x

6 2πbk+1

x

6 2(m + 1)bk+1 6 2(k + 1)bk+1 6 2δk. (6)

Finally, if 0 6 k < m < n, we combine (5) and (6) to get

|
m∑

j=k+1

bj sin jx| 6 |
n∑

j=m+1

bj sin jx|+ |
n∑

j=k+1

bj sin jx|

6 πδk + 2δk = (π + 2)δk. ¤

Now we are able to prove Theorem 2.1.
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Proof of Theorem 2.1. For each positive integer n and x ∈ R, put

qn(x) = 2 sin(2nx)
n∑

j=1

sin(jx)
j

.

By the Lemma 2.2., for every x ∈ R and n > 1, we have

|qn(x)| 6 2(π + 2).

For each n and x ∈ R, put pn(x) = S2n(qn). Then by the definition, we
have

pn(x) =
2n−1∑

j=n

cos jx

2n− j
.

Moreover, since log k+1
k < 1

k for every k, we have pn(0) > log n.
Next, let {nk} be a sequence of positive integers such that (k+1)nk+1 >

3nk and lim sup 1
k2 log nk = ∞ (such sequence exists for instance nk =

2k3
). Next for each k let fk(x) = qnk

(k!x) and define

f(x) =
∞∑

k=1

1
k2

fk(x).

Since |fk(x)| 6 2(π + 2) for every k and every x ∈ R, the above series
converges uniformly on R and hence f ∈ C(T). Also for all n > 0, we
have

Sn(f) =
∞∑

k=1

1
k2

Sn(fk).

Next, writing

qn(x) =
2n−1∑

j=n

cos(jx)
2n− j

−
3n∑

j=2n+1

cos(jx)
j − 2n

,

we see that for all r ∈ Z, f∧k (r) = 0 unless |r| = k!j, where nk 6 j 6 3nk.
Therefore, by The Theorem 1.1.,
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Sn(fk) =
{

0 if n < k!nk

fk if n > k!nk.
(7)

By the definition of pn, we have Sk!2nk
(fk, x) = 1

k2 pnk
(k!x). So if for

each positive integer r we define pr = r!nr − 1 and qr = r!2nr, then

Sqr(fk, x)− Spr(fk, x) =
{

pnk
(k!x) if r = k

0 otherwise
(8)

Thus Sqr(fk, x) − Spr(fk, x) = 1
r2 pnr(r!x). Now suppose that a is an

integer and b is a positive integer. Then since Pn(0) > log n, we have

Sqr(fk,
2aπ

b
)− Spr(fk,

2aπ

b
) =

1
r2

Pnr(0) >
1
r2

log nr. (9)

The right side of (9) approach to ∞ as r →∞ (because lim 1
k2 log nk =

∞) and so a
b × 2π is not in B. This means that B does not contain any

rational multiple of 2π.
To show that B is of the first category in R, for each positive integer k,
let

Bk = ∩∞n=1{x ∈ R : |Sn(f, x)| 6 k}.
Clearly each Bk is closed in R and B = ∪∞k=1Bk.
Finally, if there are real numbers α < β so that {xk}∞k=1 is the set of
points in [α, β] which are not in B, then each of the sets Ak = (Bk ∩
[α, β]) ∪ {xk} is nowhere dense in [α, β] and ∪∞1 Ak = [α, β]. Since
[α, β] is a complete metric space, this contradicts the Bair’s category
theorem. ¤
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