# Semismooth Function on Riemannian Manifolds

#### E. Ghahraei

University of Isfahan

**Abstract.** In this paper, We extend the concept of semismoothness for functions to the Riemannian manifolds setting. Then, some properties of these functions are studied.

AMS Subject Classification: 49J52; 58E30.

Keywords and Phrases: Semismoothness, Riemannian manifolds, locally lipschitz function.

## 1. Introduction

Semismoothness was originally introduced by Mifflin (see[3]) for functional. For function  $F: \mathbb{R}^n \longrightarrow \mathbb{R}^n$ , the concept of semismoothness is equivalent to the uniform convergence of directional derivatives in all directions.

Let  $F: \mathbb{R}^n \longrightarrow \mathbb{R}^m$  be locally Lipschitz and  $D_F$  denote the set where F is differentiable. Then the Clark generalized Jacobian of F at x denoted by  $\partial_{cl}F(x)$  is defined as

$$\partial_{cl}F(x) := co\{\lim_{x_n \longrightarrow x} JF(x_n) \mid x_n \longrightarrow x, x_n \in D_F\},$$

where "J" denotes Jacobian and "co" stands for convex hull.

**Definition 1.1.** We say that a locally Lipschitz function  $F : \mathbb{R}^n \longrightarrow \mathbb{R}^m$  is semismooth at x if

$$\lim_{v \in \partial_{cl} F(x+th'), \ h' \longrightarrow h, \ t \downarrow 0^+} vh', \tag{1}$$

Received November 2010; Final Revised January 2011

exists for any  $h \in \mathbb{R}^n$ .

Convex functions, smooth functions and maximums of smooth functions are semismooth. Smooth compositions of semismooth functions are still semismooth. It was shown that a function F from  $\mathbb{R}^n$  to  $\mathbb{R}^m$  is semismooth if and only if all its components are semismooth. The proof of the following theorems can be found in [6].

**Theorem 1.2.** If F is semismooth, then the directional derivative

$$F'(x;h) = \lim_{t \to 0^+} \frac{1}{t} [F(x+th) - F(x)],$$

for  $h \in \mathbb{R}^n$  exists and is equal to (2.1), i.e,

$$F'(x;h) = \lim_{v \in \partial_{cl} F(x+th'), h' \longrightarrow h, t \downarrow 0^+} vh',$$

for  $h \in \mathbb{R}^n$ .

**Lemma 1.3.** Suppose that  $F: \mathbb{R}^n \longrightarrow \mathbb{R}^m$  is a locally Lipschitz function and F'(x;h) exists for each h at x. Then

- (i) F'(x; .) is Lipschitz.
- (ii) for each h, there exists a  $v \in \partial_{cl} F(x)$  such that

$$F'(x;h) = vh.$$

In the following, we introduce some fundamental properties and notations of Riemannian manifolds.

**Definition 1.4.** A real-valued function f defined on a complete Riemannian manifold M is said to be a convex if f is convex when restricted to any geodesics of M, which means that

$$(fo\gamma)(ta + (1-t)b) \leqslant tf(\gamma(a)) + (1-t)f(\gamma(b)),$$

holds for any  $a, b \in \mathbb{R}$  and  $0 \le t \le 1$ .

**Definition 1.5.** A real-valued function f defined on a complete Riemannian manifold M is said to be Lipschitz if there exists a constant  $L(M) = L \geqslant 0$  such that

$$|f(p) - f(q)| \leqslant Ld(p, q), \tag{2}$$

for all  $p, p' \in M$ , where d is the Riemannian distance on M. Besides this global concept, if for each  $p_0 \in M$ , there exists  $L(p_0) \geqslant 0$  and  $\delta = \delta(p_0) > 0$  such that Inequality (2.2) occurs with  $L = L(p_0)$ , for all  $p, q \in B_{\delta}(p_0) := \{p \in M \mid d(p_0, p) < \delta\}$ , then f is called locally Lipschitz.

