A Sequence of Fourier Partial Sums not Containing $2 \pi \mathbb{Q}$

M. Taghavi

Shiraz University

Abstract

In this paper, we focus on the bounded sequences of Fourier partial sums. Our interest is on the sequences which do not contain any rational multiple of 2π. We construct a function on $\mathbb{C}[\mathbb{T}]$ where its set of points is one of such sequences. We will show that this set is of the first category in \mathbb{R}. Moreover the complement of this set in any arbitrary real closed interval form an uncountable set.

AMS Subject Classification: 42A10; 42A51.
Keywords and Phrases: Fourier partial sums, trigonometric series, Fourier coefficients.

1. Introduction

In what follows \mathbb{R} and \mathbb{Z} are respectively the sets of real numbers and integers. Define the circle group to be $\mathbb{T}=\mathbb{R} / 2 \pi \mathbb{Z}$ and we shall regard a function on \mathbb{T} as being a 2π-periodic function on \mathbb{R} and vice-versa. Let $p \geqslant 1$ be a real number and for any complex measurable function f on \mathbb{T}, let $\|f\|_{p},\|f\|_{u}$, and $\|f\|_{\infty}$ be the usual, sup, and infinity norms respectively. We also define $L_{p}(\mathbb{T})$, the set of all measurable functions f on \mathbb{T} so that $\|f\|_{p}<\infty$ and $C(\mathbb{T})$, the set of all continuous functions on \mathbb{T} (or continuous 2π-periodic on \mathbb{R}).
A trigonometric series is any series of the form

[^0]\[

$$
\begin{equation*}
\sum_{n=-\infty}^{\infty} c_{n} e^{i n x} \quad c_{n} \in \mathbb{C}, \quad x \in \mathbb{R} \tag{1}
\end{equation*}
$$

\]

The n-th partial sum of this series is

$$
\begin{equation*}
S_{n}(x)=\sum_{j=-n}^{n} c_{n} e^{i j x} \tag{2}
\end{equation*}
$$

In view of the Euler's formula, we also have

$$
\begin{equation*}
S_{n}(x)=\frac{a_{0}}{2}+\sum_{j=1}^{n}\left(a_{j} \cos (j x)+b_{j} \sin (j x)\right) \tag{3}
\end{equation*}
$$

where $a_{n}=c_{n}+c_{-n}$ and $b_{n}=i\left(c_{n}-c_{-n}\right)$. So we also write (1) as $\frac{a_{0}}{2}+\sum_{j=1}^{\infty}\left(a_{j} \cos (j x)+b_{j} \sin (j x)\right)$. Any function of the form (2) or (3) is called a trigonometric polynomial. In case $\left|c_{n}\right|+\left|c_{-n}\right| \neq 0$ (or $\left|a_{n}\right|+\left|b_{n}\right| \neq 0$), we say that s_{n} has order n. The proof of the following theorem can be found in any of the references [2], [5] or [8].

Theorem 1.1. Consider any trigonometric series having partial sums of type (2) or (3). Suppose that there is a function f and a subsequence $S_{n_{k}}$ such that either
(i): $f \in C(\mathbb{T})$ and $\lim _{k}\left\|f-S_{n_{k}}\right\|_{u}=0$ or
(ii): $f \in L_{p}(\mathbb{T})$ for some $1 \leqslant p \leqslant \infty$ and $\lim _{k}\left\|f-S_{n_{k}}\right\|_{p}=0$.

