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Abstract. In this paper, we introduce systems consisting of several
production units, each of which include several subunits working in
parallel. Meanwhile, each subunit is working independently. The in-
put and output of each production unit are the sums of the inputs and
outputs of its subunits, respectively. We consider each of these sub-
units as an independent decision making unit(DMU) and create the
production possibility set(PPS) produced by these DMUs, in which the
frontier points are considered as efficient DMUs. Then we introduce
models for obtaining the efficiency of the production subunits. Using
super-efficiency models, we categorize all efficient subunits into different
efficiency classes. Then we follow by presenting the sensitivity analysis
and stability problem for efficient subunits, including extreme efficient
and non-extreme efficient subunits, assuming simultaneous perturba-
tions in all inputs and outputs of subunits such that the efficiency of
the subunit under evaluation declines while the efficiencies of other sub-
units improve.
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1. Introduction

Evaluating the efficiency of the production units of a system is an im-
portant issue for managers. Charnes et al. ([1]) introduced data envel-
opment analysis(DEA) to measure the relative efficiency of a set deci-
sion making units(DMUs) consuming similar inputs to produce similar
outputs. Consider n DMUs in a production system, such that the kth
production unit uses m inputs xik to produce s output yrk. The effi-
ciency of this prodution unit ,EK , is calculated as follows (Charnes et
al. [1]).

EK = max
s∑

r=1

uryrk

s.t

s∑
i=1

vixik = 1

n∑
r=1

uryrj − vixij 6 0, j = 1, . . . , n

ur, vi > ε r = 1, . . . , s i = 1, . . . ,m,

(1)

where ur and vi are the most favorable multipliers to be applied to the
rth output and ith input for DMU k in calculating its efficiency, and ε

is a small non-Archimedean quantity(Charnes et al. [2]).
In the real word, there are systems composed of production units, each
of which, in turn, is composed of production subunits. Consider, for
instance, a large company including several production workshops to
manufacture the parts that the factory needs. The input and output
of each factory are sums of the inputs and outputs of its workshops,
respectively.
One case of such production units are those in which the subunits of
each unit work in parallel to each other, such that the input of the unit
is distributed among its subunits, and the outputs of its subunits make
up the output of the unit. Assume we have a production system. The
kth production unit of the sestem is composed of q production subunits,
as shown in Fig.1. The ith input and output of the pth subunit of kth
unit x

(p)
ik and y

(p)
rk , respectively. Then, the input and output of the kth
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Zhu and Seiford ([9,10]) and Zhu ([11]) introduced sensitivity analysis
and stability of efficiency classification of efficient DMUs using super-
efficiency models, and provided the necessary and sufficient conditions
for the stability of efficiency classification of efficient DMUs after simul-
taneous perturbations in all data.
After introducing models for obtaining the efficiency of production sub-
units in this paper, we deal with the sensitivity analysis and stability of
efficiency classification of efficient subunits. Also, we present the neces-
sary and sufficient conditions for the stability of efficiency state of the
production subunit by causing perturbations in the inputs and outputs
of all subunits. We consider the worst-case the subunit under evaluation
declines, while the the efficiencies of all other subunits improve. This
paper is organized as follows. In Section 2, we present models for the effi-
ciency evaluation of production subunits, and introduce super-efficiency
models. Section 3, deals with the sensitivity analysis and stability of
efficiency state of efficient subunits. Finally, Section 4 contains the con-
clusion.

2. Preliminaries

Suppose we have n production units, considered as DMUs, each using
the input vector xj to produce the output vector , yj . Each unit is
composed of production subunits with input and output vectors x

(p)
j 6= 0

and y
(p)
j 6= 0, respectively, as shown in Fig.1. The subunits of each unit

operate in parallel, that is, the input and output of each DMU are the
sums of the inputs and outputs of its subunits, respectively. So, we will

have xj =
q∑

p=1

x
(p)
j and yj =

q∑
p=1

y
(p)
j .

To evaluate the efficiency of each subunit, the production possibility set
T is produced as follows.

T = {(X, Y ) |
n∑

j=1

q∑
p=1

λ
(p)
j X

(p)
j 6 X,

n∑
j=1

q∑
p=1

λ
(p)
j Y

(p)
j > Y, λ

(p)
j > 0,

j = 1, . . . , n,

p = 1, . . . , q}.
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The frontier and non-frontier points of the above set are considered
efficient and inefficient points, respectively.
The model for evaluating the efficiency of the wth subunit of the kth
unit is as follows.

