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Abstract. Let S be the matrix of residual sum of square in linear
model Y = Aβ + e, where the matrix of errors is distributed
as elliptically contoured with unknown scale matrix Σ. For Stein
loss function, L1(Σ̂,Σ) = tr(Σ̂Σ−1)− log |Σ̂Σ−1|−p, and squared

loss function, L2(Σ̂,Σ) = tr(Σ̂Σ−1 − I)2, we offer empirical Bayes
estimators of Σ, which dominate any scalar multiple of S, i.e., aS,
by an effective amount. In fact, this study somehow shows that
improvement of the empirical Bayes estimators obtained under the
normality assumption remains robust under elliptically contoured
model.
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1. Introduction

The problem of empirical Bayes (EB) estimation with the normal covari-

ance matrix Σ, was considered by [3], who proved that these estimators

dominate all scalar multiples of the unbiased estimator. Our objective is

to establish the dominance results by Haff [4] remains robust under the

elliptically contoured distribution which we refer to it as ECD in this
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paper. Here, we consider the problem of estimation with the elliptically

contoured covariance matrix Σ; then we get the empirical Bayes esti-

mators which dominate the usual unbiased estimators for each of two

invariant loss functions L1 and L2. The dominance results under L1

and L2 were first offered by James and Stein. There are many studies to

estimate a covariance matrix for the normality assumption; under loss

functions L1 and L2, see [2,3], [6], [9] and [11], [8], [10]. The identity

for the ECD which was derived by [7], known in the literature as the

”Stein-Haff identity”, is applied to compute risk functions.

Let Y be an N × p random matrix with multivariate linear model

Y = Aβ + e

where e is an N × p matrix of random errors, A is a known full rank

N ×m matrix and β is an m× p matrix of unknown parameters. We

assume that the error matrix e has an elliptical density

|Σ|−
N

2 f
(

tr(Σ−1ete
)

)

where Σ is a p × p unknown positive-definite matrix, f(·) is a dif-

ferentiable and nonnegative real-value function. Here |B|, tr(B) and

Bt stand for the determinant, the trace and the transpose of a square

matrix B, respectively.

Let S be the matrix of residual sum of squares, i.e.,

S = Y t(IN − A(AtA)−1At)Y ,

and let n = N − m. Under the elliptically assumption, the expected

value for various functions of S have been derived; by [7].

Let Σ̂ be an estimator of Σ. We assume that the loss function is

L1(Σ̂,Σ) = tr(Σ̂Σ−1) − log |Σ̂Σ−1| − p,

or

L2(Σ̂,Σ) = tr(Σ̂Σ−1 − I)2,
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and define the risk function by

Ri(Σ̂,Σ) = E[Li(Σ̂,Σ)|Σ], i = 1, 2.

Let Σ̂ and Σ̂∗ be the competing estimators of Σ, where Σ̂ dominates

Σ̂∗ (mod Li) if Ri(Σ̂,Σ) 6 Ri(Σ̂∗,Σ)(∀Σ).

According to the same notation used in [7], let f (0)(x) = f(x),

f (k+1)(x) =
1

2

∫

∞

x
f (k)(t)dt, k = 0, 1

and

E
(k)
Σ

[v(S)] =

∫

v(S) |Σ|−
N

2 f (k)
(

tr
(

Σ−1(y − Aβ)t(y − Aβ)
)

)

dy

where v(S) is an integrable function of S. Also we use the transforma-

tion to polar coordinates to get,

E
(k)
Σ

[1] = γ(k) =
2πNP/2

Γ(NP/2)

∫

∞

0
rNp−1f (k)(r2)dr, k = 0, 1, 2 (1)

and assume that γ(i) < ∞, for more details see [7].

Following [3], the empirical Bayes estimators have the form

Σ̂ = a[S + ut(u)C] (2)

[5] where t(·) is a nonnegative and non-increasing function, C is an

arbitrary positive definite matrix, u = (trS−1)−1 and

0 6 a 6 max{
1

nγ(1)
,

γ(1)

(n + p + 1)γ(2)
}.

