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Abstract. In this paper, a novel hybrid method based on fuzzy neu-
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considered as a part of a large field called neural computing or soft
computing. Moreover, in order to find the approximate parameters, a
simple algorithm from the cost function of the fuzzy neural network is
proposed.

AMS Subject Classification: 34k28; 97N40; 62M45; 82C32.

Keywords and Phrases: Fuzzy neural networks, Fuzzy number, learn-
ing algorithm.

1. Introduction

Supply and demand is an economic model of price determination in a

market. The price p of a product is determined by a balance between

production at each price (supply S) and the desires of those with pur-

chasing power at each price (demand D). The market price of a good and

the quantity produced are determined by the equality between supply
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and demand. Suppose that demand and supply are linear functions of

the price ([20]):
{

qd = bp + c,

qs = ep + f,

where qs is the quantity supplied, which is required to be equal to qd, the

quantity requested, p is the fuzzy price and b, c, e and f are coefficients

to be estimated, where the coefficients b, c, e and f are represented by

fuzzy triangular numbers. By imposing the equality between quantity

supplied and requested, the following general fuzzy linear system should

be solved:
{

x1 = bx2 + c,

x1 = ex2 + f.

We refer the reader to Ooldridje [23] for more information on supply and

demand linear function.

The concept of fuzzy numbers and fuzzy arithmetic operations were first

introduced by Zadeh ([25]), Dubois and Prade ([10]). We refer the reader

to ([16]) for more information on fuzzy numbers and fuzzy arithmetic.

One of the major applications of fuzzy number arithmetic is treating

fuzzy linear systems and fuzzy regression models ([21,22,23]). Friedman

et al. ([12]) introduced a general model for solving a fuzzy n × n linear

system whose coefficient matrix is crisp and the right-hand side column

is an arbitrary fuzzy number vector. They used the parametric form of

fuzzy numbers and replaced the original fuzzy n × n linear system by a

crisp 2n × 2n linear system and studied duality in fuzzy linear systems

AX = BX + Y where A , B are real n × n matrix, the unknown vector

X is vector consisting of n fuzzy numbers and the constant Y is vector

consisting of n fuzzy numbers, in [13]. In [1, 2, 3, 4, 8] the authors pre-

sented conjugate gradient, LU decomposition method for solving general

fuzzy linear systems or symmetric fuzzy linear systems. Also, Wang et

al. ([24]) presented an iterative algorithm for solving dual linear system

of the form X = AX + U , where A is real n × n matrix, the unknown

vector X and the constant U are all vectors consisting of fuzzy numbers.

In this paper, we first propose an architecture of fuzzy neural network

(FNN) with fuzzy weights for fuzzy input vectors and fuzzy targets to

find approximate solution to fully fuzzy linear systems like Ax = Bx+d,
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where A, B are fuzzy matrices and d is a fuzzy vector.

2. Preliminaries

In this section the basic notations used in fuzzy calculus are introduced.

Definition 2.1. [15, 18]. A fuzzy number u is a pair (u, u) of functions

u(r) and u(r), 0 6 r 6 1, which satisfy the following requirements:

i. u(r) is a bounded monotonically increasing, left continuous func-

tion on (0, 1] and right continuous at 0.

ii. u(r) is a bounded monotonically decreasing, left continuous func-

tion on (0, 1] and right continuous at 0.

iii. u(r) 6 u(r), 0 6 r 6 1.

A crisp number r is simply represented by u(α) = u(α) = r, 0 6 α 6 1.

The set of all the fuzzy numbers is denoted by E1.

A popular fuzzy number is the triangular fuzzy number u = (um, ul, ur)

where um denotes the modal value and the real values ul > 0 and ur > 0

represent the left and right fuzziness, respectively. The membership

function of a triangular fuzzy number is defined by:

µu(x) =



















x−um

ul
+ 1, um − ul 6 x 6 um,

um−x
ur

+ 1, um 6 x 6 um + ur,

0, otherwise.