**Definition 1.6.** Let M be a complete Riemannian manifold and let  $f: M \longrightarrow \mathbb{R}$  be a convex function. Then the directional derivative of f at p in the direction  $v \in T_pM$  is defined by

$$f'(p,v) = \lim_{t \to 0^+} q_{\gamma_v}(t) = \inf_{t>0} q_{\gamma_v}(t),$$

where  $\gamma_v : \mathbb{R} \longrightarrow M$  is the geodesic such that  $\gamma_v(0) = p, \gamma_v'(0) = v$  and

$$q_{\gamma}(t) = \frac{f(\gamma(t)) - f(p)}{t}.$$

**Definition 1.7.** Let  $f: M \longrightarrow \mathbb{R}$  be a locally Lipschitz function and  $(U, \varphi)$  be a chart around  $p \in M$ . Then the clarke generalized Jacobian of f at p in the direction of  $v \in T_pM$  is defined by

$$f^{0}(p,v) = \limsup_{t \downarrow 0, y \longrightarrow x} \frac{f \circ \varphi^{-1}(y + tv) - f \circ \varphi^{-1}(y)}{t},$$

where  $\varphi(p) = x$ . (see [2])

## 2. Semismoothness on Riemannian Manifolds

**Definition 2.1.** We say that a locally Lipschitz function  $f: M \longrightarrow \mathbb{R}$  is semismooth at p, If there exists a chart  $(U, \varphi)$  at p such that  $f \circ \varphi^{-1} : \mathbb{R}^n \longrightarrow \mathbb{R}$  is semismooth at  $\varphi(p) = x \in \mathbb{R}^n$ . It means that

$$\lim_{v \in \partial_{cl}(f \circ \varphi^{-1})(x+th), t \downarrow 0^+} vh, \tag{3}$$

exists for all  $h \in \mathbb{R}^n$ .

Note that by using a normal chart  $(U, \varphi)$  at p, the formula (3) gives us

$$\lim_{v \in \partial_{cl} f(\exp_v th), t \downarrow 0^+} vh, \tag{4}$$

for all  $h \in T_pM \cong \mathbb{R}^n$ .

In particular, observe that if  $M = \mathbb{R}^n$ , (4) implies (3).

**Proposition 2.2.** The above definition does not depend on the coordinate system.

**Proof.** Suppose that f is semismooth at p i.e. there exists a chart  $(U,\varphi)$  at p such that  $fo\varphi^{-1}$  is semismooth at  $\varphi(p)$ . Now if there exists another chart such as  $(v,\psi)$  at p, we shall show that f in this chart is also semismooth, i.e.  $fo\psi^{-1}$  at  $\psi(p)$  is semismooth. We consider

$$fo\psi^{-1} = fo\varphi^{-1}o\varphi o\psi^{-1},$$

by assumption  $f \circ \varphi^{-1}$  is semismooth and according to the  $C^{\infty}$  structure on M, the combination  $\varphi \circ \psi^{-1}$  is smooth and according to the properties of the resulting semismooth functions (see [4]), this combination is semismooth. Hence f is also semismooth in this chart and therefore the concept of semismoothness on manifolds does not depend on the coordinate system.  $\square$ 

**Theorem 2.3.** Suppose that  $f: M \longrightarrow \mathbb{R}$  is semismooth, then the directional derivative

$$f'(p;h) = \lim_{t \longrightarrow 0^+} \frac{f(\gamma(t)) - f(p)}{t},$$

exists and is equal to

$$f'(p;h) = \lim_{v \in \partial_{cl} f(\exp_p th), t \downarrow 0} vh.$$

where  $\gamma: \mathbb{R} \longrightarrow M$  is geodesic and  $\gamma(0) = p, \gamma'(0) = h$ .

