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Abstract. In this paper, We extend the concept of semismoothness for
functions to the Riemannian manifolds setting. Then, some properties
of these functions are studied.
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1. Introduction

Semismoothness was originally introduced by Mifflin (see[3]) for func-
tional. For function F' : R® — R", the concept of semismoothness is
equivalent to the uniform convergence of directional derivatives in all
directions.

Let F': R™ — R™ be locally Lipschitz and Dg denote the set where F
is differentiable. Then the Clark generalized Jacobian of F' at  denoted
by 0. F(z) is defined as

OuaF(z) :=co{ lim JF(zy) |z, — x,2, € Dp},
Ty ——T
where ”J” denotes Jacobian and ”co” stands for convex hull.

Definition 1.1. We say that a locally Lipschitz function F' : R™ — R™
s semismooth at x if

im ol (1)
vEDQ F(z+th'), —h, t|0F
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exists for any h € R™.

Convex functions, smooth functions and maximums of smooth functions
are semismooth. Smooth compositions of semismooth functions are still
semismooth. It was shown that a function F' from R"™ to R™ is semis-
mooth if and only if all its components are semismooth. The proof of
the following theorems can be found in [6].

Theorem 1.2. If F' is semismooth, then the directional derivative

F(z:h) = lim %[F(erth) P,

t—0

for h € R™ exists and is equal to (2.1), i.e,

F'(z;h) = lim ol
VED F(a+th'), h'—sh, t|0F

for h € R".

Lemma 1.3. Suppose that F': R® — R"™ is a locally Lipschitz function
and F'(x;h) exists for each h at x. Then

(i) F'(x;.) is Lipschitz.
(i) for each h, there exists a v € Oy F (x) such that

F'(z;h) = vh.

In the following, we introduce some fundamental properties and nota-
tions of Riemannian manifolds.

Definition 1.4. A real-valued function f defined on a complete Rieman-
nian manifold M is said to be a convex if f is convex when restricted to
any geodesics of M, which means that

(foy)(ta+ (1 —=1)b) <tf(v(a)) + (1 —1)f(v(b)),
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holds for any a,b € R and 0 <t < 1.

Definition 1.5. A real-valued function f defined on a complete Rie-
mannian manifold M is said to be Lipschitz if there exists a constant
L(M) =L >0 such that

| f(p) — f(q) I< Ld(p, ), (2)

for all p,p’ € M, where d is the Riemannian distance on M.

Besides this global concept, if for each py € M, there exists L(pg) > 0
and § = 6(pg) > 0 such that Inequality (2.2) occurs with L = L(po),
for all p,q € Bs(po) :== {p € M | d(po,p) < 0}, then f is called locally
Lipschitz.

Definition 1.6. Let M be a complete Riemannian manifold and let
f: M — R be a convex function. Then the directional derivative of f
at p in the direction v € T,M 1is defined by

! _ . .
flp,v) = lim g, (t) = infg,, (1),

where v, : R — M s the geodesic such that v,(0) = p,v,(0) = v and

FO0) ~ 1)

Q'y(t) = m

Definition 1.7. Let f : M — R be a locally Lipschitz function and
(U, ) be a chart around p € M. Then the clarke generalized Jacobian
of f at p in the direction of v € T,M 1is defined by

f(p,v) = limsup fop " (y +tv) — fop (y)’
t10,y—= t

where o(p) = x. (see [2])
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2. Semismoothness on Riemannian Manifolds

Definition 2.1. We say that a locally Lipschitz function f: M — R
is semismooth at p, If there exists a chart (U, ) at p such that fop™! :
R™ — R is semismooth at p(p) = x € R™. It means that

im vh, (3)
v€e(fop=1)(z+th),t|0F

exists for all h € R™.

Note that by using a normal chart (U, ¢) at p, the formula (3) gives us

lim vh, (4)
V€D, f(expy, th),t|0F

for all h € T,M = R".
In particular, observe that if M = R", (4) implies (3).

Proposition 2.2. The above definition does not depend on the coordi-
nate system.

Proof. Suppose that f is semismooth at p i.e. there exists a chart
(U, ) at p such that fop~! is semismooth at ¢(p). Now if there exists
another chart such as (v,v) at p, we shall show that f in this chart is
also semismooth, i.e. foi~! at 1(p) is semismooth.

We consider

fou™ = fop~topoy !,

by assumption fop~! is semismooth and according to the C™ structure

on M, the combination poyy~! is smooth and according to the prop-
erties of the resulting semismooth functions (see [4]), this combination
is semismooth. Hence f is also semismooth in this chart and therefore
the concept of semismoothness on manifolds does not depend on the
coordinate system. [
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Theorem 2.3. Suppose that f : M — R is semismooth, then the di-
rectional derivative

o — 1 100D = 1)

t—s0+ t ’
exists and is equal to

"(p; h) = li h.
f (p ) veaclf(eiglp th),thv

where v : R — M s geodesic and ~v(0) = p,~'(0) = h.

Proof. Since f : M — R is semismooth, there is chart (U, ¢) at p such
that fop~!:R" — R at ¢(p) = x € R” is semismooth, As a result of
theorem (2.2), the directional derivative

1
(fop™ 'Y (esh) = lim (o™ (x +th) — fop™ ' (2)
exists and is equal to

—1\/ 'h — l' h 5
(fO(P )(x7 ) Ueacl(fmp—l?)l(x-fth),tlov ( )

Left side of the above equality with respect to the normal coordinate
system and property of exponential function (y4(¢t) = exp(th)), can be
written as follows

-1 _ -1 _
i J0P_ (@Hth) — fop™ (x) _ . Fln(®) — f(p) _ £(p: h).
t—0F t t—0F t
(6)
and also consider the right side of (5) as follows
lim vh = lim vh. (7)

€Dy (fop~1)(z+th),t]0 €D (f (v (1)),t10

As a result of the (5), (6) and (7), one has that

'(pih) = I h.
f (p ) vE@clf(elxlg)lp th),thv
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This completes the proof. [

Theorem 2.4. Suppose that f : M — R is convex in the neighborhood
of pe M. Then f is semismooth at p.

Proof. For every sequence {p;} converges to p(pr # p) and for every
sequence {vg}, vg € O f(pr), we have

lim f'(p;dy) = lim (o) dy, (8)
k— o0 k— o0
where .
exp.,.
P I
H €XPpi, P Hpk

Without loss of generality, can assume

lim d; =d, lim vy =v € 0y f(p).

k— o0 k

Since the left and the right limit of (8) are equal respectively with f/(p; d)
and vTd, Then

v'd = f'(p;d).
Since f is convex and v € Oy f(pr), we have
f(p) = flpr) =< vg,exp, ' p >,

and consider k — o0,

vl'd > f'(p;d),

and since v € J, f(p), therefore, we have
f'(p;d) = o"d.

Thus equality is established and the proof is completed. [J
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