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A Sequence of Fourier Partial Sums not
Containing 27Q
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Abstract. In this paper, we focus on the bounded sequences of Fourier
partial sums. Our interest is on the sequences which do not contain any
rational multiple of 2. We construct a function on C[T]| where its set of
points is one of such sequences. We will show that this set is of the first
category in R. Moreover the complement of this set in any arbitrary
real closed interval form an uncountable set.
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1. Introduction

In what follows R and Z are respectively the sets of real numbers and
integers. Define the circle group to be T = R/2n7Z and we shall regard
a function on T as being a 2w-periodic function on R and vice-versa.
Let p > 1 be a real number and for any complex measurable function
fonT, let || fl|lp, | fllu, and || f||oc be the usual, sup, and infinity norms
respectively. We also define L,(T), the set of all measurable functions f
on T so that || f||, < co and C(T), the set of all continuous functions on
T (or continuous 27-periodic on R).

A trigonometric series is any series of the form
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The n-th partial sum of this series is

S(z) = > cpe” (2)

j=-n

In view of the Euler’s formula, we also have

ag - . . .
Sn(a) =5 + Z}(%’ cos(jx) + by sin(jz)), (3)
]:

where a, = ¢, + c—p, and b, = (¢, — c—,). So we also write (1) as
G+ > ;21 (ajcos(jz) + bysin(jz)). Any function of the form (2) or
(3) is called a trigonometric polynomial. In case |c,| + |c—n| # 0 (or
lan| + |bn| # 0), we say that s, has order n. The proof of the following
theorem can be found in any of the references [2], [5] or [8].

Theorem 1.1. Consider any trigonometric series having partial sums
of type (2) or (3). Suppose that there is a function f and a subsequence
Sh,. such that either

(i): f € C(T) and limg||f — Sp,|lu =0 or

(ii): f € Ly(T) for some 1 < p < 0o and limy|| f — Sy, |lp = 0.

Then for each r € Z, ¢, in (2) equals to %fo%f(x)e_imdﬂs. More-
over for appropriate r, we have a, = %fo% f(x)cosrxdx and b, =
12w f(z)sinrzdz.

T JO

The numbers a,, b., and c, are called the Fourier coefficients of f. De-
note a,(f) = ar, br(f) = by, and ¢ (f) = ¢r. We also write f"(j) = ¢;.
Thus f" is a complex function on Z. The trigonometric series having
the Fourier coefficients of f as coefficients is called a Fourier series of
f and is denoted by S(f). The partial sums of the Fourier series of f
are written as

Su(fw)= ) frk)e™.

k=—n
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2. The Main Result

Theorem 2.1. If there exists a real-valued even function f € C(T)
for which B = {x € R : sup,~¢ |Sn(f,z)| < oo}, then B is of the first
category in R and does not contain any rational multiple of 2. Moreover
if « < B in R, then the set [, 3] — B is uncountable.

Note that B in the statement of theorem is the set of points that the
Fourier partial sums of f form a bounded sequence. Before proof of
theorem we need the following lemma.

Lemma 2.2. Let {b,}n>1 be a decreasing sequence of positive real
numbers and for each k = 0, put 65, = supb;. If 0 <k <n, then

J>k
n
\ Z bjsinjx| < (m+2)d;, forall z €R.
Jj=k+1

Proof. For any j > 1, let Abj = b; —bj11 (so Ab; > 0). For any n > 1,
n

define f,(x) = Z sin jz and put fo(x) = 0. Then
j=1

cos 3z — cos(n + 3)z

fn(x) = , forall x€R\27Z.

o1
2511121“

Note that for every j we have bjsinjz = Ab;fj(x) + (bjt1fj(x) —
bjfj—1(x)) and so

| D bysingz| = | Y Abifi(x) + bga fa(®) — bpyr fr(2))]
j=k+1 J=k+1
<Y AbIf @)+ busal fa(@)] + b | fi(@)]
j=k+1

Therefore for every x € R\27Z we have
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- 2
| Y bysinga| < Z Abj + b1 + byt

ik 2sin 1 3T 570
1
= [bk+1 — b1 + bpt1 + bl
sin 1z
Thus for every z € R\27Z,
2b
| Z b;sin jx| < k+1 (4)

=kt 1 sin .T

Suppose that 0 < k < n and fix £ € R so that 0 < x < w. Choose the
positive integer m so that +1 <z < 5. IFO<k <n<m, then

n n n
| Z bjsinjx| < Z bj|sin jz| < Z bjx

j=k+1 j=k+1 j=k+1
n n T
< 5’“AZ xé&klz ngék. (5)
j=k+1 J=k+1

If 0 <m < k < n, then

n
2b 27mh
| Z bjsnljl” < k+1 < TO0k+1

in L
Pt sin 5 T

< 2(m+ Dbpgr <2(k+ Dbpyr <20 (6)

Finally, if 0 < k < m < n, we combine (5) and (6) to get

m n n
| Z bjsinjz| < | Z bjsinjz| + | Z b sin jz|

j=k+1 j=m-+1 j=k+1
< 7T5k +25k = (7r+2)5k. O

Now we are able to prove Theorem 2.1.
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Proof of Theorem 2.1. For each positive integer n and x € R, put

sin(j$)'

qn(x) = 2sin(2nx) Z r

j=1

By the Lemma 2.2., for every x € R and n > 1, we have

|gn(2)| < 2(7 +2).

For each n and = € R, put p,(x) = S2,(¢n). Then by the definition, we
have

n .
cos jx
pu(e) =3

2n —j -

j=n

Moreover, since log % < % for every k, we have p,(0) > logn.

Next, let {ny} be a sequence of positive integers such that (k+1)ng11 >
3ng and lim sup k% logng = oo (such sequence exists for instance ng =
2"). Next for each k let fi(z) = n, (K'z) and define

M8

fz) =

B
Il

1

Since |fx(z)| < 2(m + 2) for every k and every z € R, the above series
converges uniformly on R and hence f € C(T). Also for all n > 0, we
have

Su(f) = 3 2y Sulfi):

k=1

Next, writing

72n_ cos(jx) n cos(jx)
tn(x) = Zﬁ— > T on
i=n j=2n+1

we see that for all » € Z, f{*(r) = 0 unless |r| = klj, where ny, < j < 3ng.
Therefore, by The Theorem 1.1.,



126 M. TAGHAVI

- 0 if n < klng
Sulfi) = { frifn > kg, 0

By the definition of p,, we have Sgian, (fr,2) = k%pnk(k‘!m). So if for
each positive integer r we define p, = rln, — 1 and ¢, = r!2n,., then

_ | pn(Klz) ifr=k
S(Ir(fkiv $) Spr (fk‘? x) - { O OtherWise (8)
Thus S, (fr,z) — Sp,. (fr,z) = r%pnr (rlz). Now suppose that a is an
integer and b is a positive integer. Then since P,(0) > logn, we have

2am 2am 1 1
SQT(fk')T) *Spr(fk,T) = ﬁPnT(O) > rjlognr- 9)
The right side of (9) approach to co as 7 — oo (because Hk% logng =
o0) and so ¢ x 27 is not in B. This means that B does not contain any
rational multiple of 27.
To show that B is of the first category in R, for each positive integer k,
let

By =N, {z € R: [Su(f,z)| < k).

Clearly each By, is closed in R and B = U By.

Finally, if there are real numbers o < ( so that {z}}72, is the set of
points in [«, 5] which are not in B, then each of the sets Ay = (By N
[, B]) U {zx} is nowhere dense in [o, ] and UPA; = [a, []. Since
[, B] is a complete metric space, this contradicts the Bair’s category
theorem. O
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