θ?(w) = min θ(w)

s.t
n∑

j=1

q∑
p=1

λ
(p)
j x

(p)
ij 6 θ(w)x

(w)
ik , i = 1, . . . ,m

n∑
j=1

q∑
p=1

λ
(p)
j y

(p)
rj > y

(w)
kj , r = 1, . . . , s,

λ
(p)
j > 0, j = 1, . . . , n, p = 1, . . . , q,

(2)

Definition 2.1. Subunit DMUk
w is efficient if θ?(w) = 1

Definition 2.2. Subunit DMUk
w is strongly efficient if θ?(w) = 1 and

all slack variables in every optimal solution are equal to zero.

Definition 2.3. Subunit DMUk
w is called extreme strongly efficient if

it is strongly efficient and cannot be expressed as a convex combination
of two efficient subunits.

Definition 2.4. Subunit DMUk
w is called non-extreme strongly effi-

cient if it is a strongly efficient DMU, but not an extreme DMU.

Definition 2.5. Subunit DMUk
w is called weakly efficient if θ?(w) = 1

and we have non-zero slacks in the optimal solution.

Theorem 2.6. In any optimal solution of model (2), we will have
0 < θ?(w) 6 1.

Proof. The Proof is clear.
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We can compute the efficiency of DMUk as follows.

min θ(w)

s.t
n∑

j=1

q∑
p=1

λ
(p)
j x

(p)
ij 6 θ(w)(

q∑
p=1

x
(p)
ik ), i = 1, . . . ,m

n∑
j=1

q∑
p=1

λ
(p)
j y

(p)
rj >

q∑
p=1

y
(p)
kj , r = 1, . . . , s

λ
(p)
j > 0, j = 1, . . . , n, p = 1, . . . , q,

(3)

The above model (3) is obtained by setting DMUk as the DMU under
evaluation in model (2).
The efficiency values of DMUw

k and DMUk can be obtained by stating
the duals of models (2) and (3), respectively as follows.

max
s∑

r=1

ury
(w)
rk

s.t
s∑

i=1

vix
(w)
ik = 1

n∑
r=1

ury
(p)
rj − vix

(p)
ij 6 0, j = 1, . . . , n, p = 1, . . . , q

ur, vi > ε r = 1, . . . , s i = 1, . . . ,m,

(4)

max
s∑

r=1

q∑
p=1

ury
(p)
rk

s.t

s∑
i=1

q∑
p=1

vix
(p)
ik = 1

n∑
r=1

ury
(p)
rj −

m∑
i=1

vix
(p)
ij 6 0, j = 1, . . . , n, p = 1, . . . , q

ur, vi > ε r = 1, . . . , s i = 1, . . . ,m,
(5)

Regarding the optimal value of model (2), if we have
s∑

r=1

u?
ry

(w)
rk = 1 in

the optimal solution of model (4), then DMUw
k is efficient. Similarly, if
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s∑
r=1

q∑
p=1

u?
ry

(w)
rk = 1 then DMUk is efficient. �

Definition 2.7. DMUk is efficient if all of its subunits are efficient,
that is, θ?(w) = 1 for all w ∈ {1, 2, . . . ,m}.
It can be readily shown if all subunits of a unit are efficient, then the
optimal value of model (3) is equal to one.
Consider 6 production units, each composed of 3 subunits. The data for
these units are presented in Table 1.

Table 1.
The data of the six unit by three subunit.

DMU x1 x2 y DMU x1 x2 y DMU x1 x2 y
A 2 5 1 B 3 3 1 E 3 2 1
a1 2/3 2 1/3 b1 1/2 4/3 1/3 e1 1 5/12 1/3
a2 2/3 2 1/3 b2 1 4/3 1/3 e2 3/4 11/24 1/3
a3 2/3 1 1/3 b3 3/2 1/3 1/3 e3 5/4 27/24 1/3
C 6 2.5 1 D 2 7 1 F 2 6 1
c1 1 3/2 1/3 d1 1/3 2 1/3 f1 1/3 3 1/3
c2 3 2/3 1/3 d2 7/6 9/2 1/3 f2 5/12 3/2 1/3
c3 2 1/3 1/3 d3 1/2 1/2 1/3 f3 15/12 3/2 1/3

We employ model (1) to evaluate the efficiency of the subunits. Table
2 contains the efficiency values for all these subunits. To evaluate the
efficiency of the units we can use model (3).