Its parametric form is

u(α) = um + ul(α − 1), u(α) = um + ur(1 − α).

Triangular fuzzy numbers are fuzzy numbers in LR representation where

the reference functions L and R are linear. The set of all triangular fuzzy

numbers on R is called F̂Z.

2.1 Operations on Fuzzy Numbers

We briefly mention fuzzy number operations defined by the extension

principle ([25]). Since input vector of feedforward neural network is
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fuzzified in this paper, the operations we use in our fuzzy neural network

are fuzzified by means of the extension principle as follows:

µA+B(z) = max{µA(x) ∧ µB(y)|z = x + y},

µAB(z) = max{µA(x) ∧ µB(y)|z = xy},

µf(Net)(z) = max{µNet(x)|z = f(x)},

where A, B and Net are fuzzy numbers, µ∗(.) denotes the membership

function of each fuzzy number, ∧ is the minimum operator, and f(.) is a

continuous activation function (such as f(x)=x) inside units of our fuzzy

neural network.

The above operations of fuzzy numbers are numerically performed on

level sets. The h-level set of a fuzzy number X is defined by

[X]h = {x ∈ R|µX(x) > h} for 0 < h 6 1,

and [X]0 =
⋃

h∈(0,1][X]h. Since level sets of fuzzy numbers become closed

intervals, we denote [X]h by

[X]h = [[X]Lh , [X]Uh ],

where [X]Lh and [X]Uh are the lower and the upper limits of the h-level

set [X]h, respectively.

From interval arithmetic ([5]), the above operations on fuzzy numbers

are written for h-level sets as follows:

A = B ⇐⇒ [A]h = [B]h for 0 < h 6 1, (1)

[A + B]h = [[A]Lh + [B]Lh , [A]Uh + [B]Uh ], (2)

[A.B]h = [[A]Lh , [A]Uh ].[[B]Lh , [B]Uh ] =

[min{[A]Lh .[B]Lh , [A]Lh .[B]Uh , [A]Uh .[B]Lh , [A]Uh .[B]Uh },

max{[A]Lh .[B]Lh , [A]Lh .[B]Uh , [A]Uh .[B]Lh , [A]Uh .[B]Uh }],

(3)

f([Net]h) = f([[Net]Lh , [Net]Uh ]) = [f([Net]Lh ), f([Net]Uh )], (4)
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where f is an increasing function. In the case of 0 6 [A]Lh 6 [A]Uh , (3)

can be simplified as

[A.B]h = [min{[A]Lh .[B]Lh , [A]Lh .[B]Uh }, max{[A]Uh .[B]Lh , [A]Uh .[B]Uh }]. (5)

The result of a fuzzy addition of triangular fuzzy numbers is a triangular

fuzzy number again. So we only have to compute the following equation:

(am, al, ar) + (bm, bl, br) = (am + bm, al + bl, ar + br) (6)

Considering the fuzzy multiplication, some computational expense prob-

lems can be investigated. The result of a fuzzy multiplication is a fuzzy

number in LR representation, but it is difficult to compute the new

functions L and R because they are not necessarily linear. We approxi-

mate this fuzzy multiplication such that it computes a triangular fuzzy

number too. This fuzzy multiplication is denoted by ∗̂ ([11]).

This fuzzy multiplication is based on the extension principle but is a

bit different from the classical fuzzy multiplication. We compute our

operation by the following equation:

(am, al, ar)∗̂(bm, bl, br) = (cm, cl, cr) (7)

with

cm = am.bm, cl = cm − cλ, cr = cρ − cm,

cλ := min(aλ.bλ, aλ.bρ, aρ.bλ, aρ.bρ)

cρ := max(aλ.bλ, aλ.bρ, aρ.bλ, aρ.bρ),

where aλ = am − al and aρ = am + ar. aλ and aρ denote the left and

right limits of the support of fuzzy the number a.

The use of these fuzzy operations has some advantages:

• The distributivity of these operations is retained. This is very

important for our theoretical examinations.

