Robust Empirical Bayes Estimation of the Elliptically Countoured Covariance Matrix

Z. Khodadadi
Islamic Azad University, Marvdasht-Branch
\section*{B. Tarami}
Yasouj University, College of Sciences

Abstract

Let \boldsymbol{S} be the matrix of residual sum of square in linear model $\boldsymbol{Y}=\boldsymbol{A} \boldsymbol{\beta}+\mathbf{e}$, where the matrix of errors is distributed as elliptically contoured with unknown scale matrix $\boldsymbol{\Sigma}$. For Stein loss function, $L_{1}(\hat{\boldsymbol{\Sigma}}, \boldsymbol{\Sigma})=\operatorname{tr}\left(\hat{\boldsymbol{\Sigma}} \boldsymbol{\Sigma}^{-1}\right)-\log \left|\hat{\boldsymbol{\Sigma}} \boldsymbol{\Sigma}^{-1}\right|-p$, and squared loss function, $L_{2}(\hat{\boldsymbol{\Sigma}}, \boldsymbol{\Sigma})=\operatorname{tr}\left(\hat{\boldsymbol{\Sigma}} \boldsymbol{\Sigma}^{-1}-\mathbf{I}\right)^{2}$, we offer empirical Bayes estimators of $\boldsymbol{\Sigma}$, which dominate any scalar multiple of \boldsymbol{S}, i.e., $a \boldsymbol{S}$, by an effective amount. In fact, this study somehow shows that improvement of the empirical Bayes estimators obtained under the normality assumption remains robust under elliptically contoured model.

AMS Subject Classification: 62C12.
Keywords and Phrases: Covariance matrix, elliptically contoured, empirical Bayes estimators.

1. Introduction

The problem of empirical Bayes (EB) estimation with the normal covariance matrix $\boldsymbol{\Sigma}$, was considered by [3], who proved that these estimators dominate all scalar multiples of the unbiased estimator. Our objective is to establish the dominance results by Haff [4] remains robust under the elliptically contoured distribution which we refer to it as ECD in this

[^0]paper. Here, we consider the problem of estimation with the elliptically contoured covariance matrix $\boldsymbol{\Sigma}$; then we get the empirical Bayes estimators which dominate the usual unbiased estimators for each of two invariant loss functions L_{1} and L_{2}. The dominance results under L_{1} and L_{2} were first offered by James and Stein. There are many studies to estimate a covariance matrix for the normality assumption; under loss functions L_{1} and L_{2}, see [2,3], [6], [9] and [11], [8], [10]. The identity for the ECD which was derived by [7], known in the literature as the "Stein-Haff identity", is applied to compute risk functions.

Let \mathbf{Y} be an $N \times p$ random matrix with multivariate linear model

$$
\mathbf{Y}=\mathbf{A} \boldsymbol{\beta}+\mathbf{e}
$$

where \mathbf{e} is an $N \times p$ matrix of random errors, \mathbf{A} is a known full rank $N \times m$ matrix and $\boldsymbol{\beta}$ is an $m \times p$ matrix of unknown parameters. We assume that the error matrix \mathbf{e} has an elliptical density

$$
|\boldsymbol{\Sigma}|^{-\frac{N}{2}} f\left(\operatorname{tr}\left(\boldsymbol{\Sigma}^{-1} \mathbf{e}^{t} \mathbf{e}\right)\right)
$$

where $\boldsymbol{\Sigma}$ is a $p \times p$ unknown positive-definite matrix, $f(\cdot)$ is a differentiable and nonnegative real-value function. Here $|\mathbf{B}|, \operatorname{tr}(\mathbf{B})$ and \mathbf{B}^{t} stand for the determinant, the trace and the transpose of a square matrix \mathbf{B}, respectively.

Let \boldsymbol{S} be the matrix of residual sum of squares, i.e.,

$$
\boldsymbol{S}=\boldsymbol{Y}^{t}\left(\boldsymbol{I}_{N}-\boldsymbol{A}\left(\boldsymbol{A}^{t} \boldsymbol{A}\right)^{-1} \boldsymbol{A}^{t}\right) \boldsymbol{Y}
$$

and let $n=N-m$. Under the elliptically assumption, the expected value for various functions of \boldsymbol{S} have been derived; by [7].
Let $\hat{\boldsymbol{\Sigma}}$ be an estimator of $\boldsymbol{\Sigma}$. We assume that the loss function is

$$
L_{1}(\hat{\boldsymbol{\Sigma}}, \boldsymbol{\Sigma})=\operatorname{tr}\left(\hat{\boldsymbol{\Sigma}} \boldsymbol{\Sigma}^{-1}\right)-\log \left|\hat{\boldsymbol{\Sigma}} \boldsymbol{\Sigma}^{-1}\right|-p
$$

or

$$
L_{2}(\hat{\boldsymbol{\Sigma}}, \boldsymbol{\Sigma})=\operatorname{tr}\left(\hat{\boldsymbol{\Sigma}} \boldsymbol{\Sigma}^{-1}-\mathbf{I}\right)^{2}
$$

and define the risk function by

$$
R_{i}(\hat{\boldsymbol{\Sigma}}, \boldsymbol{\Sigma})=E\left[L_{i}(\hat{\boldsymbol{\Sigma}}, \boldsymbol{\Sigma}) \mid \boldsymbol{\Sigma}\right], \quad i=1,2
$$

Let $\hat{\boldsymbol{\Sigma}}$ and $\hat{\boldsymbol{\Sigma}}_{*}$ be the competing estimators of $\boldsymbol{\Sigma}$, where $\hat{\boldsymbol{\Sigma}}$ dominates $\hat{\boldsymbol{\Sigma}}_{*}\left(\bmod L_{i}\right)$ if $R_{i}(\hat{\boldsymbol{\Sigma}}, \boldsymbol{\Sigma}) \leqslant R_{i}\left(\hat{\boldsymbol{\Sigma}}_{*}, \boldsymbol{\Sigma}\right)(\forall \boldsymbol{\Sigma})$.
According to the same notation used in [7], let $f^{(0)}(x)=f(x)$,

$$
f^{(k+1)}(x)=\frac{1}{2} \int_{x}^{\infty} f^{(k)}(t) d t, \quad k=0,1
$$

and

$$
E_{\boldsymbol{\Sigma}}^{(k)}[v(\boldsymbol{S})]=\int v(\boldsymbol{S})|\boldsymbol{\Sigma}|^{-\frac{N}{2}} f^{(k)}\left(\operatorname{tr}\left(\boldsymbol{\Sigma}^{-1}(\boldsymbol{y}-\boldsymbol{A} \boldsymbol{\beta})^{t}(\boldsymbol{y}-\boldsymbol{A} \boldsymbol{\beta})\right)\right) d \boldsymbol{y}
$$

where $v(\boldsymbol{S})$ is an integrable function of \boldsymbol{S}. Also we use the transformation to polar coordinates to get,

$$
\begin{equation*}
E_{\Sigma}^{(k)}[1]=\gamma(k)=\frac{2 \pi^{N P / 2}}{\Gamma(N P / 2)} \int_{0}^{\infty} r^{N p-1} f^{(k)}\left(r^{2}\right) d r, \quad k=0,1,2 \tag{1}
\end{equation*}
$$

and assume that $\gamma(i)<\infty$, for more details see [7].