**Proof.** Since  $f: M \longrightarrow \mathbb{R}$  is semismooth, there is chart  $(U, \varphi)$  at p such that  $f \circ \varphi^{-1} : \mathbb{R}^n \longrightarrow \mathbb{R}$  at  $\varphi(p) = x \in \mathbb{R}^n$  is semismooth, As a result of theorem (2.2), the directional derivative

$$(f \circ \varphi^{-1})'(x; h) = \lim_{t \to 0} \frac{1}{t} [f \circ \varphi^{-1}(x + th) - f \circ \varphi^{-1}(x)],$$

exists and is equal to

$$(f \circ \varphi^{-1})'(x; h) = \lim_{v \in \partial_{cl}(f \circ \varphi^{-1})(x+th), t \downarrow 0} vh.$$
 (5)

Left side of the above equality with respect to the normal coordinate system and property of exponential function  $(\gamma_h(t) = \exp(th))$ , can be written as follows

$$\lim_{t \to 0^{+}} \frac{f \circ \varphi^{-1}(x+th) - f \circ \varphi^{-1}(x)}{t} = \lim_{t \to 0^{+}} \frac{f(\gamma_{h}(t)) - f(p)}{t} = f'(p;h),$$
(6)

and also consider the right side of (5) as follows

$$\lim_{v \in \partial_{cl}(f \circ \varphi^{-1})(x+th), t \downarrow 0} vh = \lim_{v \in \partial_{cl}(f(\gamma_h(t)), t \downarrow 0} vh. \tag{7}$$

As a result of the (5), (6) and (7), one has that

$$f'(p;h) = \lim_{v \in \partial_{cl} f(\exp_n th), t \downarrow 0} vh.$$

This completes the proof.  $\Box$ 

**Theorem 2.4.** Suppose that  $f: M \longrightarrow \mathbb{R}$  is convex in the neighborhood of  $p \in M$ . Then f is semismooth at p.

**Proof.** For every sequence  $\{p_k\}$  converges to  $p(p_k \neq p)$  and for every sequence  $\{v_k\}, v_k \in \partial_{cl} f(p_k)$ , we have

$$\lim_{k \to \infty} f'(p; d_k) = \lim_{k \to \infty} (v_k)^T d_k, \tag{8}$$

where

$$d_k \equiv \frac{\exp_{p_k}^{-1} p}{\| \exp_{p_k}^{-1} p \|_{p_k}}.$$

Without loss of generality, can assume

$$\lim_{k \to \infty} d_k = d, \qquad \lim_{k \to \infty} v_k = v \in \partial_{cl} f(p).$$

 $\lim_{k \longrightarrow \infty} d_k = d, \qquad \lim_{k \longrightarrow \infty} v_k = v \in \partial_{cl} f(p).$  Since the left and the right limit of (8) are equal respectively with f'(p;d)and  $v^T d$ , Then

$$v^T d = f'(p; d).$$

Since f is convex and  $v_k \in \partial_{cl} f(p_k)$ , we have

$$f(p) - f(p_k) \geqslant \langle v_k, \exp_{p_k}^{-1} p \rangle,$$

and consider  $k \longrightarrow \infty$ ,

$$v^T d \geqslant f'(p; d),$$

and since  $v \in \partial_{cl} f(p)$ , therefore, we have

$$f'(p;d) \geqslant v^T d.$$

Thus equality is established and the proof is completed.  $\square$ 

# References

- [1] F. Facchinei and J. S. Pang, Finite-Dimensional Variational Inequalities and Complementarity Problem, Springer Verlag, Berlin, 2 (2003).
- [2] S. Hosseini and M. R. Pouryayevali, Generalized gradients and characterization of epi-Lipschitz sets in Riemannian manifolds, *Nonlinear Analysis*, 74 (2011), 3884-3895.
- [3] J. M. Lee, *Riemannian Manifolds*, An Introduction to Curvature, Springer, (1997).
- [4] M. Mifflin, Semismooth and Semiconvex Function in Constrained Optimization, SIAM Journal on Control and Optimization, 15 (1977), 957-972.
- [5] D. Motreanu and N. H. Pavel, Quasi-tangent Vectors in Flow-invariance and Optimization Problem on Banach Manifold, *J. Math. Anal. Appl.*, 88 (1982), 116-132.
- [6] L. Qi and J. Sun, A Nonsmooth Version of Newton's method, *Mathematical Programming*, 58 (1993), 353-367.

### Elham Ghahraei

Department of Mathematics Ph.D Student of Mathematics University of Isfahan Isfahan, Iran

E-mail: ghahraeiel@yahoo.com