• The computational expense is acceptable.

• The idea of fuzzy sets is preserved even if a fuzzy number is char-

acterized by only three values.
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We describe the classical definition of distance between fuzzy numbers

[11]:

Definition 2.1.1. For arbitrary fuzzy number u = (um+ul(α−1), um+
ur(1−α)) and real positive number k, we define a new operation ⊚ such
that:

(um+ul(α−1), um+ur(1−α))⊚k = (−k(um+ul(α−1)),−k(um+ur(1−α))).

Definition 2.1.2. The mapping d̂ : F̂Z × F̂Z −→ R
+ is defined by

d̂(A, B) = max(|am − bm|, |aλ − bλ|, |aρ − bρ|),

where A = (am, al, ar) and B = (bm, bl, br). It can be proved that d̂ is a

metric on F̂Z and so (F̂Z, d̂) becomes a metric space.

3. Fully Fuzzy Linear Systems and Applications

in Economics

We are interested in finding approximate solution of fuzzy linear equa-

tion systems of the form


















a11x1 + a12x2 + · · · + a1nxn = b11x1 + b12x2 + · · · + b1nxn + d1,

a21x1 + a22x2 + · · · + a2nxn = b21x1 + b22x2 + · · · + b2nxn + d2,
...

...
...

...
...

...
...

an1x1 + an2x2 + · · · + annxn = bn1x1 + bn2x2 + · · · + bnnxn + dn.

(8)

Let A = (aij)n×n, B = (bij)n×n, d = (d1, d2, . . . , dn)T and x =

(x1, x2, . . . , xn)T . Then Eq.(8) can be written as:

Ax = Bx + d, (9)

where A and B are two square matrices of fuzzy number entries and the

unknown x and the known d are two vectors whose components are n

fuzzy numbers.

Usually, there is no inverse element for an arbitrary fuzzy number u ∈

E1, i.e., there exists no element v ∈ E1 such that

u + v = 0.
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Actually, for all non-crisp fuzzy number u ∈ E1 we have

u + (−u) 6= 0.

Therefore, the fuzzy linear equation system (9) cannot be equivalently

replaced by the fuzzy linear equation system

(A − B)x = d

which had been investigated. In the sequel, we will call the fuzzy linear

system (9), a fully fuzzy linear system.

How does the FNN3 (fuzzy neural network with fuzzy input, output

signals and fuzzy weights) solve the dual fully fuzzy linear systems?

First let us build a FNN3 equivalent to the fully fuzzy linear system.

The network is shown in Fig.1. Neurons 1, 2, . . . , 2n have output equal

to input, and neurons 2n + 1 and 2n + 3 add their inputs to produce

output.

Input

units

ai1

ai2

ain

w1 = x1

w2 = x2

wn = xn

bi1

bi2

bin

w1 = x1

w2 = x2

wn = xn

Hidden

units

yi

1

Output

unit

1

.

.

.

.

.

.

.

.

.

.

.

.

2

n

n+1

n+2

2n

2n+1

2n+2

2n+3

1

Fig. 1. Fuzzy neural network for solving fully fuzzy linear systems.
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Now suppose that we do not know x = (x1, x2, . . . , xn) and we try to

find x∗ = (x∗

1, x
∗

2, . . . , x
∗

n)T such that if

Ax = Bx + y, (10)

so that the output from the network yi, when the inputs are

ai1, ai2, . . . , ain, bi,1, bi2, . . . , bin,

is approximately di, all i, i.e.,

min ‖[y]Lh − [d]Lh‖ and min ‖[y]Uh − [d]Uh ‖, h ∈ [0, 1], (11)

or

min ‖[Ax]Lh−[Bx]Lh−[d]Lh‖ and min ‖[Ax]Uh −[Bx]Uh −[d]Uh ‖, h ∈ [0, 1],

or

min d̂(yi, di) for all i = 1, 2, . . . , n, (12)

then, it becomes a problem of optimization. Therefore, neuron 2n + 2

add their inputs and use ⊚ for k = 1.

