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Abstract. The purpose of the present paper is to introduce a class
D';‘E;CO(B) of bi-concave functions defined by a differential operator. We
find estimates on the Taylor-Maclaurin coefficients |az| and |as| for func-
tions in this class. Several consequences of these results are also pointed
out in the form of corollaries.
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1. Introduction

Let A indicate an analytic function family, which is z € C' (C=complex
numbers) normalized under the condition of f(0) = f/(0) =1 =0 in
A ={z:z€ and |z| < 1} and given by the following Taylor-Maclaurin
series:

fz)=z+ Zanz”. (1)
n=2

Further, by S we shall denote the class of all functions in A which are
univalent in A.
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It is well known that every function f € S has an inverse f~!, satisfying

) =2 (z€A)and f (f71 () = w, (jwl <70 (f)sm0(f) = 7),

where
fHw) =w - agw® + (Qa%—ag)w?’— (5a§—5a2a3+a4)w4+... ,

(for details, see Duren [16]). A function f € A is said to be bi-univalent
in A if both f and f~! are univalent in A. Let ¥ stand for the class
of bi-univalent functions defined in the unit disk A. For a brief history
of functions in the class, see [27] Srivastava 2010 (see also [11, 12, 20,
22]). More recently, Srivastava et al. [27], Altinkaya and Yalcin [3] made
an effort to introduce various subclasses of the bi-univalent function class
> and found non-sharp coefficient estimates on the initial coefficients
laz| and |as| (see also [7], [17]). But determination of the bounds for the
coeffcients

lan|, mneN\{1,2}; N={1,2,3,...},

is still an open problem. In the literature, there are only a few works de-
termining the general coefficient bounds |a,,| for the analytic bi-univalent
functions (see, for Example [4, 18, 29]).

The study of operators plays an important role in the Geometric Func-
tion Theory and its related fields. It is observed that this formalism
brings an ease in further mathematical exploration and also helps to
understand the geometric properties of such operators better (see, for
example [2, 13, 19] and [21]). Recently, Darus and Ibrahim [15] intro-
duced a differential operator

ij? A — A,

by
k,a . « a1k n+6—1 n
Dy§f(z) =2+ [0+ (n—1)n) s )an
n=2

where z € A and k,a € Ng = NU {0}, X\,0 > 0.

It should be remarked that the operator Di’g is a generalization of many
other linear operators studied by earlier researchers. Namely:
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efora=1, A=0;, d =0o0ora= d=0; A =1, the operator
Dg:(l) = D’fzg = D" is the popular Salagean operator [26],

e for « =0, d = 0, the operator Di’g = D’f\ has been studied by
Al-Oboudi (see [1]),

e for a = 0, the operator Di’g = D1§\75 has been studied by Darus
and Ibrahim (see [15]),

e for k = 0, the operator D];’g‘ = D? has been studied by Ruscheweyh
(see [24]).

2. Preliminaries

Conformal maps of the unit disk onto convex domains is a classical
topic. Recently Avkhadiev and Wirths [8] discovered that conformal
maps onto concave domains (the complements of convex closed sets)
have some novel properties.

A function f: A — C is said to belong to the family Cy(/3) if f satisfies
the following conditions:

e fis analytic in A with the standard normalization f(0) = f’(0) —
1 = 0. In addition it satisfies f(1) = oo.

e f maps A conformally onto a set whose complement with respect
to C is convex.

e The opening angle of f(A) at oo is less than or equal to 73, 8 €
(1,2].

The class Cy(B) is referred to as the class of concave univalent func-
tions and for a detailed discussion about concave functions, we refer to
Avkhadiev et al.[9], Cruz and Pommerenke [14] and references there in.

In particular, the inequality

R <1 + Z;,Zi?) <0, (z € A),
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is used - sometimes also as a definition - for concave functions f € Cp,
(see e.g. [23] and others).

Bhowmik et al. [10] showed that an analytic function f maps A onto a

concave domain of angle (3, if and only if R(Ps(z)) > 0, where

2 [BH1142 1"(z)
BO=53 % 12" e

There has been a number of investigations on basic subclasses of concave

univalent functions (see, for example [5, 6] and [25]).

Let us recall now the following definition required in sequel.

