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Abstract. In this paper, We extend the concept of semismoothness for

functions to the Riemannian manifolds setting. Then, some properties

of these functions are studied.
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1. Introduction

Semismoothness was originally introduced by Mifflin (see[3]) for func-

tional. For function F : R
n −→ R

n, the concept of semismoothness is

equivalent to the uniform convergence of directional derivatives in all

directions.

Let F : R
n −→ R

m be locally Lipschitz and DF denote the set where F

is differentiable. Then the Clark generalized Jacobian of F at x denoted

by ∂clF (x) is defined as

∂clF (x) := co{ lim
xn−→x

JF (xn) | xn −→ x, xn ∈ DF },

where ”J” denotes Jacobian and ”co” stands for convex hull.

Definition 1.1. We say that a locally Lipschitz function F : R
n −→ R

m

is semismooth at x if

lim
v∈∂clF (x+th′), h′−→h, t↓0+

vh′, (1)
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exists for any h ∈ R
n.

Convex functions, smooth functions and maximums of smooth functions

are semismooth. Smooth compositions of semismooth functions are still

semismooth. It was shown that a function F from R
n to R

m is semis-

mooth if and only if all its components are semismooth. The proof of

the following theorems can be found in [6].

Theorem 1.2. If F is semismooth, then the directional derivative

F ′(x;h) = lim
t−→0+

1

t
[F (x+ th) − F (x)],

for h ∈ R
n exists and is equal to (2.1), i.e,

F ′(x;h) = lim
v∈∂clF (x+th′), h′−→h, t↓0+

vh′,

for h ∈ R
n.

Lemma 1.3. Suppose that F : R
n −→ R

m is a locally Lipschitz function

and F ′(x;h) exists for each h at x. Then

(i) F ′(x; .) is Lipschitz.

(ii) for each h, there exists a v ∈ ∂clF (x) such that

F ′(x;h) = vh.

In the following, we introduce some fundamental properties and nota-

tions of Riemannian manifolds.

Definition 1.4. A real-valued function f defined on a complete Rieman-

nian manifold M is said to be a convex if f is convex when restricted to

any geodesics of M , which means that

(foγ)(ta+ (1 − t)b) 6 tf(γ(a)) + (1 − t)f(γ(b)),
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holds for any a, b ∈ R and 0 6 t 6 1.

Definition 1.5. A real-valued function f defined on a complete Rie-

mannian manifold M is said to be Lipschitz if there exists a constant

L(M) = L > 0 such that

| f(p) − f(q) |6 Ld(p, q), (2)

for all p, p′ ∈M , where d is the Riemannian distance on M .

Besides this global concept, if for each p0 ∈ M , there exists L(p0) > 0

and δ = δ(p0) > 0 such that Inequality (2.2) occurs with L = L(p0),

for all p, q ∈ Bδ(p0) := {p ∈ M | d(p0, p) < δ}, then f is called locally

Lipschitz.

Definition 1.6. Let M be a complete Riemannian manifold and let

f : M −→ R be a convex function. Then the directional derivative of f

at p in the direction v ∈ TpM is defined by

f ′(p, v) = lim
t−→0+

qγv(t) = inf
t>0

qγv(t),

where γv : R −→M is the geodesic such that γv(0) = p, γ′v(0) = v and

qγ(t) =
f(γ(t)) − f(p)

t
.

Definition 1.7. Let f : M −→ R be a locally Lipschitz function and

(U,ϕ) be a chart around p ∈ M . Then the clarke generalized Jacobian

of f at p in the direction of v ∈ TpM is defined by

f0(p, v) = lim sup
t↓0,y−→x

foϕ−1(y + tv) − foϕ−1(y)

t
,

where ϕ(p) = x. (see [2])
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2. Semismoothness on Riemannian Manifolds

Definition 2.1. We say that a locally Lipschitz function f : M −→ R

is semismooth at p, If there exists a chart (U,ϕ) at p such that foϕ−1 :

R
n −→ R is semismooth at ϕ(p) = x ∈ R

n. It means that

lim
v∈∂cl(foϕ−1)(x+th),t↓0+

vh, (3)

exists for all h ∈ R
n.