3.1 Input-Output Relation of Each Unit

Let us fuzzify a three-layer feedforward neural network with 2n input

units, two hidden units and one output unit. Input vectors, targets and

connection weights are fuzzified (i.e., extended to fuzzy numbers). In

order to derive a crisp learning rule, we restrict fuzzy weights, fuzzy

inputs and fuzzy target within triangular fuzzy numbers.

The input-output relation of each unit of the fuzzified neural network

can be written as follows:

• Input units:

oij = aij , i, j = 1, 2, . . . , n,

mij = bij , i, j = 1, 2, . . . , n.
(13)
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• Hidden units:

f(Ui) = Ui,

Ui = oi1∗̂w1 + . . . + oin∗̂wn, i = 1, 2, . . . , n,
(14)

and

g(Vi) = Vi ⊚ 1,

Vi = mi1∗̂w1 + . . . + min∗̂wn, i = 1, 2, . . . , n.
(15)

• Output unit:

yi = f(Ui) + g(Vi), (16)

where aij and bij are fuzzy inputs and wj is a fuzzy weight (see Fig.1).

3.2 Learning Fuzzy Neural Network

Consider the learning algorithm of the fuzzy feedforward neural network

as shown in Figure 1. Let the h-level sets of the target output di, i =

1, . . . , n be denoted

[di]h = [[di]
L
h , [di]

U
h ], i = 1, . . . , n, (17)

where dL
i (h) shows the left-hand side and dU

i (h) the right-hand side of

the h-level sets of the desired output.

A cost function to be minimized is defined for each h-level sets as follows:

[E(w1, . . . , wn)]h = [E(w1, . . . , wn)]Lh + [E(w1, . . . , wn)]Uh , (18)

where

[E(w1, . . . , wn)]Lh =
1

2

n
∑

i=1

([yi]
L
h − [di]

L
h )2,

[E(w1, . . . , wn)]Uh =
1

2

n
∑

i=1

([yi]
U
h − [di]

U
h )2.

Hence [E(w1, . . . , wn)]L
h

denotes the error between the left-hand sides of the h-

level sets of the desired and the computed output, and [E(w1, . . . , wn)]Uh denotes
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the error between the right-hand sides of the h-level sets of the desired

and the computed output.

In the research of neural networks, the norm ‖.‖ is often defined as
follows:

[E(w1, . . . , wn)]Lh =
1

2

n
∑

i=1

([yi]
L
h − [di]

L
h )2 =

1

2

n
∑

i=1

(
n

∑

j=1

[aijwj ]
L
h −

n
∑

j=1

[bijwj ]
L
h − [di]

L
h )2,

(19)

[E(w1, . . . , wn)]Uh =
1

2

n
∑

i=1

([yi]
U
h − [di]

U
h )2 =

1

2

n
∑

i=1

(
n

∑

j=1

[aijwj ]
U
h −

n
∑

j=1

[bijwj ]
U
h − [di]

U
h )2.

Clearly, this is a problem of optimization of quadratic functions without

constrains that can usually be solved by gradient descent algorithm. In

fact, denoting

[∇E(W )]Lh = ([
∂E(W )

∂w1
]Lh , . . . , [

∂E(W )

∂wn
]Lh )T ,

[∇E(W )]Uh = ([
∂E(W )

∂w1
]Uh , . . . , [

∂E(W )

∂wn
]Uh )T ,

in order to solve equation (11), assume k iterations to have been done

and get the kth iteration point Wk.