Definition 2.1. (see [28]) Let the functions h,p : A — C be so con-
strained that

min {R (h (2)), R (p(2))} >0,

and
B(0) =p(0)=1.

Motivated by each of the above definitions, we now define a new subclass
of bi-concave analytic functions involving DI;’? differential operator.

Definition 2.2. A function f € ¥ given by (1) is said to be in the class
DYSCy(B)  (k,a€Ng=NU{0}; \,d>0; B€(1,2]; z,weA)

if the following conditions are satisfied:

Dk’o‘f "

& 6311+Z—1—2[Z50ﬂ, cha. @
v o [DYs1(2)]
and
k.o "

2 |[f+11-w [Dxiag(w)}
—1l-wr———7] €p(d), (3)

-1 2 14w [D’;;j;g(w)}
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3. Main Results and Their Consequences

We begin by finding the estimates on the coefficients |az| and |as| for
functions in the class DYYCo(3).

Theorem 3.1. Let f given by (1) be in the class Dl;:?C’O(B). Then

’ 2 ’ 2
. (6+1) E=D2(| O+ O) | (82-1)(|n"©)]+]r' ©)])
|az| < min { \/4[2w(1+x)12k(1+5)2 3220 VPR AFa2 T sEe R e?

8[4[22 (1+M)]F (146)2 —3[3 (142))]* (146) (2+9) | + [4[20 (14+M)]F (1+48)2 —3[3% (1+2))]F (1+5) (2+9) |

@,

\/ O EEON) (B+1) }

and

|ag| < min

8(8+1)°+(B=1)(IW (0)|*+[p'(0)*) ([5271)(Ih/(0)|+lp’(0)\)Jr (B=1) ([ (0)|+]p" (0)])
32[22 (14+1)]2F(146)2 8[22 (1+1)]2* (140)2 24[3% (1420)]* (146)(2+6)’

(B=1) (A" (0)|+[p"(0)])
8|4[2 (14-X)]%F (146)2—3[3 (14+2X)]* (1+6) (2+9)

n B+1
420 (14X0)]%* (146)2—3[32 (14+2)]* (1+0) (2+9)|

+ (B=1) (A" (0)|+]p" (0)]) }
24[3% (1420)]% (146) (2+96) S °

(5)

Proof. Let f € Dii?Cg(ﬁ) and g be the analytic extension of f~! to

A. It follows from (2) and (3) that

2 |B+1l+z Disr)]

—z————7 | =h(2), (6)
B—1] 2 1-2 [Dz;,’?f(z)]
and "
k,a
2 11— w D5 9(w)
T ﬁ;r i—kw_ _wm — p(w), (7)
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where h(z) and p (w) satisfy the conditions of Definiton 2.1. Further-
more, the functions h (z) and p (w) have the following Taylor-Maclaurin
series expansions:

h(z)=1+hiz+hoz? +---,

and
p(w) =1+ piw+pow’ +-- -,

respectively. Now, equating the coefficients in (6) and (7), we get

2[(8+1) — 2221+ M (1 + d)as)

51 =, (8)
2[(B+1) =331+ 2M)]" (1 +8)(2+ 8)az + 4[2*(1 + N)]%F (1 + 5)%3]
51 =h2 (9)
and
2[(5+1) = 22%(1+ N (1 + )] o
— = pl 10
p—1 ’
2 [(/3 +1) = 3[3%(1+ 20)]" (14 6)(2 4 6)(2a3 — az) + 4[2(1+ N)]** (1 + 5)%5}
5-1 = p2.
11
From (8) and (10), we find that
hl = —P1- (12)
Also, from (8), we can write
B B+1 hi(B—1)
= - — 7’ . (13)
2291+ N7 (146) 4221+ N)]"(1+9)
Next, by using (8), (10), (12) and (13), we get
2 (B+1) LBV (R4 (1) (i —p) (14)
P AR+ NP +0)2 32200+ NP1 +0)2 8201+ NPF(1+0)2
By adding (9) to (11), we get
a2 — (B=1)(h2+p2)
27 afa2o (140 (146)2-3[32 (14+2))]F (146) (2+9)
(15)