Table 2.
The optimal values of model (2) for evaluating data of Table 1.
DMU θ?(w) DMU θ?(w) DMU θ?(w) DMU θ?(w) DMU θ?(w) DMU θ?(w)

A 0.6222 B 0.5000 C 0.5826 D 0.6000 E 0.7000 F 0.6250
a1 0.6248 b1 0.8588 c1 0.5000 d1 1 e1 1 f1 1
a2 0.6250 b2 0.4848 c2 0.4991 d2 0.3333 e2 1 f2 0.9523
a3 0.7143 b3 1 c3 1 d3 1 e3 0.4374 f3 0.3922

As can be observed, subunits b3, c3, d1, d3, e1, e2, f1 are efficient. The sets
of extreme strongly efficient, non-extreme strongly efficient, and weakly
efficient points are denoted by E, Ē, and F , respectively. For the data
in Table 1. the above sets will be as follows.
E = {b3, d1, d3}, Ē = {e1, e2}, F = {c3, f1}
As can be seen in Fig. 2. the efficiency frontier includes the following
segments.
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d1d3, d3b3, the line that starts from b3 and passes c3 and is parallel to
the first input axis, the line that starts from d1 and passes f1 and is
parallel to the second input axis.
If we omit extreme efficient subunit d3, the new efficient frontier in inputs
space will include the following segments.
d1e2, e2b3, the line that starts from b3 and passes c3 and is parallel to
the first input axis, the line that starts from d1 and passes f1 and is
parallel to the second input axis.
The efficiency classification of the production units can be obtained by
super-efficiency models. The super-efficiency model corresponding to
model (2) is introduced as follows.

θ
?(w)
sup = min θ

(w)
sup

s.t
∑n

j=1

∑q
p=1, (j,p) 6=(k,w) λ

(p)
j x

(p)
ij 6 θ

(w)
supx

(w)
ik , i, . . . , m∑n

j=1

∑q
p=1, (j,p) 6=(k,w) λ

(p)
j y

(p)
rj > y

(w)
kj , r = 1, . . . , s,

λ
(p)
j > 0, j = 1, . . . , n, p = 1, . . . , q, (j, p) 6= (k,w),

(6)

Based on Thrall ([12]), we have
1)θ?(w)

sup > 1 or (6) is infeasible if and only if DMUw
k ∈ E.

2) θ
?(w)
sup = 1 if and only if DMUw

k ∈ Ē ∪ F .
In 2, if non-zero input/output slack values are detected in (2), then
DMUw

k ∈ F .
We solve the super-efficiency model (6) for the data in Table 1. The
results are provided in Table 3.

Table 3.
The optimal values of model (6) for evaluating data of Table(1).
DMU θ?

sup DMU θ?
sup DMU θ?

sup DMU θ?
sup DMU θ?

sup DMU θ?
sup

A 0.6522 B 0.5000 C 0.5826 D 0.6000 E 0.7000 F 0.6250
a1 0.6248 b1 0.8588 c1 0.5 d1 1.1251 e1 1 f1 1
a2 0.625 b2 0.4848 c2 0.4991 d2 0.3333 e2 1 f2 0.9523
a3 0.7143 b3 1.0953 c3 1 d3 1.3585 e3 0.4374 f3 0.3922

The supper-efficiency value of DMUk, i.e., θ
?(w)
sup , is computed by setting

DMUk in model (6) as the DMU under evaluation. In the supper-
efficiency model, The DMU under evaluation is omitted from the pro-
duction possibility set T , and obtain the efficiency of the DMU under
evaluation using the new PPS produced by the remaining DMU.
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in the inputs and output of the subunits (percentage data perturbations)
are assumed as follows.
for DMUw

k ,
x̂

(w)
ik = δix

(w)
ik δi > 1, i ∈ I and x̂

(w)
ik = x

(w)
ik i ∈ {1, 2, . . . ,m} − I

and
ŷ

(w)
rk = τry

(w)
rk τr 6 1, r ∈ O and ŷ

(w)
rk = y

(w)
rk r ∈ {1, 2, . . . , s} −O

for DMUp
j , ((j, p) 6= (k, w), j = 1, . . . , n, p = 1, . . . , q),

x̂
(p)
ij = x

(p)
ij /δ̃i, δ̃i > 1, i ∈ I and x̂

(p)
ij = x

(p)
ij , i ∈ {1, 2, . . . ,m} − I

and
ŷ

(p)
rj = y

(p)
rj /τr, τr 6 1, r ∈ O and ŷ

(p)
rj = y

(p)
rj , r ∈ {1, 2, . . . , s} −O

Where (̂) represents adjusted data. The super-efficiency models corre-
sponding to sets I will be as follows.