Remark 3.2.1. Since the equations (19) are quadratic functions, sup-

posing 0 6 [aij ]
L
h 6 [aij ]

U
h , 0 6 [bij ]

L
h 6 [bij ]

U
h and 0 6 [wj ]

L
h 6 [wj]Uh for

i, j = 1, . . . , n, we rewrite them as follows:

[E(W )]Lh = 1
2

∑n
i=1(

∑n
j=1[aijwj ]

L
h −

∑n
j=1[bijwj ]

L
h − [di]

L
h )2

= 1
2([W ]Lh )T [Q]Lh [W ]Lh + 1

2([W ]Lh )T [P ]Lh [W ]Lh + [C]Lh

+([W ]Lh )T [Q́]Lh [W ]Lh + ([Á]Lh )T [W ]Lh + ([B́]Lh )T [W ]Lh ,
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where

[Q]Lh = [(qij)n×n]Lh , [Q́]Lh = [(q́ij)n×n]Lh ,

[P ]Lh = [(pij)n×n]Lh , [B́]Lh = ([b́1]
L
h , [b́2]

L
h , . . . , [b́n]Lh )T ,

[Á]Lh = ([á1]
L
h , [á2]

L
h , . . . , [án]Lh )T , [C]Lh = 1

2

∑n
i=1([di]

L
h )2,

[qij ]
L
h =

∑n
k=1[aki]

L
h [akj ]

L
h , [pij ]

L
h =

∑n
k=1[bki]

L
h [bkj ]

L
h ,

[q́ij ]
L
h = −

∑n
k=1[aki]

L
h [bkj ]

L
h ,

with [qij ]
L
h = [qji]

L
h , [pij ]

L
h = [pji]

L
h , [ái]

L
h = −

∑n
k=1[aki]

L
h [dk]

L
h and

[b́i]
L
h =

∑n
k=1[bki]

L
h [dk]

L
h .

We have

[∇E(W )]Lh = [Q]Lh [W ]Lh +[P ]Lh [W ]Lh +[Q′′]Lh [W ]Lh +([Q′′′]Lh )T [W ]Lh +[Á]Lh +[B́]Lh ,

(20)

where

[Q′′]Lh = [(q′′ij)n×n]Lh , [Q′′′]Lh = [(q′′′ij )n×n]Lh ,

[q′′ij ]
L
h =











2[q́ij ]
L
h , i = j,

[q́ij ]
L
h , i 6= j,

[q′′′ij ]
L
h =











0, i = j,

[q́ij ]
L
h , i 6= j,

and

[E(W )]Uh = 1
2

∑n
i=1(

∑n
j=1[aijwj ]

U
h −

∑n
j=1[bijwj ]

U
h − [di]

U
h )2

= 1
2([W ]Uh )T [Q]Uh [W ]Uh + 1

2([W ]Uh )T [P ]Uh [W ]Uh + [C]Uh

+([W ]Uh )T [Q́]Uh [W ]Uh + ([Á]Uh )T [W ]Uh + ([B́]Uh )T [W ]Uh ,
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where

[Q]Uh = [(qij)n×n]Uh , [Q́]Uh = [(q́ij)n×n]Uh ,

[P ]Uh = [(pij)n×n]Uh , [B́]Uh = ([b́1]
U
h , [b́2]

U
h , . . . , [b́n]Uh )T ,

[Á]Uh = ([á1]
U
h , [á2]

U
h , . . . , [án]Uh )T , [C]Uh = 1

2

∑n
i=1([di]

U
h )2,

[qij ]
U
h =

∑n
k=1[aki]

U
h [akj ]

U
h , [pij ]

U
h =

∑n
k=1[bki]

U
h [bkj ]

U
h ,

[q́ij ]
U
h = −

∑n
k=1[aki]

U
h [bkj ]

U
h ,

with [qij ]
U
h = [qji]

U
h , [pij ]

U
h = [pji]

U
h , [ái]

U
h = −

∑n
k=1[aki]

U
h [dk]

U
h and

[b́i]
U
h =

∑n
k=1[bki]

U
h [dk]

U
h .