Then for each $r \in \mathbb{Z}$, c_{r} in (2) equals to $\frac{1}{2 \pi} \int_{0}^{2 \pi} f(x) e^{-i r x} d x$. Moreover for appropriate r, we have $a_{r}=\frac{1}{\pi} \int_{0}^{2 \pi} f(x) \cos r x d x$ and $b_{r}=$ $\frac{1}{\pi} \int_{0}^{2 \pi} f(x) \sin r x d x$.
The numbers a_{r}, b_{r}, and c_{r} are called the Fourier coefficients of f. Denote $a_{r}(f)=a_{r}, b_{r}(f)=b_{r}$, and $c_{r}(f)=c_{r}$. We also write $f^{\wedge}(j)=c_{j}$. Thus f^{\wedge} is a complex function on \mathbb{Z}. The trigonometric series having the Fourier coefficients of f as coefficients is called a Fourier series of f and is denoted by $S(f)$. The partial sums of the Fourier series of f are written as

$$
S_{n}(f, x)=\sum_{k=-n}^{n} f^{\wedge}(k) e^{i k x}
$$

2. The Main Result

Theorem 2.1. If there exists a real-valued even function $f \in C(\mathbb{T})$ for which $B=\left\{x \in \mathbb{R}: \sup _{n \geqslant 0}\left|S_{n}(f, x)\right|<\infty\right\}$, then B is of the first category in \mathbb{R} and does not contain any rational multiple of 2π. Moreover if $\alpha<\beta$ in \mathbb{R}, then the set $[\alpha, \beta]-B$ is uncountable.

Note that B in the statement of theorem is the set of points that the Fourier partial sums of f form a bounded sequence. Before proof of theorem we need the following lemma.

Lemma 2.2. Let $\left\{b_{n}\right\}_{n \geqslant 1}$ be a decreasing sequence of positive real numbers and for each $k \geqslant 0$, put $\delta_{k}=\sup _{j>k} b_{j}$. If $0 \leqslant k<n$, then

$$
\left|\sum_{j=k+1}^{n} b_{j} \sin j x\right| \leqslant(\pi+2) \delta_{k}, \quad \text { for all } x \in \mathbb{R}
$$

Proof. For any $j \geqslant 1$, let $\Delta b_{j}=b_{j}-b_{j+1}$ (so $\Delta b_{j} \geqslant 0$). For any $n \geqslant 1$, define $f_{n}(x)=\sum_{j=1}^{n} \sin j x$ and put $f_{0}(x)=0$. Then

$$
f_{n}(x)=\frac{\cos \frac{1}{2} x-\cos \left(n+\frac{1}{2}\right) x}{2 \sin \frac{1}{2} x}, \quad \text { for all } x \in \mathbb{R} \backslash 2 \pi \mathbb{Z}
$$

Note that for every j we have $b_{j} \sin j x=\Delta b_{j} f_{j}(x)+\left(b_{j+1} f_{j}(x)-\right.$ $\left.b_{j} f_{j-1}(x)\right)$ and so

$$
\begin{aligned}
\left|\sum_{j=k+1}^{n} b_{j} \sin j x\right| & =\left|\sum_{j=k+1}^{n} \Delta b_{j} f_{j}(x)+b_{n+1} f_{n}(x)-b_{k+1} f_{k}(x)\right| \\
& \leqslant \sum_{j=k+1}^{n} \Delta b_{j}\left|f_{j}(x)\right|+b_{n+1}\left|f_{n}(x)\right|+b_{k+1}\left|f_{k}(x)\right| .
\end{aligned}
$$

Therefore for every $x \in \mathbb{R} \backslash 2 \pi \mathbb{Z}$ we have

$$
\begin{aligned}
\left|\sum_{j=k+1}^{n} b_{j} \sin j x\right| & \leqslant \frac{2}{2 \sin \frac{1}{2} x}\left[\sum_{j=k+1}^{n} \Delta b_{j}+b_{n+1}+b_{k+1}\right] \\
& =\frac{1}{\sin \frac{1}{2} x}\left[b_{k+1}-b_{n+1}+b_{n+1}+b_{k+1}\right]
\end{aligned}
$$

Thus for every $x \in \mathbb{R} \backslash 2 \pi \mathbb{Z}$,

$$
\begin{equation*}
\left|\sum_{j=k+1}^{n} b_{j} \sin j x\right| \leqslant \frac{2 b_{k+1}}{\sin \frac{1}{2} x} \tag{4}
\end{equation*}
$$