θ
?(w)
I = min θ

(w)
I

s.t
∑n

j=1

∑q
p=1, (j,p) 6=(k,w) λ

(p)
j x

(p)
ij 6 θ

(w)
I x

(w)
ik , i ∈ I∑n

j=1

∑q
p=1, (j,p) 6=(k,w) λ

(p)
j x

(p)
ij 6 x

(w)
ik , i ∈ {1, 2, . . . ,m} − I∑n

j=1

∑q
p=1, (j,p) 6=(k,w) λ

(p)
j y

(p)
rj > y

(w)
kj , r = 1, . . . , s

λ
(p)
j > 0, j = 1, . . . , n, p = 1, . . . , q, (j, p) 6= (k,w),

(7)
Model (7) above projects only the inputs to corresponding to set I

on to the new pps produced by the remaining subunits after omitting
DMUw

k .
Using above model for the data in Table 1, the result for sets I = {1},
I = {2}, and I = {1, 2} are presented in Tables 3,4, and 5. As can be
observed, model (7) computes the maximum input increase correspond-
ing to set I necessary for to reach the new pps. For instance, consider
subunit d3. After omitting d3, which is an extreme strongly efficient
subunit, the new pps will include the line segment passing through d1

and e2 , that is shown as a light line in Fig. 3.
If I = {1}, we have θ

?(w)
1 = 1.4730, which means d3 reaches d31 on new

pps and its first input has increase to reach the input of d31, i.e., 0.7365.
If I = {2}, we have θ

?(w)
2 = 2.4790, which means d3 reaches d33 on new

pps and its second input has increase to reach the input of d33, i.e.,
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Theorem 3.1. suppose θ
?(w)
sup = 1, θ

?(w)
I < 1 then for all δi > 1, δ̃i > 1,

i ∈ I, DMUw
k will remain in set F .

Proof. Considering θ
?(w)
sup < 1 and since we have θ

?(w)
I 6 θ

?(w)
sup , then

θ
?(w)
I 6 1 as θ

?(w)
I < 1, in any optimal solution of model (7) we will

have non-zero slack values for any i ∈ I, in the input constraints. So
DMUw

k ∈ F.

Now we show that DMUw
k will still remain in set F after the above

perturbations. Since DMUw
k ∈ F then the optimal value of model (4)

will be equal to one. That is , there exists (u?, v?) such that
s∑

r=1

u?
ry

(w)
rk = 1.

(u?, v?) is the feasible solution of model (4), and in the optimal solution
of model (2) s?

i > 0 for all i ∈ I . Based on the complementary slackness
theorem for models (2) and (4) , we have v?

i = 0 for all i ∈ I. Therefore
if x̂

(p)
ij , p ∈ {1, 2, . . . , q}, j ∈ {1, 2, . . . , n}, i ∈ {1, 2, . . . ,m}, are the

adjusted input values, then (u?, v?) is the feasible solution for model
(4) with adjusted data , and the optimal value will be equal to one.
Therefore, DMUw

k ∈ F and the proof is complete. �

Consider DMU3
3 = c3. Regarding Table 2, this DMU is a weakly effi-

cient subunit.
By setting I = {1} and solving model (7) to evaluate this DMU , we have
θ?
{1} = 0.7469. So, c3 has a non-zero slack variable in this first input.