Following [3], the empirical Bayes estimators have the form

$$
\begin{equation*}
\hat{\boldsymbol{\Sigma}}=a[\boldsymbol{S}+u t(u) \boldsymbol{C}] \tag{2}
\end{equation*}
$$

[5] where $t(\cdot)$ is a nonnegative and non-increasing function, \mathbf{C} is an arbitrary positive definite matrix, $u=\left(\operatorname{tr} \boldsymbol{S}^{-1}\right)^{-1}$ and

$$
0 \leqslant a \leqslant \max \left\{\frac{1}{n \gamma(1)}, \frac{\gamma(1)}{(n+p+1) \gamma(2)}\right\}
$$

Without loss of generality, we assume $\boldsymbol{C}=\boldsymbol{I}$. It should be noted that for $t \equiv 0$, we have the obvious estimators, the scalar multiples of \boldsymbol{S}.

1.1 Synopsis

The consideration of the scalar multiples of \boldsymbol{S} shows that the best estimator $\left(\bmod L_{1}\right)$ is the unbiased estimator

$$
\hat{\boldsymbol{\Sigma}}_{1}=\frac{1}{n \gamma(1)} \boldsymbol{S}
$$

and the best estimator $\left(\bmod L_{2}\right)$ is

$$
\hat{\boldsymbol{\Sigma}}_{2}=\frac{\gamma(1)}{(n+p+1) \gamma(2)} \boldsymbol{S} .
$$

The main result of this paper deals with the EB estimators(2). Furthermore, for each loss function, there are conditions under which they dominate the best scalar multiple of \boldsymbol{S}.

1.2 Stein-Haff Identity and Its Application

Let $T(\boldsymbol{S})=\left(t_{i j}(\boldsymbol{S})\right)$ be a $p \times p$ matrix whose elements are functions of $\boldsymbol{S}=\left(s_{i j}\right)$. Denote

$$
\begin{equation*}
\left\{D_{\boldsymbol{S}} T(\boldsymbol{S})\right\}_{i j}=\sum_{a=1}^{p} \frac{1}{2}\left(1+\delta_{i a}\right) \frac{\partial t_{a j}(\boldsymbol{S})}{\partial s_{i a}} \tag{3}
\end{equation*}
$$

where $\delta_{i a}$ is Kronecker's delta. From Lemma 1 in [11], for suitable choice of a matrix $T(\boldsymbol{S})$, the Stein-Haff identity is given by
$E_{\boldsymbol{\Sigma}}^{(k)}\left[\operatorname{tr}\left\{\boldsymbol{\Sigma}^{-1} T(\boldsymbol{S})\right\}\right]=E_{\boldsymbol{\Sigma}}^{(k+1)}\left[(n-p-1) \operatorname{tr}\left\{\boldsymbol{S}^{-1} T(\boldsymbol{S})\right\}+2 \operatorname{tr} D_{\boldsymbol{S}} T(\boldsymbol{S})\right]$
and from (3) and (4) for a real valued function $h(\boldsymbol{S})$, we observe that

$$
\begin{equation*}
E_{\boldsymbol{\Sigma}}^{(k)}\left[\operatorname{tr}\left(\boldsymbol{\Sigma}^{-1} h(\boldsymbol{S})\right)\right]=E_{\boldsymbol{\Sigma}}^{(\boldsymbol{k}+1)}\left[(n-p-1) h(\boldsymbol{S}) \operatorname{tr}\left(\boldsymbol{S}^{-1}\right)+\operatorname{tr}\left(\frac{\partial h(\boldsymbol{S})}{\partial \boldsymbol{S}}\right)\right] \tag{5}
\end{equation*}
$$

First, we apply (4) and (5) to calculate risk function R_{1}. It appears that $\alpha_{1}(\boldsymbol{\Sigma})=R_{1}(\hat{\boldsymbol{\Sigma}}, \boldsymbol{\Sigma})-R_{1}\left(\hat{\boldsymbol{\Sigma}}_{1}, \boldsymbol{\Sigma}\right)$ has terms under the unusual expectation of the form $h(\boldsymbol{S}) \operatorname{tr}\left(\boldsymbol{\Sigma}^{-1}\right)$. Theorem 2.3 gives conditions under which $\alpha_{1}(\boldsymbol{\Sigma}) \leqslant 0(\forall \boldsymbol{\Sigma})$. Since $\alpha_{2}(\boldsymbol{\Sigma})=R_{2}(\hat{\boldsymbol{\Sigma}}, \boldsymbol{\Sigma})-R_{2}\left(\hat{\boldsymbol{\Sigma}}_{2}, \boldsymbol{\Sigma}\right)$ has terms which are quadratic in $\boldsymbol{\Sigma}^{-1}$, calculating R_{2} is more difficult than R_{1}.

2. Main Results

The following four theorems are the main results of this paper. The proofs are postponed to Section 3.

Theorem 2.1. Under the loss function L_{1}, the best estimator of the form $\hat{\boldsymbol{\Sigma}}_{a}=a \boldsymbol{S}$ is given by $a=\frac{1}{n \gamma(1)}$.

Theorem 2.2. Under the loss function L_{2}, the best estimator of the form $\hat{\boldsymbol{\Sigma}}_{a}=a \boldsymbol{S}$ is given by $a=\frac{\gamma(1)}{(n+p+1) \gamma(2)}$.
Our main result concern the EB estimators (2). For comparing $\hat{\boldsymbol{\Sigma}}$ with $\hat{\boldsymbol{\Sigma}}_{i}, i=1,2, a$ is replaced by $\frac{1}{n \gamma(1)}$ and $\frac{\gamma(1)}{(n+p+1) \gamma(2)}$.

Theorem 2.3. Let $\hat{\boldsymbol{\Sigma}}$ is given by (2), with
i) $a=\frac{1}{n \gamma(1)}$,
ii) $u=\left(\operatorname{tr} \boldsymbol{S}^{-1}\right)^{-1}$
iii) t is a constant, $0 \leqslant t \leqslant \frac{2(n \gamma(0)+p-n)}{n \gamma(0)}$.