We have

[∇E(W )]Uh = [Q]Uh [W ]Uh +[P ]Uh [W ]Uh +[Q′′]Uh [W ]Uh +([Q′′′]Uh )T [W ]Uh +[Á]Uh +[B́]Uh ,

(21)

where

[Q′′]Uh = [(q′′ij)n×n]Uh , [Q′′′]Uh = [(q′′′ij )n×n]Uh ,

[q′′ij ]
U
h =











2[q́ij ]
U
h , i = j,

[q́ij ]
U
h , i 6= j,

[q′′′ij ]
U
h =











0, i = j,

[q́ij ]
U
h , i 6= j.

To find the stationary point of [E(W )]h = ([E(W )]Lh , [E(W )]Uh ), we

should put

[∇E(W )]Lh = [∇E(W )]Uh = 0 , (0, 0, . . . , 0)T .

When

[Q]Lh + [P ]Lh + [Q′′]Lh + ([Q′′′]Lh )T
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and

[[Q]Uh + [P ]Uh + [Q′′]Uh + ([Q′′′]Uh )T

are positive definite matrices, the stationary point can be obtained as

follows ([17]):

[W ∗]Lh = −([Q]Lh + [P ]Lh + [Q′′]Lh + ([Q′′′]Lh )T )−1(−[Á]Lh − [B́]Lh ), (22)

[W ∗]Uh = −([Q]Uh + [P ]Uh + [Q′′]Uh + ([Q′′′]Uh )T )−1(−[Á]Uh − [B́]Uh ).

The Hessian matrices at this point are

[∇2E(W ∗)]Lh = [∇(∇E(W ∗))]Lh = [Q]Lh + [P ]Lh + [Q′′]Lh + ([Q′′′]Lh )T ,

and

[∇2E(W ∗)]Uh = [∇(∇E(W ∗))]Uh = [Q]Uh + [P ]Uh + [Q′′]Uh + ([Q′′′]Uh )T ,

if [∇2E(W ∗)]Lh and [∇2E(W ∗)]Uh be positive definite matrices, from op-

timization theory, we known that

[W ∗]h = ([W ∗]Lh , [W ∗]Uh ) = (−([Q]Lh + [P ]Lh + [Q′′]Lh+

([Q′′′]Lh )T )−1(−[Á]Lh − [B́]Lh ),

−([Q]Uh + [P ]Uh + [Q′′]Uh + ([Q′′′]Uh )T )−1(−[Á]Uh − [B́]Uh )),

is the unique solution of the problem.

Remark 3.2.2. The above method is not very convenient in applica-
tions. Now we consider its explicit scheme. Since

[∇E(W )]Lh = [Q]Lh [W ]Lh +[P ]Lh [W ]Lh +[Q′′]Lh [W ]Lh +([Q′′′]Lh )T [W ]Lh +[Á]Lh +[B́]Lh

and

[∇E(W )]Uh = [Q]Uh [W ]Uh + [P ]Uh [W ]Uh + [Q′′]Uh [W ]Uh

+([Q′′′]Uh )T [W ]Uh + [Á]Uh + [B́]Uh ,

then

[∇E(Wk)]
L
h = [Q]Lh [Wk]

L
h + [P ]Lh [Wk]

L
h + [Q′′]Lh [Wk]

L
h

+([Q′′′]Lh )T [Wk]
L
h + [Á]Lh + [B́]Lh
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and

[∇E(Wk)]
U
h = [Q]Uh [Wk]

U
h + [P ]Uh [Wk]

U
h + [Q′′]Uh [Wk]

U
h

+([Q′′′]Uh )T [Wk]
U
h + [Á]Uh + [B́]Uh .