With regard to Fig. 2. this DMU will remain efficient for any amount
of increase in its first input while other DMUs decrease their first input.
The reverse of Theorem 3.1 does not hold, because DMUw

k will remain
in set F for any amount of increase in its inputs corresponding to set I

while θ
?(w)
sup = 1 and θ

?(w)
I 6 1. That is , for some subunits in set F we

have a slack variable equal to zero in some inputs , and these subunits
will remain in set F with any amount of increase in their inputs.
As we know, if θ

?(w)
sup = 1 then DMUw

k ∈ F ∪ Ē. The sensitivity analysis
for the subunits in set Ē was carried out. Now we consider the subunits
in set Ē. Since the omission these subunits does not change the pps
frontier, any increase/decrease in their input/output will make them in-
efficient. Now, we address the sensitivity analysis of the second group of
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efficient production subunits,i.e., the extreme efficient production sub-
units. Obviously, if θ

?(w)
sup > 1 or model (6) is infeasible then the subunit

under evaluation is an extreme efficient subunit, and the pps from their
will change by omitting this subunit. Therefore, there is the possibility
of perturbations in the inputs and outputs of such subunits. regarding
Fig. 2. d1, d3 and b3 are extreme efficient subunits.
The efficiency frontier will remain unchanged by omitting weakly effi-
cient and non-extreme strongly efficient subunits and model (6) for the
evaluation of these subunits will remain feasible. Thus, the infeasibil-
ity of models (6) and (7) will remain feasible. Thus, the infeasibility
of models (6), (7) will occur only in the evaluation of extreme efficient
subunits.

Theorem 3.2. Suppose DMUw
k is an extreme efficient subunit. Model

(7) for the evaluation of DMUw
k is infeasibel if and only if for any

δi > 1, δ̃i > 1(i ∈ I), DMUw
k remains extreme efficient.

Proof. To prove the if part, suppose model (7) is feasible. then, since
the optimal value of model (7) will the maximum increase proportion
in the input of DMUw

k corresponding to set I, thus the inputs corre-
sponding to set I can not increase infinitely. Therefore, model (7) will
be infeasible.
In order to prove the only if part, suppose the ith input (i ∈ I) increase
by M i and DMUw

k is not extreme efficient. Therefore, DMUw
k is ei-

ther inefficient or non-extreme efficient. By setting DMUw
k in model (2)

and solving the model, we will obtain the optimal solution θ?(w) 6 1,
λ

?(p)
j (j = 1, . . . , n, p = 1, . . . , q, (j, p) 6= (k, w)), and λ

?(w)
k . Therefore,

we will have

∑n
j=1

∑q
p=1, (j,p) 6=(k,w) λ

?(p)
j x

(p)
ij 6 θ?(w)M ix

(w)
ik , i ∈ I∑n

j=1

∑q
p=1, (j,p) 6=(k,w) λ

?(p)
j x

(p)
ij 6 θ?(w)x

(w)
ik 6 x

(w)
ik , i ∈ {1, 2, . . . ,m} − I∑n

j=1

∑q
p=1, (j,p) 6=(k,w) λ

?(p)
j y

(p)
rj > y

(w)
kj , r = 1, . . . , s,

λ
?(p)
j > 0, j = 1, . . . , n, p = 1, . . . , q, (j, p) 6= (k,w),

(8)

Therefore, θ
?(w)
i = θ?M i, i ∈ I, λ

?(p)
j (j = 1, . . . , n, p = 1, . . . , q, (j, p) 6=

(k,w)) will be a feasible solution for model (7), which contradicts the
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infeasibility assumption of model (7). Since M i, i ∈ I, are arbitrary,
then the ith input i ∈ I can increase infinitely while remains extreme
efficient. The proof is complete. �
For the data in Table 1., model (7) for the evaluation of all production
subunits is feasible. If c3, is not included in the production subunits and
there is not any production subunit with a first input equal to 1/3, then
model (7) for the evaluation of b3, setting I = {1}, will be infeasible,
while model (7) will be feasible here. So, the first input of b3 can be
increased by any amount while the first input of the other subunits are
decreased, keeping b3 still extreme efficient.
Regarding the fact that in the infeasibility of model (7) the efficiency
classification of the DMU under evaluation remains unchanged, we sup-
pose that model (7) is feasible.

Theorem 3.3. Suppose DMUw
k is an extreme strongly efficient subunit

and Model (7) for the evaluation of DMUw
k is feasible. If 1 6 δiδ̃i 6

θ
?(w)
i , (i ∈ I), then DMUw

k remains extreme efficient. Furthermore, if
equality holds, that is, δiδ̃i = θ

?(w)
i , (i ∈ I), then DMUw

k remains on the
frontier.

Proof. suppose 1 6 δiδ̃i 6 θ
?(w)
i , (i ∈ I), and DMUw

k does not re-
main extreme efficient when x̂

(w)
ik = δix

(w)
ik and x̂

(p)
ij = x

(p)
ij /δ̃i, i ∈ I.