Suppose that $0 \leqslant k<n$ and fix $x \in \mathbb{R}$ so that $0<x<\pi$. Choose the positive integer m so that $\frac{\pi}{m+1} \leqslant x<\frac{\pi}{m}$. If $0 \leqslant k<n \leqslant m$, then

$$
\begin{align*}
\left|\sum_{j=k+1}^{n} b_{j} \sin j x\right| & \leqslant \sum_{j=k+1}^{n} b_{j}|\sin j x| \leqslant \sum_{j=k+1}^{n} b_{j} x \\
& \leqslant \delta_{k} \sum_{j=k+1}^{n} x \leqslant \delta_{k} \sum_{j=k+1}^{n} \frac{\pi}{m} \leqslant \pi \delta_{k} \tag{5}
\end{align*}
$$

If $0 \leqslant m \leqslant k<n$, then

$$
\begin{align*}
\left|\sum_{j=k+1}^{n} b_{j} \sin j x\right| & \leqslant \frac{2 b_{k+1}}{\sin \frac{1}{2} x} \leqslant \frac{2 \pi b_{k+1}}{x} \\
& \leqslant 2(m+1) b_{k+1} \leqslant 2(k+1) b_{k+1} \leqslant 2 \delta_{k} \tag{6}
\end{align*}
$$

Finally, if $0 \leqslant k<m<n$, we combine (5) and (6) to get

$$
\begin{aligned}
\left|\sum_{j=k+1}^{m} b_{j} \sin j x\right| & \leqslant\left|\sum_{j=m+1}^{n} b_{j} \sin j x\right|+\left|\sum_{j=k+1}^{n} b_{j} \sin j x\right| \\
& \leqslant \pi \delta_{k}+2 \delta_{k}=(\pi+2) \delta_{k} .
\end{aligned}
$$

Now we are able to prove Theorem 2.1.

Proof of Theorem 2.1. For each positive integer n and $x \in \mathbb{R}$, put

$$
q_{n}(x)=2 \sin (2 n x) \sum_{j=1}^{n} \frac{\sin (j x)}{j} .
$$

By the Lemma 2.2., for every $x \in \mathbb{R}$ and $n \geqslant 1$, we have

$$
\left|q_{n}(x)\right| \leqslant 2(\pi+2) .
$$

For each n and $x \in \mathbb{R}$, put $p_{n}(x)=S_{2 n}\left(q_{n}\right)$. Then by the definition, we have

$$
p_{n}(x)=\sum_{j=n}^{2 n-1} \frac{\cos j x}{2 n-j} .
$$

Moreover, since $\log \frac{k+1}{k}<\frac{1}{k}$ for every k, we have $p_{n}(0)>\log n$.
Next, let $\left\{n_{k}\right\}$ be a sequence of positive integers such that $(k+1) n_{k+1}>$ $3 n_{k}$ and $\limsup \frac{1}{k^{2}} \log n_{k}=\infty$ (such sequence exists for instance $n_{k}=$ $\left.2^{k^{3}}\right)$. Next for each k let $f_{k}(x)=q_{n_{k}}(k!x)$ and define

$$
f(x)=\sum_{k=1}^{\infty} \frac{1}{k^{2}} f_{k}(x)
$$

Since $\left|f_{k}(x)\right| \leqslant 2(\pi+2)$ for every k and every $x \in \mathbb{R}$, the above series converges uniformly on \mathbb{R} and hence $f \in C(\mathbb{T})$. Also for all $n \geqslant 0$, we have

$$
S_{n}(f)=\sum_{k=1}^{\infty} \frac{1}{k^{2}} S_{n}\left(f_{k}\right)
$$

Next, writing

$$
q_{n}(x)=\sum_{j=n}^{2 n-1} \frac{\cos (j x)}{2 n-j}-\sum_{j=2 n+1}^{3 n} \frac{\cos (j x)}{j-2 n}
$$

we see that for all $r \in \mathbb{Z}, f_{k}^{\wedge}(r)=0$ unless $|r|=k!j$, where $n_{k} \leqslant j \leqslant 3 n_{k}$. Therefore, by The Theorem 1.1.,

$$
S_{n}\left(f_{k}\right)= \begin{cases}0 & \text { if } n<k!n_{k} \tag{7}\\ f_{k} & \text { if } n \geqslant k!n_{k}\end{cases}
$$