We know that [17]

([∇E(Wk+1)]
L

h )T [∇E(Wk)]Lh = 0, ([∇E(Wk+1)]
U

h )T [∇E(Wk)]Uh = 0,

therefore we have

{[Q]Lh ([Wk]Lh − [µk]Lh [∇E(Wk)]Lh ) + [P ]Lh ([Wk]Lh − [µk]Lh [∇E(Wk)]Lh )

+[Q′′]Lh ([Wk]Lh − [µk]Lh [∇E(Wk)]Lh ) + ([Q′′′]Lh )T ([Wk]Lh − [µk]Lh [∇E(Wk)]Lh )

+[Á]Lh + [B́]Lh}
T {[Q]Lh [Wk]Lh + [P ]Lh [Wk]Lh + [Q′′]Lh [Wk]Lh + ([Q′′′]Lh )T [Wk]Lh

+[Á]Lh + [B́]Lh} = 0

and

{[Q]Uh ([Wk]Uh − [µk]Uh [∇E(Wk)]Uh ) + [P ]Uh ([Wk]Uh − [µk]Uh [∇E(Wk)]Uh )

+[Q′′]Uh ([Wk]Uh − [µk]Uh [∇E(Wk)]Uh ) + ([Q′′′]Uh )T ([Wk]Uh − [µk]Uh [∇E(Wk)]Uh )

+[Á]Uh + [B́]Uh }
T {[Q]Uh [Wk]Uh + [P ]Uh [Wk]Uh + [Q′′]Uh [Wk]Uh + ([Q′′′]Uh )T [Wk]Uh

+[Á]Uh + [B́]Uh } = 0

Rearranging them, we have:

([∇E(Wk)]Lh − [µk]Lh [Q]Lh [∇E(Wk)]Lh − [µk]Lh [P ]Lh [∇E(Wk)]Lh

−[µk]Lh [Q′′]Lh [∇E(Wk)]Lh − [µk]Lh ([Q′′′]Lh )T [∇E(Wk)]Lh )T [∇E(Wk)]Lh = 0,

and

([∇E(Wk)]Uh − [µk]Uh [Q]Uh [∇E(Wk)]Uh − [µk]Uh [P ]Uh [∇E(Wk)]Uh

−[µk]Uh [Q′′]Uh [∇E(Wk)]Uh − [µk]Uh ([Q′′′]Uh )T [∇E(Wk)]Uh )T [∇E(Wk)]Uh = 0.

From these equations, we can easily get an expression for [µk]
L
h and

[µk]
U
h :

[µk]Lh =
([∇E(Wk)]L

h
)T [∇E(Wk)]L

h

[Γ]L
h

(23)

and

[µk]
U
h =

([∇E(Wk)]
U
h )T [∇E(Wk)]

U
h

[Γ]Uh
. (24)
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where

[Γ]Lh = ([∇E(Wk)]
L
h )T [Q]Lh [∇E(Wk)]

L
h +([∇E(Wk)]

L
h )T [P ]Lh [∇E(Wk)]

L
h+

([∇E(Wk)]
L
h )T ([Q′′]Lh )T [∇E(Wk)]

L
h + ([∇E(Wk)]

L
h )T [Q′′′]Lh [∇E(Wk)]

L
h ,

and

[Γ]Uh = ([∇E(Wk)]
U
h )T [Q]Uh [∇E(Wk)]

U
h +([∇E(Wk)]

U
h )T [P ]Uh [∇E(Wk)]

U
h +

([∇E(Wk)]
U
h )T ([Q′′]Uh )T [∇E(Wk)]

U
h + ([∇E(Wk)]

U
h )T [Q′′′]Uh [∇E(Wk)]

U
h .

Substituting these into equations, we obtain ([14])

Wk+1 = Wk + ∆Wk,

∆Wk = −µk∇E(Wk),
(25)

where k indexes the number of adjustments and µk = ([µk]
L
h , [µk]

U
h ) is a

learning rate, we have the explicit scheme

[Wk+1]
L
h = [Wk]

L
h −

([∇E(Wk)]
L
h )T [∇E(Wk)]

L
h

[Γ]Lh
[∇E(Wk)]

L
h , (26)

and

[Wk+1]
U
h = [Wk]

U
h −

([∇E(Wk)]
U
h )T [∇E(Wk)]

U
h

[Γ]Uh
[∇E(Wk)]

U
h . (27)

We can also obtain similar relations for [aij ]
L
h 6 [aij ]

U
h 6 0 and [wj ]

L
h 6

[wj]Uh 6 0, i, j = 1, . . . , n, and other cases.