Without loss of generality, we assume C = I. It should be noted that

for t ≡ 0, we have the obvious estimators, the scalar multiples of S.
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1.1 Synopsis

The consideration of the scalar multiples of S shows that the best esti-

mator (mod L1) is the unbiased estimator

Σ̂1 =
1

nγ(1)
S

and the best estimator (mod L2) is

Σ̂2 =
γ(1)

(n + p + 1)γ(2)
S.

The main result of this paper deals with the EB estimators(2). Fur-

thermore, for each loss function, there are conditions under which they

dominate the best scalar multiple of S.

1.2 Stein-Haff Identity and Its Application

Let T (S) = (tij(S)) be a p× p matrix whose elements are functions of

S = (sij). Denote

{DST (S)}ij =

p
∑

a=1

1

2
(1 + δia)

∂taj(S)

∂sia
(3)

where δia is Kronecker’s delta. From Lemma 1 in [11], for suitable

choice of a matrix T (S), the Stein-Haff identity is given by

E
(k)
Σ

[

tr{Σ−1T (S)}
]

= E
(k+1)
Σ

[

(n − p − 1) tr{S−1T (S)} + 2 trDST (S)
]

(4)

and from (3) and (4) for a real valued function h(S), we observe that

E
(k)
Σ

[

tr
(

Σ−1h(S)
)

]

= E
(k+1)
Σ

[

(n − p − 1) h(S) tr(S−1) + tr
(∂h(S)

∂S

)

]

(5)

First, we apply (4) and (5) to calculate risk function R1. It appears that

α1(Σ) = R1(Σ̂,Σ)−R1(Σ̂1,Σ) has terms under the unusual expectation

of the form h(S)tr(Σ−1). Theorem 2.3 gives conditions under which

α1(Σ) 6 0 (∀Σ). Since α2(Σ) = R2(Σ̂,Σ)−R2(Σ̂2,Σ) has terms which

are quadratic in Σ−1, calculating R2 is more difficult than R1.
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2. Main Results

The following four theorems are the main results of this paper. The

proofs are postponed to Section 3.

Theorem 2.1. Under the loss function L1, the best estimator of the

form Σ̂a = aS is given by a = 1
nγ(1) .

Theorem 2.2. Under the loss function L2, the best estimator of the

form Σ̂a = aS is given by a = γ(1)
(n+p+1)γ(2) .

Our main result concern the EB estimators (2). For comparing Σ̂ with

Σ̂i, i = 1, 2, a is replaced by 1
nγ(1) and γ(1)

(n+p+1)γ(2) .

Theorem 2.3. Let Σ̂ is given by (2), with

i) a = 1
nγ(1) ,

ii) u = (trS−1)−1

iii) t is a constant, 0 6 t 6
2(nγ(0)+p−n)

nγ(0) .

Then Σ̂ dominates Σ̂1 ( mod L1), i.e., R1(Σ̂,Σ) 6 R1(Σ̂1,Σ) (∀Σ).

An optimal value of t is nγ(0)+p−n
nγ(0) ( as seen from the proof).

Theorem 2.4. Let Σ̂ is given by (2), with

i) a = γ(1)
(n+p+1)γ(2) ,

ii) u = (tr S−1)−1

iii) t is a constant, 0 6 t 6
2
[

(n−2p+1)−p(n−1)(n−p)
]

p(n−p−1)(n−p+1) .

Then Σ̂ dominates Σ̂2 ( mod L2), i.e., R2(Σ̂,Σ) 6 R2(Σ̂2,Σ) (∀Σ).

The choice (n−2p+2)−p(n−1)(n−p)
p(n−p−1)(n−p+1) of t is the optimal choice.

The latter calculations depends on the following lemmas.
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Lemma 2.5. [Hisayuki Tsukuma 2005] Let Q be a p × p matrix

of constants. Under the conditions of Lemma 2.1. in [5](see appendix),

we have

i) E
(0)
Σ

[S] = nγ(1)Σ,

ii) E
(0)
Σ

[SQS] = γ(2)
{

n2ΣQΣ + nΣQtΣ + n tr(QΣ)Σ
}

.