Then $\hat{\boldsymbol{\Sigma}}$ dominates $\hat{\boldsymbol{\Sigma}}_{1}\left(\bmod L_{1}\right)$, i.e., $R_{1}(\hat{\boldsymbol{\Sigma}}, \boldsymbol{\Sigma}) \leqslant R_{1}\left(\hat{\boldsymbol{\Sigma}}_{1}, \boldsymbol{\Sigma}\right)(\forall \boldsymbol{\Sigma})$.
An optimal value of t is $\frac{n \gamma(0)+p-n}{n \gamma(0)}$ (as seen from the proof).
Theorem 2.4. Let $\hat{\boldsymbol{\Sigma}}$ is given by (2), with
i) $a=\frac{\gamma(1)}{(n+p+1) \gamma(2)}$,
ii) $u=\left(\operatorname{tr} \boldsymbol{S}^{-1}\right)^{-1}$
iii) t is a constant, $0 \leqslant t \leqslant \frac{2[(n-2 p+1)-p(n-1)(n-p)]}{p(n-p-1)(n-p+1)}$.

Then $\hat{\boldsymbol{\Sigma}}$ dominates $\hat{\boldsymbol{\Sigma}}_{2}\left(\bmod L_{2}\right)$, i.e., $R_{2}(\hat{\boldsymbol{\Sigma}}, \boldsymbol{\Sigma}) \leqslant R_{2}\left(\hat{\boldsymbol{\Sigma}}_{2}, \boldsymbol{\Sigma}\right)(\forall \boldsymbol{\Sigma})$.
The choice $\frac{(n-2 p+2)-p(n-1)(n-p)}{p(n-p-1)(n-p+1)}$ of t is the optimal choice.
The latter calculations depends on the following lemmas.

Lemma 2.5. [Hisayuki Tsukuma 2005] Let \mathbf{Q} be a $p \times p$ matrix of constants. Under the conditions of Lemma 2.1. in [5](see appendix), we have
i) $E_{\boldsymbol{\Sigma}}^{(0)}[\boldsymbol{S}]=n \gamma(1) \boldsymbol{\Sigma}$,
ii) $E_{\boldsymbol{\Sigma}}^{(0)}[\boldsymbol{S Q S}]=\gamma(2)\left\{n^{2} \boldsymbol{\Sigma} \mathbf{Q} \boldsymbol{\Sigma}+n \boldsymbol{\Sigma} \mathbf{Q}^{t} \boldsymbol{\Sigma}+n \operatorname{tr}(\mathbf{Q} \boldsymbol{\Sigma}) \boldsymbol{\Sigma}\right\}$.

Lemma 2.6. Let \mathbf{F} be a $p \times p$ matrix-valued function of $\boldsymbol{S}=\left(s_{i j}\right)$ and $\phi(\boldsymbol{S})$ be a scalar function of \boldsymbol{S}. Then, we have
i) $D_{\boldsymbol{S}}(\phi \mathbf{F})=\frac{1}{2}\left(\frac{\partial \phi}{\partial \boldsymbol{S}} \cdot \mathbf{F}\right)+\phi D_{\boldsymbol{S}} \mathbf{F}$, and for a matrix $\mathbf{Q}_{p \times p}$ of constants,
ii) $D_{\boldsymbol{S}}(\boldsymbol{S Q})=\left(\mathbf{Q}+p \mathbf{Q}^{t}\right) / 2$,
iii) $D_{\boldsymbol{S}}\left(\boldsymbol{S}^{-2} \mathbf{Q}\right)=-\boldsymbol{S}^{-3} \mathbf{Q}-\left\{\operatorname{tr}\left(\boldsymbol{S}^{-1}\right) \boldsymbol{S}^{-2} \mathbf{Q}+\operatorname{tr}\left(\boldsymbol{S}^{-2}\right) \boldsymbol{S}^{-1} \mathbf{Q}\right\} / 2$,
iv) $D_{\boldsymbol{S}}\left(\boldsymbol{S}^{-1} \mathbf{Q}\right)=-\left\{\boldsymbol{S}^{-2} \mathbf{Q}+\operatorname{tr}\left(\boldsymbol{S}^{-1}\right) \boldsymbol{S}^{-1} \mathbf{Q}\right\} / 2$.

Proof.(i) For a matrix $F(\boldsymbol{S})_{p \times p}$ and a scalar $\phi(\boldsymbol{S})$, from (3) we have

$$
\begin{aligned}
{\left[D_{\boldsymbol{S}} \phi \mathbf{F}\right]_{i j} } & =\sum_{a} \frac{1}{2}\left(1+\delta_{i a}\right) \frac{\partial}{\partial s_{i a}}(\phi \mathbf{F})_{a j} \\
& =\sum_{a} \frac{1}{2}\left(1+\delta_{i a}\right)\left\{\frac{\partial \phi}{\partial s_{i a}}(\mathbf{F})_{a j}+\frac{\partial(\mathbf{F})_{a j}}{\partial s_{i a}} \cdot \phi\right\} \\
& =\sum_{a} \frac{1}{2}\left(1+\delta_{i a}\right)\left(\frac{\partial \phi}{\partial \boldsymbol{S}}\right)_{i a}(\mathbf{F})_{a j} \\
& +\phi \sum_{a} \frac{1}{2}\left(1+\delta_{i a}\right) \frac{\partial(\mathbf{F})_{a j}}{\partial s_{i a}} \\
& =\frac{1}{2}\left(\frac{\partial \phi}{\partial \boldsymbol{S}} \cdot \mathbf{F}\right)_{i j}+\phi\left(D_{\boldsymbol{S}} \mathbf{F}\right)_{i j}
\end{aligned}
$$

which gives Lemma 3.2 (i).
The following properties of the operator D_{S} (see the definition in (3)) are required for computations.