By the definition of p_{n}, we have $S_{k!2 n_{k}}\left(f_{k}, x\right)=\frac{1}{k^{2}} p_{n_{k}}(k!x)$. So if for each positive integer r we define $p_{r}=r!n_{r}-1$ and $q_{r}=r!2 n_{r}$, then

$$
S_{q_{r}}\left(f_{k}, x\right)-S_{p_{r}}\left(f_{k}, x\right)= \begin{cases}p_{n_{k}}(k!x) & \text { if } r=k \tag{8}\\ 0 & \text { otherwise }\end{cases}
$$

Thus $S_{q_{r}}\left(f_{k}, x\right)-S_{p_{r}}\left(f_{k}, x\right)=\frac{1}{r^{2}} p_{n_{r}}(r!x)$. Now suppose that a is an integer and b is a positive integer. Then since $P_{n}(0)>\log n$, we have

$$
\begin{equation*}
S_{q_{r}}\left(f_{k}, \frac{2 a \pi}{b}\right)-S_{p_{r}}\left(f_{k}, \frac{2 a \pi}{b}\right)=\frac{1}{r^{2}} P_{n_{r}}(0)>\frac{1}{r^{2}} \log n_{r} . \tag{9}
\end{equation*}
$$

The right side of (9) approach to ∞ as $r \rightarrow \infty$ (because $\varlimsup \frac{1}{k^{2}} \log n_{k}=$ $\infty)$ and so $\frac{a}{b} \times 2 \pi$ is not in B. This means that B does not contain any rational multiple of 2π.
To show that B is of the first category in \mathbb{R}, for each positive integer k, let

$$
B_{k}=\cap_{n=1}^{\infty}\left\{x \in \mathbb{R}:\left|S_{n}(f, x)\right| \leqslant k\right\}
$$

Clearly each B_{k} is closed in \mathbb{R} and $B=\cup_{k=1}^{\infty} B_{k}$.
Finally, if there are real numbers $\alpha<\beta$ so that $\left\{x_{k}\right\}_{k=1}^{\infty}$ is the set of points in $[\alpha, \beta]$ which are not in B, then each of the sets $A_{k}=\left(B_{k} \cap\right.$ $[\alpha, \beta]) \cup\left\{x_{k}\right\}$ is nowhere dense in $[\alpha, \beta]$ and $\cup_{1}^{\infty} A_{k}=[\alpha, \beta]$. Since $[\alpha, \beta]$ is a complete metric space, this contradicts the Bair's category theorem.

References

[1] N. K. Bary, Atreative on trigonometric series, Macmillan, 1964.
[2] G. H. Hardy and W. W. Rogozinski, Fourier series, Cambridge Tracts, 38 (1950).
[3] E. Hewitt and K. A. Ross, Abstract harmonic analysis, Springer-Verlag, 1963.
[4] R. A. Hunt, on the convergence of Fourier series, Proceeding of the conference on orthogonal Expansion and their Continuous Analogues, Southern Illinois University Press, (1968), 234-255.
[5] Y. Katznelson, An introduction to Harmonic Analysis, Dover, New edition, Cambridge University Press., 2004.
[6] W. Rudin, Some Theorems on Fourier Coefficients, Proc. Amer. Math. Soc., 10 (1959).
[7] E. M. Stein and R. Shakarchi, Fourier analysis, an introduction, Princeton University Press., 2003.
[8] A. Zigmund, Trigonometric series, 2nd ed., Vols. I, II, Cambridge Univ. Press, New York, 1959.

Mohsen Taghavi
Department of Mathematics
Associate Professor of Mathematics
Shiraz University
Shiraz, Iran
E-mail: taghavi@math.susc.ac.ir

[^0]: Received October 2010; Final Revised February 2011