Therefore, regarding model (6), we have θ
?(w)
sup 6 1 and there exist

λ
(p)
j (j = 1, . . . , n, p = 1, . . . , q, (j, p) 6= (k, w)) such that∑n

j=1

∑q
p=1, (j,p) 6=(k,w) λ

?(p)
j (x(p)

ij /δ̃i) 6 θ
?(w)
sup δix

(w)
ik , i ∈ I∑n

j=1

∑q
p=1, (j,p) 6=(k,w) λ

?(p)
j x

(p)
ij 6 θ

?(w)
sup x

(w)
ik 6 x

(w)
ik , i ∈ {1, 2, . . . ,m} − I∑n

j=1

∑q
p=1, (j,p) 6=(k,w) λ

?(p)
j y

(p)
rj > y

(w)
kj , r = 1, . . . , s,

λ
?(p)
j > 0, j = 1, . . . , n, p = 1, . . . , q, (j, p) 6= (k,w),

(9)

This means that λ
(p)
j (j = 1, . . . , n, p = 1, . . . , q, (j, p) 6= (k, w)), θ

?(w)
sup δiδ̃i

is a feasible solution for model (7). However θ
?(w)
sup δiδ̃i 6 θ

?(w)
sup θ

?(w)
I 6

θ
?(w)
I , which contradicts the optimality of θ

?(w)
I . Therefore, DMUw

k re-
mains extreme strong efficient.
Suppose δiδ̃i = θ

?(w)
i , (i ∈ I), and DMUw

k does not remain efficient.



DEA SENSITIVITY ANALYSIS FOR PARALLEL.... 89

Then, regarding model (6) we have θ
?(w)
sup < 1. with regard to con-

straints of model (7), we have θ
?(w)
sup δiδ̃i 6 θ

?(w)
sup θ

?(w)
I < θ

?(w)
I which is a

contradiction to the optimality of θ
?(w)
I . Therefore, DMUw

k will remain
remain efficient efficient, and the proof is complete. �
Now, consider the extreme efficient subunits b3, d1, d3,. Model (7) for the
evaluation of these subunits, setting I = {1} or I = {2} or I = {1, 2},
is feasible.
d1 remains extreme efficient when it increases its first input while other
subunits decrease their first inputs and inequality 1 6 δ1δ̃1 6 1.669
holds. Regarding its second input, it can preserve its efficiency clas-
sification when it increases its second input while other subunits de-
crease their second inputs such that inequality 1 6 δ2δ̃2 6 1.5 holds. If
1 6 δiδ̃i = 1.5, then d1 coincides f1 and both become extreme efficient,
and the efficiency classification of d1 is preserved. If d1 aims only to re-
main on the frontier, its second input can be increased by any amount.
Considering d3, which is an extreme efficient subunit, the first input
can be increased while other subunit decrease their first inputs while in-
equality 1 6 δ1δ̃1 6 1.473 holds, in order for d3 to preserve its efficiency
classification. The second input of d3 can be increased while those of
other subunits are decrease as long as inequality 1 6 δ2δ̃2 6 2.479 holds,
so that d3 preserves its efficiency classification.
As regards b3, it can preserve its efficiency classification if its first input
is increased while the first inputs of other subunits are decreased and
equality 1 6 δ1δ̃1 6 1.336 holds. If δ1δ̃1 = 1.336, then b3 coincides c3

and both become extreme efficient. Moreover, b3 can remain in its ef-
ficiency classification, if its second input is increased while the second
input of other subunits are decreased and inequality 1 6 δ2δ̃2 6 1.113
holds. If δ2δ̃2 = 1.113 then b3 is projected onto a non-extreme strong
efficient point on the frontier.
By considering output-oriented models similar to the input-oriented
ones, we can deal with the sensitivity analysis of these models and obtain
results similar to those of the input-oriented models.
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4. Conclusion

This paper addressed networks composed of several production units ,
each one composed of subunits operating in parallel to each other. Since
each subunits is working independently of other subunits , it can be
considered as a separate DMU. By considering the pps produced by these
subunits , we introduced model for obtaining the efficiency classifications
, using super-efficiency models , and later we addressed the issue of
seusitivity analysis and stability of the efficiency classification. In future
works, sensitivity analysis of these models , assuming variable returns to
scale with absolute perturbations in the data. The problem can also be
extended and developed by considering the subunits operating in series
or a mix of series and parallel operation models.
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