Proof.(ii) For a matrix Q of constant, to derive Lemma 3.2 (ii), we note that

$$
\begin{aligned}
{\left[D_{\boldsymbol{S}} \boldsymbol{S} \mathbf{Q}\right]_{i j} } & =\frac{1}{2} \sum_{a}\left(1+\delta_{i a}\right) \frac{\partial}{\partial s_{i a}}(\boldsymbol{S Q})_{a j} \\
& =\frac{1}{2} \sum_{a}\left\{\delta_{i a} \mathbf{Q}_{a j}+\delta_{a a} \mathbf{Q}_{i j}^{t}\right\} \\
& =\frac{1}{2}(\mathbf{I Q})_{i j}+\frac{P}{2} \mathbf{Q}_{i j}^{t}
\end{aligned}
$$

Proof.(iii)Applying

$$
\frac{\partial\left(\boldsymbol{S}^{-1}\right)_{k l}}{\partial s_{i j}}=\left\{-\left(\boldsymbol{S}^{-1}\right)_{k i}\left(\boldsymbol{S}^{-1}\right)_{j l}-\left(\boldsymbol{S}^{-1}\right)_{l i}\left(\boldsymbol{S}^{-1}\right)_{j k}\right\}
$$

we obtain

$$
\begin{aligned}
{\left[D_{\boldsymbol{S}} \boldsymbol{S}^{-2} \mathbf{Q}\right]_{i j} } & =\sum_{a, k} \frac{1}{2}\left(1+\delta_{i a}\right) \frac{\partial}{\partial s_{i a}}\left[\left(\boldsymbol{S}^{-1}\right)_{a k}\left(\boldsymbol{S}^{-1} \mathbf{Q}\right)_{k j}\right] \\
& =-\frac{1}{2} \sum_{a, k}\left(\boldsymbol{S}^{-1}\right)_{i a}\left(\boldsymbol{S}^{-1}\right)_{a k}\left(\boldsymbol{S}^{-1} \mathbf{Q}\right)_{k j} \\
& -\frac{1}{2}\left(\sum_{k}\left(\boldsymbol{S}^{-1}\right)_{i k}\left(\boldsymbol{S}^{-1} \mathbf{Q}\right)_{k j}\right)\left(\sum_{a}\left(\boldsymbol{S}^{-1}\right)_{a a}\right) \\
& -\frac{1}{2}\left(\sum_{a, k}\left(\boldsymbol{S}^{-1}\right)_{a k}\left(\boldsymbol{S}^{-1}\right)_{k i}\right)\left(\sum_{m}\left(\boldsymbol{S}^{-1}\right)_{a m} \mathbf{Q}_{m j}\right) \\
& -\frac{1}{2}\left(\sum_{a, k}\left(\boldsymbol{S}^{-1}\right)_{a k}\left(\boldsymbol{S}^{-1}\right)_{a k}\right)\left(\sum_{m}\left(\boldsymbol{S}^{-1}\right)_{m i} \mathbf{Q}_{m j}\right) \\
& =-\frac{1}{2}\left(\boldsymbol{S}^{-3} \mathbf{Q}\right)_{i j}-\frac{1}{2} \operatorname{tr}\left(\boldsymbol{S}^{-1}\right)\left(\boldsymbol{S}^{-2} \mathbf{Q}\right)_{i j}-\frac{1}{2}\left(\boldsymbol{S}^{-3} \mathbf{Q}\right)_{i j} \\
& -\frac{1}{2} \operatorname{tr}\left(\boldsymbol{S}^{-2}\right)\left(\boldsymbol{S}^{-1} \mathbf{Q}\right)_{i j}
\end{aligned}
$$

(iv). This is given by the similar way in [4].

Proof of Theorem 2.1. The proof is similar to that of Theorem 4.1. in [5]; therefore, we state the outline of the proof only. Let $\hat{\boldsymbol{\Sigma}}_{1 k}=$
$\frac{1}{n \gamma(1)}(1+k) \boldsymbol{S},|k|<1$ and $\hat{\boldsymbol{\Sigma}}_{1}=\frac{1}{n \gamma(1)} \boldsymbol{S}$. We want to show that
$R_{1}\left(\hat{\boldsymbol{\Sigma}}_{1 k}, \boldsymbol{\Sigma}\right)-R_{1}\left(\hat{\boldsymbol{\Sigma}}_{1}, \boldsymbol{\Sigma}\right)=E_{\boldsymbol{\Sigma}}^{(0)}\left[\frac{k}{n \gamma(1)} \operatorname{tr}\left(\boldsymbol{S} \boldsymbol{\Sigma}^{-1}\right)-p \log (1+k)\right] \geqslant 0 \quad(\forall \boldsymbol{\Sigma})$.

From Lemma 2.5(i), we can see that

$$
R_{1}\left(\hat{\boldsymbol{\Sigma}}_{1 k}, \boldsymbol{\Sigma}\right)-R_{1}\left(\hat{\boldsymbol{\Sigma}}_{1}, \boldsymbol{\Sigma}\right)=p k-p \log (1+k)
$$

Similar to [5], the inequality (6) holds and the proof is complete.
Proof of Theorem 2.2. The risk of a scalar multiple of \boldsymbol{S} is

$$
\begin{gathered}
R_{2}(a \boldsymbol{S}, \boldsymbol{\Sigma})=E_{\boldsymbol{\Sigma}}^{(0)} \operatorname{tr}\left(a \boldsymbol{S} \boldsymbol{\Sigma}^{-1}-\mathbf{I}\right)^{2}= \\
a^{2} E_{\boldsymbol{\Sigma}}^{(0)} \operatorname{tr}\left(\boldsymbol{S} \boldsymbol{\Sigma}^{-1} \boldsymbol{S} \boldsymbol{\Sigma}^{-1}\right)-2 a E_{\boldsymbol{\Sigma}}^{(0)} \operatorname{tr}\left(\boldsymbol{S} \boldsymbol{\Sigma}^{-1}\right)+p E_{\boldsymbol{\Sigma}}^{(0)}[1]
\end{gathered}
$$

Using (1) and Lemma 2.5 (i) and (ii), we have

$$
R_{2}(a \boldsymbol{S}, \boldsymbol{\Sigma})=\gamma(2) a^{2} p\left(n^{2}+n+n p\right)-2 \gamma(1) n a p+p \gamma(0)
$$

and the last equality is minimized at $a=\frac{\gamma(1)}{(n+p+1) \gamma(2)}$.
Proof of Theorem 2.3. Write (2) as

$$
\begin{equation*}
\hat{\boldsymbol{\Sigma}}=a \boldsymbol{S}+g(\boldsymbol{S}) \mathbf{I} \tag{7}
\end{equation*}
$$

where $g(\boldsymbol{S})=\operatorname{aut}(u)$. Taking differentiating of u with respect to \boldsymbol{S} gives

$$
\frac{\partial u}{\partial \boldsymbol{S}}=-\left(\operatorname{tr} \boldsymbol{S}^{-1}\right)^{-2} \frac{\partial\left(\operatorname{tr} \boldsymbol{S}^{-1}\right)}{\partial \boldsymbol{S}}=u^{2} \boldsymbol{S}^{-2}
$$