Lemma 2.6. Let F be a p× p matrix-valued function of S = (sij) and

φ(S) be a scalar function of S. Then, we have

i) DS(φ F) = 1
2( ∂φ

∂S
· F) + φ DSF,

and for a matrix Qp×p of constants,

ii) DS(SQ) = (Q + p Qt)/2,

iii) DS(S−2 Q) = −S−3Q −
{

tr(S−1)S−2Q + tr(S−2)S−1Q
}

/2,

iv) DS(S−1Q) = −
{

S−2Q + tr(S−1)S−1Q
}

/2.

Proof.(i) For a matrix F (S)p×p and a scalar φ(S), from (3) we have

[DSφF]ij =
∑

a

1

2
(1 + δia)

∂

∂sia
(φF)aj

=
∑

a

1

2
(1 + δia)

{ ∂φ

∂sia
(F)aj +

∂(F)aj

∂sia
· φ

}

=
∑

a

1

2
(1 + δia)(

∂φ

∂S
)ia (F)aj

+ φ
∑

a

1

2
(1 + δia)

∂(F)aj

∂sia

=
1

2

( ∂φ

∂S
· F

)

ij
+ φ (DSF)ij

which gives Lemma 3.2 (i). �

The following properties of the operator DS ( see the definition in (3))

are required for computations.
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Proof.(ii) For a matrix Q of constant, to derive Lemma 3.2 (ii), we note

that

[DSSQ]ij =
1

2

∑

a

(1 + δia)
∂

∂sia
(SQ)aj

=
1

2

∑

a

{

δiaQaj + δaaQ
t
ij

}

=
1

2
(IQ)ij +

P

2
Qt

ij .

Proof.(iii)Applying

∂(S−1)kl

∂sij
= {−(S−1)ki(S

−1)jl − (S−1)li(S
−1)jk},

we obtain

[DSS−2Q]ij =
∑

a,k

1

2
(1 + δia)

∂

∂sia

[

(S−1)ak (S−1Q)kj

]

= −
1

2

∑

a,k

(S−1)ia (S−1)ak (S−1Q)kj

−
1

2

(

∑

k

(S−1)ik (S−1Q)kj

) (

∑

a

(S−1)aa

)

−
1

2

(

∑

a,k

(S−1)ak (S−1)ki

) (

∑

m

(S−1)am Qmj

)

−
1

2

(

∑

a,k

(S−1)ak (S−1)ak

) (

∑

m

(S−1)mi Qmj

)

= −
1

2
(S−3Q)ij −

1

2
tr(S−1) (S−2Q)ij −

1

2
(S−3Q)ij

−
1

2
tr(S−2) (S−1Q)ij .

(iv). This is given by the similar way in [4]. �

Proof of Theorem 2.1. The proof is similar to that of Theorem 4.1.

in [5]; therefore, we state the outline of the proof only. Let Σ̂1k =
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1
nγ(1)(1 + k)S, |k| < 1 and Σ̂1 = 1

nγ(1)S. We want to show that

R1(Σ̂1k,Σ)−R1(Σ̂1,Σ) = E
(0)
Σ

[ k

nγ(1)
tr(SΣ−1)−p log(1+k)

]

> 0 (∀Σ).

(6)

From Lemma 2.5(i), we can see that

R1(Σ̂1k,Σ) − R1(Σ̂1,Σ) = pk − p log(1 + k).

Similar to [5], the inequality (6) holds and the proof is complete. �

Proof of Theorem 2.2. The risk of a scalar multiple of S is

R2(aS,Σ) = E
(0)
Σ

tr(aSΣ−1 − I)2 =

a2E
(0)
Σ

tr(SΣ−1SΣ−1) − 2aE
(0)
Σ

tr(SΣ−1) + pE
(0)
Σ

[1].