The fully fuzzy linear system may have no solution. In this case there

is no hope to make the error measure close to zero.

3.3 Estimation of Fuzzy Linear Demand and Supply

Suppose that demand and supply are linear functions of the price:

{

qd = b ∗ p + c,

qs = e ∗ p + f,
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where qs is the quantity supplied, which is required to be equal to qd, the

quantity requested, p is the fuzzy price and b, c, e and f are coefficients

to be estimated, where the coefficients b, c, e and f are represented by

fuzzy triangular numbers. By imposing the equality between quantity

supplied and requested, the following general dual fuzzy linear system

should be solved:
{

x1 = bx2 + c,

x1 = ex2 + f.

Shortcoming of the Existing Methods

In this section, the shortcoming of the existing methods ([1, 2, 3, 4, 8,

6, 7, 12, 13, 24]) for solving fuzzy linear systems are pointed out.

1. Friedman et al. ([12, 13]) introduced a general model for solving a

fuzzy n×n linear system whose coefficient matrix is crisp and the

right-hand side column is an arbitrary fuzzy number vector also in

([1, 2, 3, 4, 8, 6, 7]) the authors presented conjugate gradient, LU

decomposition method for solving general fuzzy linear systems or

symmetric fuzzy linear systems. Also, Wang et al. ([24]) presented

an iterative algorithm for solving dual linear system of the form

X = AX +U , where A is real n×n matrix, the unknown vector X

and the constant U are all vectors consisting of fuzzy numbers. The

existing methods ([1, 2, 3, 4, 8, 6, 7, 12, 13, 24]) are applicable only

if all the elements of the coefficient matrix are real numbers, e.g.,

it is not possible to find the solution of FFLS, chosen in following

Example.

2. Dehghan et al. ([9]) considered fully fuzzy linear systems (FFLS)

of the form Ã⊗x̃ = b̃ where Ã is a fuzzy n×n matrix, the unknown

vector x̃ is a vector consisting of n fuzzy numbers and the constant

b̃ is a vectors consisting of n fuzzy numbers . The existing method

([9]) is applicable only if all the elements of the coefficient matrix

and right hand side vector are non-negative fuzzy numbers, e.g.,

it is not possible to find the solution of FFLS, chosen in following

Example by using the existing method ([9]) due to the existence
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of −(3, 1, 1) which is not the non-negative fuzzy number.

In this paper, we suppose that b = −(3, 1, 1), c = (16, 1, 2), e =

(2, 1, 1) and f = (6, 4, 1). In order to get the classical solution, we

solve the following system:

{

x1 = −(3, 1, 1)x2 + (16, 1, 2),
x1 = (2, 1, 1)x2 + (6, 4, 1).

The training starts with W1(1) = (7, 0.5, 0.5),

W2(1) = (1, 0.3, 0.2)

We get approximate solution of fuzzy linear system of demand and

supply in Matlab code W1(15) = (10, 6.9989, 6.0010), W2(15) =

(2, 0.9991, 1.001).

We can apply this method, for another case study.

3.4 Algorithm

Step 1: Read K (number of iterations), wj (fuzzy weights wj

are initialized values), (ai1, . . . , ain, bi1, . . . , bin, d1, ..., dn) for i =

1, 2, ..., n.

Step 2: Compute

[E(w1, . . . , wn)]h = [E(w1, . . . , wn)]Lh + [E(w1, . . . , wn)]Uh .

Step 3: Compute µk = ([µk]
L
h , [µk]

U
h ) is a learning rate.

Step 4: The fuzzy weight W T = (w1, . . . , wn)T is updated by the

Eq. (26) or Eq. (27).

Step 5: If k < K then k := k +1 and we continue the training by

going back to step 2, otherwise we go to step 6.

Step 6: The training cycle is completed.
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