As a result, we obtain

$$
\begin{equation*}
\frac{\partial g(\boldsymbol{S})}{\partial \boldsymbol{S}}=a\left[\frac{\partial u}{\partial \boldsymbol{S}} t(u)+u \frac{\partial t(u)}{\partial \boldsymbol{S}}\right]=a\left[u^{2} t(u)+\frac{\partial t(u)}{\partial u} u^{3}\right] \boldsymbol{S}^{-2} \tag{8}
\end{equation*}
$$

Let $t(u)$ be a constant function, the equation (8) implies that

$$
\begin{equation*}
\frac{\partial g(\boldsymbol{S})}{\partial \boldsymbol{S}}=a u^{2} t \boldsymbol{S}^{-2} \tag{9}
\end{equation*}
$$

From [5] we have the

$$
\begin{equation*}
\rho_{k}=\operatorname{tr}\left(\frac{\boldsymbol{S}^{-1}}{\operatorname{tr} \boldsymbol{S}^{-1}}\right)^{k}, \quad k=1,2, \ldots \tag{10}
\end{equation*}
$$

It is convenient to note that ρ_{k} decreases in k and $0 \leqslant \rho_{k} \leqslant 1$.
Use (7) with $a=\frac{1}{n \gamma(1)}$ and
$\alpha_{1}=R_{1}(\hat{\boldsymbol{\Sigma}}, \boldsymbol{\Sigma})-R_{1}\left(\hat{\boldsymbol{\Sigma}}_{1}, \boldsymbol{\Sigma}\right)=E_{\boldsymbol{\Sigma}}^{(0)}\left[g(\boldsymbol{S}) \operatorname{tr} \boldsymbol{\Sigma}^{-1}-\log \left|\mathbf{I}+n \gamma(1) g(\boldsymbol{S}) \boldsymbol{S}^{-1}\right|\right]$.
Knowing that $t(u)$ is a constant, say t, and from (5) with $h=g$, and applying the expansion

$$
\log |\mathbf{I}+\alpha \mathbf{B}|=\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} \alpha^{n} \operatorname{tr}\left(\mathbf{B}^{n}\right)
$$

where α is a real number and $\mathbf{B}_{p \times p}$ a symmetric matrix, we obtain $\alpha_{1}=E_{\boldsymbol{\Sigma}}^{(1)}\left[(n-p-1) g(\boldsymbol{S}) \operatorname{tr}\left(\boldsymbol{S}^{-1}\right)+\operatorname{tr}\left(\frac{\partial g(\boldsymbol{S})}{\partial \boldsymbol{S}}\right)\right]-E_{\boldsymbol{\Sigma}}^{(0)}\left[\sum_{i=1}^{\infty} \frac{(-1)^{i-1}}{i} t^{i} \rho_{i}\right]$.

A simple calculation shows that

$$
\sum_{i=1}^{\infty} \frac{(-1)^{i-1}}{i} t^{i} \rho_{i} \geqslant t-\frac{1}{2} t^{2}
$$

because the terms of the above series are in decreasing magnitude. Substituting (9) into (11), with $a=\frac{1}{n \gamma(1)}$, we obtain

$$
\begin{array}{rlr}
\alpha_{1} & \leqslant \frac{1}{n \gamma(1)} E_{\boldsymbol{\Sigma}}^{(1)}\left[(n-p-1) t+\rho_{2} t\right]+E_{\boldsymbol{\Sigma}}^{(0)}\left[\frac{1}{2} t^{2}-t\right] \\
& \leqslant \frac{1}{n \gamma(1)}(n-p) t E_{\boldsymbol{\Sigma}}^{(1)}[1]+\left(\frac{1}{2} t^{2}-t\right) E_{\boldsymbol{\Sigma}}^{(0)}[1], & \left(\text { since } \rho_{2} \leqslant 1\right) \\
& \leqslant\left[\frac{n-p}{n}-\gamma(0)\right] t+\frac{\gamma(0)}{2} t^{2} & \quad(\text { from }(1)) \tag{1}
\end{array}
$$

A sufficient condition for $\alpha_{1}(\boldsymbol{\Sigma}) \leqslant 0(\forall \Sigma)$ is

$$
\left[\frac{n-p}{n}-\gamma(0)\right] t+\frac{\gamma(0)}{2} t^{2} \leqslant 0
$$

Finally, it is seen that

$$
0 \leqslant t \leqslant \frac{2(n \gamma(0)+p-n)}{n \gamma(0)}
$$

It is also seen, from (12) that (11) is bounded above by $\left[\frac{n-p}{n}-\gamma(0)\right] t+$ $\frac{\gamma(0)}{2} t^{2}$; hence, the optimal t is $\frac{n \gamma(0)+p-n}{n \gamma(0)}$.
Theorem 2.4. compares $\hat{\boldsymbol{\Sigma}}$ in (7) and $\hat{\boldsymbol{\Sigma}}_{2}=a \boldsymbol{S}, a=\frac{\gamma(1)}{(n+p+1) \gamma(2)}$. Let

$$
\begin{align*}
\alpha_{2}(\boldsymbol{\Sigma}) & =R_{2}(\hat{\boldsymbol{\Sigma}}, \boldsymbol{\Sigma})-R_{2}\left(\hat{\boldsymbol{\Sigma}}_{2}, \boldsymbol{\Sigma}\right) \\
& =E_{\boldsymbol{\Sigma}}^{(0)}\left[2 a g(\boldsymbol{S}) \operatorname{tr}\left(\boldsymbol{S} \boldsymbol{\Sigma}^{-2}\right)\right)-2 g(\boldsymbol{S}) \operatorname{tr}\left(\boldsymbol{\Sigma}^{-1}+g^{2}(\boldsymbol{S}) \operatorname{tr}\left(\boldsymbol{\Sigma}^{-2}\right)\right] \tag{13}
\end{align*}
$$