Using (1) and Lemma 2.5 (i) and (ii), we have

R2(aS,Σ) = γ(2)a2p(n2 + n + np) − 2γ(1)nap + pγ(0)

and the last equality is minimized at a = γ(1)
(n+p+1)γ(2) . �

Proof of Theorem 2.3. Write (2) as

Σ̂ = aS + g(S)I (7)

where g(S) = aut(u). Taking differentiating of u with respect to S gives

∂u

∂S
= −(trS−1)−2 ∂(trS−1)

∂S
= u2S−2.

As a result, we obtain

∂g(S)

∂S
= a

[ ∂u

∂S
t(u) + u

∂t(u)

∂S

]

= a
[

u2t(u) +
∂t(u)

∂u
u3

]

S−2. (8)

Let t(u) be a constant function, the equation (8) implies that

∂g(S)

∂S
= au2t S−2. (9)
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From [5] we have the

ρk = tr
( S−1

trS−1

)k
, k = 1, 2, . . . . (10)

It is convenient to note that ρk decreases in k and 0 6 ρk 6 1.

Use (7) with a = 1
nγ(1) and

α1 = R1(Σ̂,Σ)−R1(Σ̂1,Σ) = E
(0)
Σ

[

g(S)trΣ−1−log
∣

∣I+nγ(1)g(S)S−1
∣

∣

]

.

Knowing that t(u) is a constant, say t, and from (5) with h = g, and

applying the expansion

log |I + αB| =

∞
∑

n=1

(−1)n−1

n
αntr(Bn)

where α is a real number and Bp×p a symmetric matrix, we obtain

α1 = E
(1)
Σ

[

(n−p−1)g(S)tr(S−1)+tr
(∂g(S)

∂S

)]

−E
(0)
Σ

[

∞
∑

i=1

(−1)i−1

i
tiρi

]

.

(11)

A simple calculation shows that

∞
∑

i=1

(−1)i−1

i
tiρi > t −

1

2
t2,

because the terms of the above series are in decreasing magnitude. Sub-

stituting (9) into (11), with a = 1
nγ(1) , we obtain

α1 6
1

nγ(1)
E

(1)
Σ

[

(n − p − 1)t + ρ2t
]

+ E
(0)
Σ

[
1

2
t2 − t],

6
1

nγ(1)
(n − p)t E

(1)
Σ

[1] + (
1

2
t2 − t) E

(0)
Σ

[1], (since ρ2 6 1),

6
[n − p

n
− γ(0)

]

t +
γ(0)

2
t2 (from (1)).

(12)
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A sufficient condition for α1(Σ) 6 0 (∀ Σ) is

[n − p

n
− γ(0)

]

t +
γ(0)

2
t2 6 0.

Finally, it is seen that

0 6 t 6
2
(

nγ(0) + p − n
)

nγ(0)

It is also seen, from (12) that (11) is bounded above by
[n−p

n −γ(0)
]

t+
γ(0)

2 t2; hence, the optimal t is nγ(0)+p−n
nγ(0) . �

Theorem 2.4. compares Σ̂ in (7) and Σ̂2 = aS, a = γ(1)
(n+p+1)γ(2) . Let

α2(Σ) = R2(Σ̂,Σ) − R2(Σ̂2,Σ)

= E
(0)
Σ

[

2a g(S)tr(SΣ−2)) − 2 g(S)tr(Σ−1 + g2(S)tr(Σ−2)
]

(13)

Then identities for the terms in (13) are given in the following Lemma.

Lemma 2.7. Under conditions of Lemma 5.2.[5](see appendix)

i) For h(S) = 2a g(S), we have

E
(0)
Σ

[h(S) tr(Σ−2S)] =E
(2)
Σ

[

n(n − p − 1)h(S) tr(S−1)

− (p + 1)tr
(∂h(S)

∂S

)

+ 2trDS

(∂h(S)

∂S
· S

)

]

ii) For h(S) = −2g(S), we obtain

E
(0)
Σ

[h(S) tr(Σ−1)] = E
(1)
Σ

[

(n − p − 1)h(S) tr(S−1) + tr
(∂h(S)

∂S

)

]
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iii) For h(S) = g2(S), we get

E
(0)
Σ

[h(S) tr(Σ−2)] =E
(2)
Σ

[

2 trDS

(∂h(S)

