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Abstract. In the present paper, we characterize the eigenfunctions of
a weighted composition operator on space of holomorphic function on
the unit disk.

AMS Subject Classification: 47B33; 47B38.
Keywords and Phrases: Denjoy-Wolff point, linear-fractional model
theorem, weighted composition operator.

1. Introduction

A weighted composition operator Cϕ,ψ is an operator that maps f ∈
H(U), the space of holomorphic functions on the unit disk U, into
Cϕ,ψ(f)(z) = ϕ(z)f(ψ(z)), where ϕ and ψ are analytic functions defined
in U such that ψ(U) ⊆ U. When ϕ ≡ 1, we just have the composition
operator Cψ defined by Cψ(f) = f ◦ ψ.
The eigenfunctions of a composition operator on the classical Hardy
space H2, induced by a hyperbolic disk automorphism, are considered
in [2, 4, 5] where it has been shown that many eigenfunctions of a com-
position operator can be found in the doubly cyclic subspace generated
by special functions in H2.
Studying the eigenfunctions of weighted composition operators entails a
study of the iterate behavior of holomorphic self maps. The holomorphic
self maps of U are divided into classes of elliptic and non-elliptic type.
The elliptic type is an automorphism and has a fixed point in U. It is
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well known that this map is conjugate to a rotation z → λz for some
complex number λ with |λ| = 1. The iterate of a non-elliptic map can
be characterized by the Denjoy-Wolff Iteration Theorem [1, 6, 7]. In the
following notation ” k→ ” means uniformly converges on compact subsets
of U and ψn denotes the composition of ψ with itself n-times.

Denjoy-Wolff Iteration Theorem. Suppose ψ is a holomorphic
self-map of U that is not an elliptic automorphism. Then

(i) If ψ has a fixed point w ∈ U, then ψn
k→ w and |ψ′(w)| < 1.

(ii) If ψ has no fixed point in U, then there is a point w ∈ ∂U
such that ψn

k→ w and the angular derivative of ψ exists at w, with
0 < ψ′(w) 6 1.
We call the unique attracting point w, the Denjoy-Wolff point of ψ. By
the Denjoy-Wolff Iteration Theorem, a general classification of a non-
elliptic holomorphic self maps of U can be given: let w be the Denjoy-
Wolff point of a holomorphic self-map of U. We say ψ is of dilation type
if w ∈ U, of hyperbolic type if w ∈ ∂U and ψ′(w) < 1, and of parabolic
type if w ∈ ∂U and ψ′(w) = 1.
In the present paper we characterize the eigenfunctions of a weighted
composition operators on H(U).

2. Main Result

From now on, we assume that w is the Denjoy-Wolff point of non-elliptic
holomorphic self-map ψ and ϕ is a holomorphic function on U which is
continuous at w and ϕ(w) 6= 0.
We characterize the eigenfunctions of Cϕ,ψ in H(U). In fact, if the in-
finite product

∏∞
n=0

1
ϕ(w)ϕ(ψn(z)) converges uniformly on compact sub-

sets U then, the function

g(z) =
∞∏

n=0

1
ϕ(w)

ϕ(ψn(z)) (1)

is holomorphic on U and satisfies the equation ϕ.g ◦ ψ = ϕ(w)g and
is indeed an eigenfunction of Cϕ,ψ. That all eigenfunctions of Cϕ,ψ in
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H(U), continuous at w, are obtained in this way is the content of the
following theorem.

Proposition 2.1. Let g ∈ H(U) be a non-zero eigenfunction of Cϕ,ψ

which is continuous at w. Then either g(w) = 0 or the infinite product∏∞
n=0

1
ϕ(w)ϕ(ψn(z)) converges uniformly on compact subsets of U and

g(z) = g(w)
∞∏

n=0

1
ϕ(w)

ϕ(ψn(z)). (2)

Proof. Let g(w) 6= 0 and ϕ.g ◦ ψ = λg for some non-zero scalar λ.
Then λ = ϕ(w) and for integer n > 1,

(n−1∏

i=0

ϕ(ψi(z))
)

g(ψn(z)) = λng(z) = ϕ(w)ng(z)

and so

(n−1∏

i=0

1
ϕ(w)

ϕ(ψi(z))
)

g(ψn(z)) = g(z) (z ∈ U, n > 1) (3)

where ψ0 is the identity map on U. Since g(ψn(z)) → g(w), the infinite
product

∏+∞
i=0

1
ϕ(w)ϕ(ψi(z)) converges in H(U) to g(w)−1g(z) and (2) is

deduced. ¤

The next proposition shows the iterate sequence of holomorphic self
maps can exhibit a stronger form of convergence to the Denjoy-Wolff
point.