Then identities for the terms in (13) are given in the following Lemma.
Lemma 2.7. Under conditions of Lemma 5.2.[5](see appendix)
i) For $h(\boldsymbol{S})=2 a g(\boldsymbol{S})$, we have

$$
\begin{aligned}
E_{\boldsymbol{\Sigma}}^{(0)}\left[h(\boldsymbol{S}) \operatorname{tr}\left(\boldsymbol{\Sigma}^{-2} \boldsymbol{S}\right)\right]= & E_{\boldsymbol{\Sigma}}^{(2)}\left[n(n-p-1) h(\boldsymbol{S}) \operatorname{tr}\left(\boldsymbol{S}^{-1}\right)\right. \\
& -(p+1) \operatorname{tr}\left(\frac{\partial h(\boldsymbol{S})}{\partial \boldsymbol{S}}\right) \\
& \left.+2 \operatorname{tr} D_{\boldsymbol{S}}\left(\frac{\partial h(\boldsymbol{S})}{\partial \boldsymbol{S}} \cdot \boldsymbol{S}\right)\right]
\end{aligned}
$$

ii) For $h(\boldsymbol{S})=-2 g(\boldsymbol{S})$, we obtain

$$
E_{\boldsymbol{\Sigma}}^{(0)}\left[h(\boldsymbol{S}) \operatorname{tr}\left(\boldsymbol{\Sigma}^{-1}\right)\right]=E_{\boldsymbol{\Sigma}}^{(1)}\left[(n-p-1) h(\boldsymbol{S}) \operatorname{tr}\left(\boldsymbol{S}^{-1}\right)+\operatorname{tr}\left(\frac{\partial h(\boldsymbol{S})}{\partial \boldsymbol{S}}\right)\right]
$$

iii) For $h(\boldsymbol{S})=g^{2}(\boldsymbol{S})$, we get

$$
\begin{aligned}
E_{\boldsymbol{\Sigma}}^{(0)}\left[h(\boldsymbol{S}) \operatorname{tr}\left(\boldsymbol{\Sigma}^{-2}\right)\right]= & E_{\boldsymbol{\Sigma}}^{(2)}\left[2 \operatorname{tr} D_{S}\left(\frac{\partial h(\boldsymbol{S})}{\partial \boldsymbol{S}}\right)+2(n-p-1)\right. \\
& \operatorname{tr}\left(\boldsymbol{S}^{-1} \frac{\partial h(\boldsymbol{S})}{\partial \boldsymbol{S}}\right)+(n-p-1) \\
& (n-p-2) h(\boldsymbol{S}) \operatorname{tr}\left(\boldsymbol{S}^{-2}\right) \\
& \left.-(n-p-1) h(\boldsymbol{S}) \operatorname{tr}^{2}\left(\boldsymbol{S}^{-1}\right)\right]
\end{aligned}
$$

Proof (i). Set $\mathbf{T}=\boldsymbol{S} \boldsymbol{\Sigma}^{-1} h(\boldsymbol{S})$, by using (4), we can see

$$
\begin{gathered}
E_{\boldsymbol{\Sigma}}^{(0)}\left[\operatorname{tr}\left(\boldsymbol{\Sigma}^{-1} \boldsymbol{S} \boldsymbol{\Sigma}^{-1} h(\boldsymbol{S})\right)\right]= \\
E_{\Sigma}^{(1)}\left[(n-p-1) \operatorname{tr}\left(h(\boldsymbol{S}) \boldsymbol{\Sigma}^{-1}\right)+2 \operatorname{tr} D_{\boldsymbol{S}}\left(h(\boldsymbol{S}) \boldsymbol{S} \boldsymbol{\Sigma}^{-1}\right)\right]
\end{gathered}
$$

Now applying Lemma 2.6 (i) and (ii) with $\mathbf{Q}=\boldsymbol{\Sigma}^{-1}$ to the second term $D_{\boldsymbol{S}}\left(\boldsymbol{S} \boldsymbol{\Sigma}^{-1} h(\boldsymbol{S})\right)$; hence, we get

$$
E_{\boldsymbol{\Sigma}}^{(0)}\left[h(\boldsymbol{S}) \operatorname{tr}\left(\boldsymbol{\Sigma}^{-2} \boldsymbol{S}\right)\right]=E_{\boldsymbol{\Sigma}}^{(1)}\left[n \operatorname{tr}\left(\boldsymbol{\Sigma}^{-1} h(\boldsymbol{S})\right)+\operatorname{tr}\left(\boldsymbol{\Sigma}^{-1} \frac{\partial h(\boldsymbol{S})}{\partial \boldsymbol{S}} \boldsymbol{S}\right)\right]
$$

The result obtains by applying (5) to the first term and then (4) to the second.
(ii). In (5), set $k=0$.
(iii). Put $\mathbf{T}=\boldsymbol{\Sigma}^{-1} h(\boldsymbol{S})$. From (4) and Lemma 2.6. (i), we have
$E_{\boldsymbol{\Sigma}}^{(0)}\left[\operatorname{tr}\left(\boldsymbol{\Sigma}^{-2} h(\boldsymbol{S})\right)\right]=E_{\boldsymbol{\Sigma}}^{(1)}\left[(n-p-1) \operatorname{tr}\left(\boldsymbol{\Sigma}^{-1} \boldsymbol{S}^{-1} h(\boldsymbol{S})\right)+\operatorname{tr}\left(\frac{\partial h(\boldsymbol{S})}{\partial \boldsymbol{S}} \boldsymbol{\Sigma}^{-1}\right)\right]$.
Applying (4) to the first term with $\mathbf{T}=\boldsymbol{S}^{-1} h(\boldsymbol{S})$ and applying it to the second with $\mathbf{T}=\frac{\partial h(\boldsymbol{S})}{\partial \boldsymbol{S}}$, we obtain

$$
\begin{aligned}
E_{\boldsymbol{\Sigma}}^{(0)}\left[\operatorname{tr}\left(\boldsymbol{\Sigma}^{-2} h(\boldsymbol{S})\right)\right]= & E_{\boldsymbol{\Sigma}}^{(2)}\left[(n-p-1)^{2} h(\boldsymbol{S}) \operatorname{tr}\left(\boldsymbol{S}^{-2}\right)\right. \\
& +2(n-p-1) \operatorname{tr} D_{\boldsymbol{S}}\left(\boldsymbol{S}^{-1} h(\boldsymbol{S})\right) \\
& +(n-p-1) \operatorname{tr}\left(\boldsymbol{S}^{-1} \frac{\partial h(\boldsymbol{S})}{\partial \boldsymbol{S}}\right) \\
& \left.2 \operatorname{tr} D_{\boldsymbol{S}}\left(\frac{\partial h(\boldsymbol{S})}{\partial \boldsymbol{S}}\right)\right]
\end{aligned}
$$

Our result yields by using Lemma 2.6. (i) with $\mathbf{F}=\boldsymbol{S}^{-1}$ and $\phi=h$ and Lemma 2.6. (iv) with $\mathbf{Q}=\mathbf{I}$ to the second term.
The special of Lemma 2.7. by taking $g(\boldsymbol{S})=$ aut, $u=\left(\operatorname{tr}\left(\boldsymbol{S}^{-1}\right)^{-1}\right.$ and $a=\frac{\gamma(1)}{(n+p+1) \gamma(2)}$ is the following lemma.