∂S

)

+ 2(n − p − 1)

tr
(

S−1 ∂h(S)

∂S

)

+ (n − p − 1)

(n − p − 2)h(S) tr(S−2)

− (n − p − 1)h(S) tr2(S−1)
]

Proof (i). Set T = SΣ−1h(S), by using (4), we can see

E
(0)
Σ

[

tr
(

Σ−1SΣ−1h(S)
)

]

=

E
(1)
Σ

[

(n − p − 1) tr
(

h(S) Σ−1
)

+ 2 trDS

(

h(S) SΣ−1
)

]

.

Now applying Lemma 2.6 (i) and (ii) with Q = Σ−1 to the second term

DS

(

SΣ−1h(S)
)

; hence, we get

E
(0)
Σ

[

h(S) tr(Σ−2S)
]

= E
(1)
Σ

[

n tr
(

Σ−1h(S)
)

+ tr
(

Σ−1 ∂h(S)

∂S
S

)

]

.

The result obtains by applying (5) to the first term and then (4) to the

second.

(ii). In (5), set k = 0.

(iii). Put T = Σ−1h(S). From (4) and Lemma 2.6. (i), we have

E
(0)
Σ

[

tr
(

Σ−2h(S)
)

]

= E
(1)
Σ

[

(n−p−1)tr
(

Σ−1S−1h(S)
)

+tr
(∂h(S)

∂S
Σ−1

)

]

.

Applying (4) to the first term with T = S−1h(S) and applying it to the

second with T = ∂h(S)
∂S

, we obtain

E
(0)
Σ

[

tr
(

Σ−2h(S)
)

]

=E
(2)
Σ

[

(n − p − 1)2h(S)tr(S−2)

+ 2(n − p − 1) trDS(S−1h(S))

+ (n − p − 1)tr
(

S−1 ∂h(S)

∂S

)

2trDS

(∂h(S)

∂S

)

]

.
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Our result yields by using Lemma 2.6. (i) with F = S−1 and φ = h and

Lemma 2.6. (iv) with Q = I to the second term.

The special of Lemma 2.7. by taking g(S) = aut, u = (tr(S−1)−1 and

a = γ(1)
(n+p+1)γ(2) is the following lemma. �

Lemma 2.8. For g(S) = aut,

i) E
(0)
Σ

[

2a2ut tr(Σ−2S)
]

= E
(2)
Σ

[

2na2(n − p − 1)t − 2a2ρ2(p + 2)t +

4a2tρ3 − 2a2t
]

,

ii) E
(0)
Σ

[

−2aut tr(Σ−1)
]

= E
(1)
Σ

[

−2a(n − p − 1)t − 2atρ2

]

,

iii) E
(0)
Σ

[

a2u2t2 tr(Σ−2)
]

= E
(2)
Σ

{

−(n−p−1)a2t2+6a2ρ4t
2+4a2t2ρ3(n−

p − 2)

+ a2tρ2[(n − p − 1)2t − (n − p − 1)t − 4t]
}

Proof (i). In Lemma 2.7. (i), we put h(S) = 2a2ut

and then compute DS

(∂h(S)
∂S

S
)

. By applying Lemma 2.6. (i), (iv) with

φ = u2, F = S−1 and Q = I, we have

trDS

(∂h(S)

∂S
· S

)

= tr
{

2a2t
[1

2

∂u2

∂S
S−1 + u2

{

−
1

2
S−2 −

1

2
tr(S−1)S−1

}

]}

= tr
{

2a2t u3S−3 − a2t u2S−2 − a2t u2tr(S−1)S−1

}

= 2a2tρ3 − a2tρ2 − a2t,

Result (i) is now obtainable by using (9).

(ii). Using (9) and (10), the result obtains from Lemma 2.7. (ii) with

h(S) = −2aut.