_ B+1
4120 (14X0)] 2% (146)2—3[32 (1+20)]F (1+6) (2+6)
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Therefore, we find from the equations (14) and (15) that

2 (B+1)? B=1*(IMO)P+p'0)1*) | (B2=1) (I (0)|+]p' (0)])
lag]” < +
20N qe(14+0)PR(1+0)2 3220 (1+-0)]%F (1496)2 812 (140 2F (1+40)2
and
]a2|2 < (B=L)(IR" (0)|+|p" (0)])

8]4[20 (14X)]** (146)2—3[3(14+2X)]* (144) (2+9)

+ (B+1)
[4[29 (14+X)]%F (14+6)2—3[3 (14+2))]* (140) (2+9) |~

Similarly, subtracting (11) from (9), we have

e — a2 (8 —1) (h2 — pa)
ST e (102t )

(16)

Then, upon substituting the value of a3 from (14) and (15) into (16), it
follows that

4y = (1 (=12 (h+t) _ (B-)(a-p) _ (5-D)(ha-p)

3 7 ARa (N PR(1e)2 T 322e (AR (110)?  SRa(INZF(140)2  12[3% (11 2N)F(14+6)(249)
and

as = (B=1)(ha+p2)

4[4[20 (14 X)]°* (146)2-3[3 (142)]* (146) (2+9)]

B+1 (8—1)(h2—p2)

A2 (1 N)PF(146)2—3[32 (142N F (140)(2+6)  12[3*(1+20)]F(1+48)(2+3) "

Consequently, we have

8(B+1)*+(B-1)* (|0 (0)*+[p' (0)I*)
32[2¢ (14-1)]2F (146)2

|a3’ B

(B2=1) (1M (0)|+1p' (0)]) (B=1)(JR" (0)|+]p" (0)])
8[2 (14A)]2* (146)2 24[32 (142X)]F (146)(2+9)

and

(B=1)(IR"(0)|+]p" (0)])
8[4[20 (140)]*F (146)2 —3[3% (14+2X)]" (1+4) (2+9)

laz| <

n f+1 4 _B=D(R" O+ O))
|4[22 (140)]7F (14:6)2=3[3 (14+20)]* (146) (2+) |~ 24[3% (1+21)]*(1+6)(2+0)
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This completes the proof of Theorem 3.1. [

It is easily seen that, by specializing the functions A (z) and p (z) involved
in Theorem 3.1, several coefficient estimates can be obtained as special
cases.

Corollary 3.2. If we set

14 2\” 2.2
h(z) = - =14 2vz 4 292" + ... (0<~vy<1),
and
@ = (222) C1 ot (0<r <)
z) = = — Z z X 9
p 1+ 2 7 7 !

then inequalities (4) and (5) become

. (B+1)+ (B+1)+(8-1)y?
laz] < mm{2[2a 0] 1+5 \/]4 20 (102 (1+6)2—3[30 (142 (146) (219)] }’

and

2
] < min {( (5+1)+<ﬁ—1)v)) +

2029 (14N)]* (146 313 (14-2X)]% (146) (2+6)’

(B+D)+(8-1)> + (B=1)y*
[4[20 (14 X)7F (140)2=3[3 (14+20)]* (146) (2+6)| ~ 3[3%(14+2))]*(146)(2+9) [

Corollary 3.3. If we let

1+(1-2
h(z):w:1+2(1—n)z+2(1—n)22+'-- (O<n<1),
and

1-(1-2
p(z)—M—1—2(1—n)z+2(1—77)22+--- (0<n<1),

then inequalities (4) and (5) become

: B+H+(B-1)(1= 77) B+ +(B8-=1)(1-n)
jaz| < mm{ 2120 (1+))] 1+5 4120 (14 0)2F (146)2 - 3[3&(1+2>\)}’“(1+5)(2+5)|}



and

|as]

(1]

2]
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in | (Br0HE-DO=m)? (3-1)(1=n)
S mm{( 202 (1 0)]F (1+9) ) T B () 2re)

(B+1)+(B-1)(1-n) + (B=1)(1-n)
[4[2 (1+X0)]F (146)2—3[3% (14+2X)]7 (140) (240) |~ 3[32(1+2))]" (1+6)(2+0) [
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