Lemma 2.8. For $g(S)=$ aut,
i) $E_{\boldsymbol{\Sigma}}^{(0)}\left[2 a^{2} u t \operatorname{tr}\left(\boldsymbol{\Sigma}^{-2} \boldsymbol{S}\right)\right]=E_{\boldsymbol{\Sigma}}^{(2)}\left[2 n a^{2}(n-p-1) t-2 a^{2} \rho_{2}(p+2) t+\right.$ $\left.4 a^{2} t \rho_{3}-2 a^{2} t\right]$,
ii) $E_{\boldsymbol{\Sigma}}^{(0)}\left[-2 a u t \operatorname{tr}\left(\boldsymbol{\Sigma}^{-1}\right)\right]=E_{\boldsymbol{\Sigma}}^{(1)}\left[-2 a(n-p-1) t-2 a t \rho_{2}\right]$,
iii) $E_{\boldsymbol{\Sigma}}^{(0)}\left[a^{2} u^{2} t^{2} \operatorname{tr}\left(\boldsymbol{\Sigma}^{-2}\right)\right]=E_{\boldsymbol{\Sigma}}^{(2)}\left\{-(n-p-1) a^{2} t^{2}+6 a^{2} \rho_{4} t^{2}+4 a^{2} t^{2} \rho_{3}(n-\right.$ $p-2)$

$$
\left.+a^{2} t \rho_{2}\left[(n-p-1)^{2} t-(n-p-1) t-4 t\right]\right\}
$$

Proof (i). In Lemma 2.7. (i), we put $h(\boldsymbol{S})=2 a^{2} u t$
and then compute $D_{\boldsymbol{S}}\left(\frac{\partial h(\boldsymbol{S})}{\partial \boldsymbol{S}} \boldsymbol{S}\right)$. By applying Lemma 2.6. (i), (iv) with $\phi=u^{2}, \mathbf{F}=\boldsymbol{S}^{-1}$ and $\mathbf{Q}=\mathbf{I}$, we have

$$
\begin{aligned}
\operatorname{tr} D_{\boldsymbol{S}}\left(\frac{\partial h(\boldsymbol{S})}{\partial \boldsymbol{S}} \cdot \boldsymbol{S}\right) & =\operatorname{tr}\left\{2 a^{2} t\left[\frac{1}{2} \frac{\partial u^{2}}{\partial \boldsymbol{S}} \boldsymbol{S}^{-1}+u^{2}\left\{-\frac{1}{2} \boldsymbol{S}^{-2}-\frac{1}{2} \operatorname{tr}\left(\boldsymbol{S}^{-1}\right) \boldsymbol{S}^{-1}\right\}\right]\right\} \\
& =\operatorname{tr}\left\{2 a^{2} t u^{3} \boldsymbol{S}^{-3}-a^{2} t u^{2} \boldsymbol{S}^{-2}-a^{2} t u^{2} \operatorname{tr}\left(\boldsymbol{S}^{-1}\right) \boldsymbol{S}^{-1}\right\} \\
& =2 a^{2} t \rho_{3}-a^{2} t \rho_{2}-a^{2} t
\end{aligned}
$$

Result (i) is now obtainable by using (9).
(ii). Using (9) and (10), the result obtains from Lemma 2.7. (ii) with $h(\boldsymbol{S})=-2 a u t$.
(iii). Take $h(\boldsymbol{S})=a^{2} u^{2} t^{2}$ in Lemma 2.7. (iii); then compute $D_{\boldsymbol{S}}\left(\frac{\partial h(\boldsymbol{S})}{\partial \boldsymbol{S}}\right)$. Similarly, using Lemma 2.6. (i), (iii) with $\phi=u^{3}, \mathbf{F}=\boldsymbol{S}^{-2}$
and $\mathbf{Q}=\mathbf{I}$, we have

$$
\begin{align*}
\operatorname{tr} D_{\boldsymbol{S}}\left(\frac{\partial h(\boldsymbol{S})}{\partial \boldsymbol{S}}\right) & =2 a^{2} t^{2} \operatorname{tr}\left[\frac{1}{2}\left(\frac{\partial u^{3}}{\partial \boldsymbol{S}} \boldsymbol{S}^{-2}\right)+u^{3} D_{\boldsymbol{S}} \boldsymbol{S}^{-2}\right] \\
& =a^{2} t^{2}\left[3 \rho_{4}-2 \rho_{3}-2 \rho_{2}\right] \tag{14}
\end{align*}
$$

Now substitute (14) in Lemma 2.7. (iii) to achieve the result.
Proof of Theorem 2.4. Each term in (13) obtained from Lemma 2.7 (i), (ii) and (iii); hence, we have

$$
\begin{align*}
\alpha_{2} & =E_{\boldsymbol{\Sigma}}^{(2)}\left[a^{2} t\left\{2 n(n-p-1)+2 \rho_{2}(p+2)+4 \rho_{3}-2\right\}\right. \\
& +a^{2} t^{2}\left\{-(n-p-1)+6 \rho_{4}+4 \rho_{3}(n-p-2)+\rho_{2}(n-p-1)^{2}\right. \tag{15}\\
& \left.\left.-\rho_{2}(n-p-1)-4 \rho_{2}\right\}\right]+E_{\boldsymbol{\Sigma}}^{(1)}\left[a t\left\{-2(n-p-1)-2 \rho_{2}\right\}\right] .
\end{align*}
$$

The above coefficient of $a^{2} t$ can be written as $2[n(n-p-1)-1]+$ $2 \rho_{2}(p+2)+4 \rho_{3}$. Since $\rho_{k} \leqslant 1$ thus, the entire quantity is bounded above by

$$
\begin{equation*}
2[n(n-p-1)-1]+2(p+2)+4=2[(n-1)(n-p)+3] . \tag{16}
\end{equation*}
$$

Since $\rho_{k} \searrow, 0 \leqslant \rho_{k} \leqslant 1$ and $n>p+1$, the coefficient of $a^{2} t^{2}$ is bounded above by

$$
\rho_{2}\left[2(n-p-1)+(n-p-1)^{2}-2\right]
$$

and the above term is bounded by

$$
\rho_{2}\left[2(n-p-1)+(n-p-1)^{2}\right] .
$$

The above coefficient of ρ_{2} is positive and $\rho_{2} \leqslant 1$; accordingly, the coefficient of $a^{2} t^{2}$ is bounded above by

$$
\begin{equation*}
(n-p-1)(n-p+1) \tag{17}
\end{equation*}
$$

From [1], paper 137, we have $\frac{1}{p} \leqslant \rho_{2} \leqslant 1$ then in (15), for the coefficient of $a t$ we can see

$$
\begin{equation*}
-2(n-p-1)-2 \rho_{2} \leqslant-\frac{2}{p} . \tag{18}
\end{equation*}
$$

Finally, from (15)-(18) a sufficient condition for $\alpha_{2}(\Sigma) \leqslant 0(\forall \Sigma)$ is $2 a^{2} t[(n-1)(n-p)+3] \gamma(2)+a^{2} t^{2}(n-p-1)(n-p+1) \gamma(2)+a t\left(-\frac{2}{p}\right) \gamma(1) \leqslant 0$.