(iii). Take h(S) = a2u2t2 in Lemma 2.7. (iii); then compute

DS

(∂h(S)
∂S

)

. Similarly, using Lemma 2.6. (i), (iii) with φ = u3, F = S−2
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and Q = I, we have

trDS

(∂h(S)

∂S

)

= 2a2t2 tr
[1

2

(∂u3

∂S
S−2

)

+ u3DSS−2
]

= a2t2[3ρ4 − 2ρ3 − 2ρ2]. (14)

Now substitute (14) in Lemma 2.7. (iii) to achieve the result. �

Proof of Theorem 2.4. Each term in (13) obtained from Lemma 2.7

(i), (ii) and (iii); hence, we have

α2 = E
(2)
Σ

[

a2t
{

2n(n − p − 1) + 2ρ2(p + 2) + 4ρ3 − 2
}

+ a2t2
{

−(n − p − 1) + 6ρ4 + 4ρ3(n − p − 2) + ρ2(n − p − 1)2

− ρ2(n − p − 1) − 4ρ2

}

]

+ E
(1)
Σ

[

at
{

−2(n − p − 1) − 2ρ2

}

]

.

(15)

The above coefficient of a2t can be written as 2[n(n − p − 1) − 1] +

2ρ2(p + 2) + 4ρ3 . Since ρk 6 1 thus, the entire quantity is bounded

above by

2[n(n − p − 1) − 1] + 2(p + 2) + 4 = 2[(n − 1)(n − p) + 3]. (16)

Since ρk ց , 0 6 ρk 6 1 and n > p+1, the coefficient of a2t2 is bounded

above by

ρ2[ 2(n − p − 1) + (n − p − 1)2 − 2]

and the above term is bounded by

ρ2[ 2(n − p − 1) + (n − p − 1)2].

The above coefficient of ρ2 is positive and ρ2 6 1; accordingly, the

coefficient of a2t2 is bounded above by

(n − p − 1)(n − p + 1). (17)

From [1], paper 137, we have 1
p 6 ρ2 6 1 then in (15), for the coefficient

of at we can see

−2(n − p − 1) − 2ρ2 6 −
2

p
. (18)
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Finally, from (15)-(18) a sufficient condition for α2(Σ) 6 0 (∀ Σ) is

2a2t
[

(n−1)(n−p)+3
]

γ(2)+a2t2(n−p−1)(n−p+1)γ(2)+at(−
2

p
)γ(1) 6 0.

(19)

Recall that a = γ(1)
γ(2)(n+p+1) then (19) is equivalent to

0 6 t 6
2
[

(n − 2p + 1) − p(n − 1)(n − p)
]

p(n − p − 1)(n − p + 1)
.

The left hand side of (19) is minimized at t = (n−2p+1)−p(n−1)(n−p)
p(n−p−1)(n−p+1) . �

Appendix

Lemma 2.1. Let Q be a p × p matrix of constants. If

lim
z→±∞

|z|f (1)(z2 + a2) = 0

for any real a, then we have

(i) E
(0)
Σ [S] = nγ(1)Σ.

If lim
z→±∞

|z|3f (1)(z2 + a2) = 0 and lim
z→±∞

|z|f (2)(z2 + a2) = 0

for any real a, thenwe have

(ii) E
(0)
Σ [SQS] = γ(2)(n2ΣQΣ + nΣQ́Σ + ntr(QΣ)Σ),

(iii) E
(0)
Σ [tr(QS)S] = γ(2)(n2tr(QΣ)Σ + nΣQΣ + nΣQ́Σ).

Lemma 5.2. Let G(S) = (gab(S)) = G(
∑

n

c=1
źczc), be a p × p matrix

whose elements are differentiable with respect to zjk(j = 1, 2, ..., n, k =

1, 2, ..., p). For −2 6 i 6 1, assume that

(a) E
i
Σ[|gab(S))|] < ∞;

(b) lim
zjk→±∞

|zjk|G(
∑

n

c=1
źczc)(

∑

n

c=1
źczc)

−1f i+1(z2
jk + a2) = 0p×p

for any real a.

Then we have

E
(i)
Σ [Σ−1G(S)] = E

(i+1)
Σ [(n − p − 1)S−1G(S) + 2DsG(S)].
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