Proposition 2.2. The series

+∞∑

n=1

|ψn(z)− w|β (4)

converges uniformly on compact subsets of U whenever
1. ψ is not parabolic and β > 0, or
2. ψ is parabolic automorphic and β = 2.
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Proof. Suppose ψ is not of parabolic type. Then it is either of dilation
or hyperbolic type. Let ψ be of dilation type and w ∈ U. Then zero is
the Denjoy-Wolff point of the self map αw ◦ψ ◦αw where αw(z) = z−w

1−wz .
Choose δ > 0 with |ψ′(w)| < δ < 1. So |αw ◦ ψ ◦ αw(z)| < δ|z| when
z is sufficiency near to zero. If K is a compact subset of U, then by
the Denjoy-Wolff Theorem, αw ◦ ψn ◦ αw → 0 uniformly on K and
|αw ◦ ψn+k ◦ αw(z)| < δk|αw ◦ ψn ◦ αw(z)| for sufficiently large n, every
positive integer k, and z ∈ K. Upon replacing αw(z) instead of z in the
previous inequality, we get

|ψn+k(z)− w|
2

6 |αw(ψn+k(z))| 6 δk|αw(ψn(z))| (5)

Now suppose ψ is hyperbolic and w ∈ ∂U, then 0 < ψ′(w) < 1 and by
Julia-Caratheodory Inequality ([1], Theorem 3.1 ) we get

|ψ(z)− w|2
1− |ψ(z)|2 < ψ′(w)

|z − w|2
1− |z|2 (z ∈ U).

By substituting ψn(z) for z, we get

|ψn(z)− w|2
1− |ψn(z)|2 < (ψ′(w))n |z − w|2

1− |z|2 (z ∈ U, n > 0)

Now if K is a compact subset of U, then the right hand of the above
inequality is bounded on K. Hence it follows that

|ψn(z)− w| < const.(ψ′(w))
n
2 (z ∈ K) (6)

Thus the inequality (5) and (6) imply that (4) converges uniformly on
compact subsets of U for β > 0 . For the next part let ψ be of parabolic
automorphic type. The Linear-Fractional Model Theorem [2, 8, 9] then
provides a function σ holomorphic on U with values in the right half-
plane such that σ ◦ψ = σ + ib for some real b 6= 0. Hence more generally
σ◦ψn = σ+nib. Let K be an arbitrary compact subset of U . For n > 1,
pick zn ∈ K such that |ψn(zn)| 6 |ψn(z)| for all z ∈ K.
The Blaschke condition for a sequence (zn) in U is equivalent, via the
map w = 1+z

1−z , to the condition
∑

n

Rewn

|1 + wn|2 < ∞ (7)
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for sequences (wn) in the right half-plane. Since the sequence (σ(zn))
is bounded, so (7) is to be satisfied by the sequence wn = σ(zn) + nib,
which is therefore, the zero-sequence of a bounded holomorphic function
F on the right half-plane (see [3] Theorem 11.3, page 191). The function
f = F ◦ σ is then a non-constant bounded holomorphic function on U,
and for n > 1:

f(ψn(zn)) = F (σ(ψn(zn))) = F (σ(zn) + nbi) = 0

Thus some nonconstant bounded holomorphic functions on U vanishes
at each point of the sequence (ψn(zn)), so that sequence satisfies the
Blaschke condition. On the other hand, by the Julia-Caratheodory In-
equality,

|ψn(z)− w|2 6 const(1− |ψn(z)|2) 6 const(1− |ψn(zn)|2)

on K. Thus (4) uniformly converges on K for β = 2. ¤
Recall that for any w ∈ U and positive real number β, we denote by
Lipβ(w), the class of holomorphic functions ϕ satisfying

|ϕ(z)− ϕ(w)| = O(|z − w|β) (z → w) (8)

For example if ϕ ∈ H(U) is analytic at w, then ϕ ∈ Lipβ(w) for β ∈
(0, 1]. Moreover, if ϕ(i)(w) exists and equal to zero for i = 1, . . . , n then
ϕ ∈ Lipβ(w) for β ∈ (0, n + 1].

Theorem 2.3. Let ϕ ∈ Lipβ(w) and ϕ(w) 6= 0 then the function g(z)
defined by equation (1) is an eigenfunction for Cϕ,ψ, whenever

1. ψ is of dilation type, or
2. ψ is of hyperbolic type and β > 0, or
3. ψ is of parabolic automorphism type and β = 2.

Proof. Assume that ϕ ∈ Lipβ(w) for some real number β and K is a
compact subset of U. Since ψn → w uniformly on K, by substituting
ψn(z) instead of z in (8) we get

|ϕ(w)− ϕ(ψn(z))| = O(|w − ψn(z)|β) (z ∈ K,n →∞)
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whence

|1− 1
ϕ(w)

ϕ(ψn(z)| = O(
1

|ϕ(w)| |w − ψn(z)|β) (z ∈ K,n →∞).

Now if ψ is hyperbolic and β > 0 or ψ is parabolic automorphism and
β = 2 then by pervious Proposition,

∑∞
n=0 |1− 1

ϕ(w)ϕ(ψn(z)| and conse-
quently g(z) =

∏∞
n=0

1
ϕ(w)ϕ(ψn(z)) converges uniformly on K. Thus (1)

is indeed an eigenfunction for Cϕ,ψ and the proof is complete. ¤
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