Recall that $a=\frac{\gamma(1)}{\gamma(2)(n+p+1)}$ then (19) is equivalent to

$$
0 \leqslant t \leqslant \frac{2[(n-2 p+1)-p(n-1)(n-p)]}{p(n-p-1)(n-p+1)}
$$

The left hand side of (19) is minimized at $t=\frac{(n-2 p+1)-p(n-1)(n-p)}{p(n-p-1)(n-p+1)}$.

Appendix

Lemma 2.1. Let \mathbf{Q} be a $p \times p$ matrix of constants. If

$$
\lim _{z \rightarrow \pm \infty}|z| f^{(1)}\left(z^{2}+a^{2}\right)=0
$$

for any real a, then we have
(i) $\mathbb{E}_{\Sigma}^{(0)}[\mathbf{S}]=n \gamma(1) \boldsymbol{\Sigma}$.

If $\lim _{z \rightarrow \pm \infty}|z|^{3} f^{(1)}\left(z^{2}+a^{2}\right)=0$ and $\lim _{z \rightarrow \pm \infty}|z| f^{(2)}\left(z^{2}+a^{2}\right)=0$
for any real a, thenwe have
(ii) $\mathbb{E}_{\boldsymbol{\Sigma}}^{(0)}[\mathbf{S Q S}]=\gamma(2)\left(n^{2} \mathbf{\Sigma} \mathbf{Q} \mathbf{\Sigma}+n \mathbf{\Sigma} \mathbf{Q} \mathbf{\Sigma}+n \operatorname{tr}(\mathbf{Q} \mathbf{\Sigma}) \boldsymbol{\Sigma}\right)$,
(iii) $\mathbb{E}_{\boldsymbol{\Sigma}}^{(0)}[\operatorname{tr}(\mathbf{Q S}) \mathbf{S}]=\gamma(2)\left(n^{2} \operatorname{tr}(\mathbf{Q} \boldsymbol{\Sigma}) \boldsymbol{\Sigma}+n \mathbf{\Sigma} \mathbf{Q} \boldsymbol{\Sigma}+n \boldsymbol{\Sigma} \mathbf{Q} \boldsymbol{\Sigma}\right)$.

Lemma 5.2. Let $\mathbf{G}(\mathbf{S})=\left(g_{a b}(\mathbf{S})\right)=\mathbf{G}\left(\sum_{\mathbf{c}=\mathbf{1}}^{\mathbf{n}} \mathbf{z}_{\mathbf{c}} \mathbf{z}_{\mathbf{c}}\right)$, be a $p \times p$ matrix whose elements are differentiable with respect to $z_{j k}(j=1,2, \ldots, n, k=$ $1,2, \ldots, p)$. For $-2 \leqslant i \leqslant 1$, assume that
(a) $\left.\mathbb{E}_{\Sigma}^{i}\left[\mid g_{a b}(\mathbf{S})\right) \mid\right]<\infty ;$
(b) $\lim _{z j k \rightarrow \pm \infty}\left|z_{j k}\right| \mathbf{G}\left(\sum_{\mathbf{c}=\mathbf{1}}^{\mathbf{n}} \mathbf{z}_{\mathbf{c}} \mathbf{z}_{\mathbf{c}}\right)\left(\sum_{\mathbf{c}=\mathbf{1}}^{\mathbf{n}} \mathbf{z}_{\mathbf{c}} \mathbf{z}_{\mathbf{c}}\right)^{-1} f^{i+1}\left(z_{j k}^{2}+a^{2}\right)=\mathbf{0}_{p \times p}$ for any real a.

Then we have

$$
\mathbb{E}_{\Sigma}^{(i)}\left[\boldsymbol{\Sigma}^{-1} \mathbf{G}(\mathbf{S})\right]=\mathbb{E}_{\Sigma}^{(i+1)}\left[(n-p-1) \mathbf{S}^{-\mathbf{1}} \mathbf{G}(\mathbf{S})+\mathbf{2} \mathbf{D}_{\mathbf{s}} \mathbf{G}(\mathbf{S})\right]
$$

References

[1] R. Bellman, Introduction to Matrix Analysis, New York: McGraw-Hill, 1970.
[2] L. R. Haff, An identity for the Wishart distribution with applications, J. Multivariate Anal., 9 (1979), 531-544.
[3] L. R. Haff, Empirical Bayes estimation of the multivariate normal covariance matrix, Ann. Statist., 8 (1980), 586-597.
[4] L. R. Haff, Identities for the inverse Wishart distribution with computational results in linear and quadradic discrimination, Sankhaya, B, 44 (1982), 245-258.
[5] T. Hisayuki, Estimating the inverse matrix of scale parameter in an elliptically contoured distribution, J. Japan Statist. Soc., 35 (2005), 21-39.
[6] W. James and C. Stein, Estimation with quadratic loss. In Fourth Berkeley Symp. Math. Statist. Probability Univ. california Press, Berkeley, 1961.
[7] T. Kubokawa and M. S. Srivastava, Roubst improvement in estimation of a covariance matrix in an elliptically contoured distribution, Ann. Statist., 27 (1999), 600-609.
[8] M. J. Daniels and M. Pourahmadi, Bayesian analysis of covariance matrices and dynamic models for longitudinal data,Biometrika., 89 (2002), 553-566.
[9] M. D. Perlman, Reduced mean square estimation for several parameters. Sankhaya, B, 34 (1972), 89-92.
[10] J. G. Scott and J. O. Berger, Bayes and empirical-Bayes multiplicity adjustment in the variable-selection problem, Ann. Statist., 38 (2010), 25872619.
[11] J. Selliah, Estimation and Testing Problems in a Wishart Distribution, Ph. D. thesis, Department of Statistics, Standford University, 1964.

Zahra Khodadadi

Department of Mathematics
Assistant Professor of Mathematics
Islamic Azad University-Marvdasht Branch
Marvdasht, Iran.
E-mail: zhr_ khodadady@yahoo.com

Bahram Tarami

Department of Mathematics
Assistant Professor of Mathematics
College of Sciences, Yasouj University
Yasouj, Iran.
E-mail: tarami@mail.yu.ac.ir

[^0]: Received November 2010; Final Revised February 2011