Note that by using a normal chart (U,ϕ) at p, the formula (3) gives us

lim
v∈∂clf(expp th),t↓0+

vh, (4)

for all h ∈ TpM ∼= R
n.

In particular, observe that if M = R
n, (4) implies (3).

Proposition 2.2. The above definition does not depend on the coordi-

nate system.

Proof. Suppose that f is semismooth at p i.e. there exists a chart

(U,ϕ) at p such that foϕ−1 is semismooth at ϕ(p). Now if there exists

another chart such as (v, ψ) at p, we shall show that f in this chart is

also semismooth, i.e. foψ−1 at ψ(p) is semismooth.

We consider

foψ−1 = foϕ−1oϕoψ−1,

by assumption foϕ−1 is semismooth and according to the C∞ structure

on M , the combination ϕoψ−1 is smooth and according to the prop-

erties of the resulting semismooth functions (see [4]), this combination

is semismooth. Hence f is also semismooth in this chart and therefore

the concept of semismoothness on manifolds does not depend on the

coordinate system. �



SEMISMOOTH FUNCTION ON RIEMANNIAN ... 27

Theorem 2.3. Suppose that f : M −→ R is semismooth, then the di-

rectional derivative

f ′(p;h) = lim
t−→0+

f(γ(t)) − f(p)

t
,

exists and is equal to

f ′(p;h) = lim
v∈∂clf(expp th),t↓0

vh.

where γ : R −→M is geodesic and γ(0) = p, γ′(0) = h.

Proof. Since f : M −→ R is semismooth, there is chart (U,ϕ) at p such

that foϕ−1 : R
n −→ R at ϕ(p) = x ∈ R

n is semismooth, As a result of

theorem (2.2), the directional derivative

(foϕ−1)′(x;h) = lim
t−→0

1

t
[foϕ−1(x+ th) − foϕ−1(x)],

exists and is equal to

(foϕ−1)′(x;h) = lim
v∈∂cl(foϕ−1)(x+th),t↓0

vh. (5)

Left side of the above equality with respect to the normal coordinate

system and property of exponential function (γh(t) = exp(th)), can be

written as follows

lim
t−→0+

foϕ−1(x+ th) − foϕ−1(x)

t
= lim

t−→0+

f(γh(t)) − f(p)

t
= f ′(p;h),

(6)

and also consider the right side of (5) as follows

lim
v∈∂cl(foϕ−1)(x+th),t↓0

vh = lim
v∈∂cl(f(γh(t)),t↓0

vh. (7)

As a result of the (5), (6) and (7), one has that

f ′(p;h) = lim
v∈∂clf(expp th),t↓0

vh.
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This completes the proof. �

Theorem 2.4. Suppose that f : M −→ R is convex in the neighborhood

of p ∈M . Then f is semismooth at p.

Proof. For every sequence {pk} converges to p(pk 6= p) and for every

sequence {vk}, vk ∈ ∂clf(pk), we have

lim
k−→∞

f ′(p; dk) = lim
k−→∞

(vk)
Tdk, (8)

where

dk ≡
exp−1

pk
p

‖ exp−1
pk
p ‖pk

.

Without loss of generality, can assume

lim
k−→∞

dk = d, lim
k−→∞

vk = v ∈ ∂clf(p).

Since the left and the right limit of (8) are equal respectively with f ′(p; d)

and vTd, Then

vTd = f ′(p; d).

Since f is convex and vk ∈ ∂clf(pk), we have

f(p) − f(pk) >< vk, exp−1
pk
p >,

and consider k −→ ∞,

vTd > f ′(p; d),

and since v ∈ ∂clf(p), therefore, we have

f ′(p; d) > vTd.

Thus equality is established and the proof is completed. �
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