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Abstract. In this paper the Chebyshev finite difference method is em-
ployed for finding the approximate solution of time varying constrained
optimal control problems. This approach consists of reducing the op-
timal control problem to a nonlinear mathematical programming prob-
lem. To this end, the collocation points (Chebyshev Gauss-Lobatto
nodes) are introduced then the state and control variables are approx-
imated using special Chebyshev series with unknown parameters. The
performance index is parameterized and the system dynamics and con-
straints are then replaced with a set of algebraic equations. Numerical
examples are included to demonstrate the validity and applicability of
the technique.
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1. Introduction

Orthogonal polynomials and orthogonal functions have been used to

solve various problems of dynamical systems and optimal control the-

ory. The key idea of this technique is that it reduces these problems to
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those of solving a system of algebraic equations or a finite dimensional

optimization problem, i.e. a mathematical programming problem. This

technique is based on parameterizing the rate variables (state and/or

control variables), or discretization scheme. Typical examples are the

Legendre polynomials ([18]), Chebyshev polynomials ([13,24]), Fourier

series ([20,25]) and nonclassical orthogonal polynomials ([16]).

Most of the computing techniques for the solution of optimal control

problems successfully solve the unconstrained problems, but the pres-

ence of inequality constraints often results in both analytical and com-

putational difficulties. Theoretical aspects of trajectory inequality con-

straints have been studied in [7,17]. Mehra and Davis ([17]) noted that

difficulties arising from handling trajectory inequality constraints are

due to the exclusive use of control variables as independent variables,

and they presented the so-called generalized gradient technique. In [24]

the state and control variables are expanded into Chebyshev series with

unknown coefficients. In their method the number of control and state

variables are assumed to be equal. The coefficients which evolve from

the classical Chebyshev series expansion of the performance index, the

system dynamics and the boundary conditions, have to be calculated by

some kind of analytical formulation for different problems. A Fourier-

based state parametrization approach for solving linear quadratic op-

timal control problems is proposed in [16]. This approach is based on

approximating the state variables by the sum of a third-order polyno-

mial and a finite-term Fourier-type series. Their method requires that

the influence matrix multiplied by the control vector u(t) in the sys-

tem dynamics is invertible; otherwise, a penalty function technique is

imposed to produce another invertible influence matrix. Moreover, for

time-invariant problems the integral involved in the definition of the per-

formance index has to be evaluated in a closed form. Marzban and Raz-

zaghi ([18]) proposed a method based on hybrid functions approach and

Legendre polynomials for the solution of linearly constrained quadratic

optimal control problems. In their method the operational matrices of

integration and product are utilized to reduce the optimal control prob-

lem to the solution of algebraic equations. Moreover, the inequality

constraints are first converted to a system of algebraic equations and
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then converted into another minimization problem.

Chebyshev polynomials are widely used in numerical computation. One

of the advantages of using Chebyshev polynomials Tn(t) as a tool for

expansion functions is the good representation of smooth functions by

finite Chebyshev expansion provided that the function f(t) is infinitely

differentiable. The coefficients in Chebyshev expansion, approach zero

faster than any inverse power in n as n goes to infinity ([10]). Chebyshev

finite difference method (ChFD) has proven to be successful in the nu-

merical solution of various boundary value problems and in the solution

of boundary layer equations ([8, 10]). ChFD method can be regarded as

a non-uniform finite difference scheme. In this method the derivatives

of the function f(t) at a grid point tj is linear combination of the val-

ues of the function f at the Chebyshev Gauss-Lobatto (ChGL) points

tj = cos(jπ/N), where j = 0, 1, . . . , N, ([8,9,10]). ChFD method is more

accurate in comparison to the finite difference ([5,6]) and finite elements

methods because the approximation of the derivative is defined over the

whole domain. While the finite difference method produces a second

order accurate derivative with the error decreasing as 1/m2 (m being

the number of grid points), the error from the global method decreases

exponentially ([8]).

In the present paper we introduce an efficient computational method

based on ChFD method for finding approximate solution of constrained

optimal control problems. This method requires the definition of col-

location points (ChGL nodes) and it is applied to satisfy the system

dynamics, initial conditions and the inequality constraints at these grid

points. Moreover, in this method both state and control variables are

parameterized using special series of Chebyshev polynomials with un-

known parameters, hence there is no need for using artificial variables,

as in [13]. Also, the performance index is replaced with a nonlinear

function. The application of the method to optimal control problems

leads to a nonlinear mathematical programming problem.

The paper is organized as follows: In the following section the state-

ment of the linear constrained optimal control problems is described. In

Section 3, we describe the basic formulation of ChFD method required

for our subsequent development and some error estimates are given.
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Section 4 is devoted to description of employing ChFD method to the

optimal control problem. In Section 5, we report our numerical finding

to demonstrate the accuracy and applicability of the proposed method

by considering three examples.

2. Problem Statement

Consider the time-varying system

Ẋ(t) = E(t)X(t) + F (t)U(t), (1)

X(0) = X0, (2)

subject to the following inequality constraints:

G(t)X(t) + H(t)U(t) 6 r(t), (3)

where X(t) ∈ Rm, U(t) ∈ Rn, E(t), F (t), G(t) and H(t) are matrices of

appropriate dimensions, X0 is a constant special vector and r(t) is an

arbitrary known function. The problem is to find the optimal control

U(t) and the corresponding state trajectory X(t), 0 6 t 6 tf , satisfying

(1)-(3) while minimizing the following quadratic cost functional

J =
1

2
XT (tf )SX(tf ) +

1

2

∫ tf

0

[

XT (t)Q(t)X(t) + UT (t)R(t)U(t)
]

dt,

(4)

where T denotes transposition, S, Q(t) and R(t) are matrices of ap-

propriate dimensions with S and Q(t) symmetric positive semi-definite

matrices and R(t) a symmetric positive definite matrix.

To use the ChFD method, we should transform the time interval t ∈

[0, tf ] into the interval τ ∈ [−1, 1], because Chebyshev polynomials are

defined on the interval [−1, 1]. This can be achieved by transformation

t =
tf
2

(τ + 1).

Expressing the optimal control problem in (1)-(4) in terms of τ results

the following optimal control problem.
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Minimize

J =
1

2
xT (1)Sx(1) +

tf
4

∫ 1

−1

[

xT (τ)q(τ)x(τ) + uT (τ)r(τ)u(τ)
]

dτ, (5)

subject to
2

tf

dx(τ)

dτ
= e(τ)x(τ) + f(τ)u(τ), (6)

x(−1) = X0, (7)

g(τ)x(τ) + h(τ)u(τ) 6 r̄(τ). (8)

3. Chebyshev Finite Difference Method

The well known Chebyshev polynomials of the first kind are defined on

the interval [−1, 1] as

Tn(τ) = cos(n arccos τ), n = 0, 1, 2, . . . ,

obviously T0(τ) = 1, T1(τ) = τ and they satisfy the recurrence relation

Tn+1(τ) = 2τTn(τ) − Tn−1(τ), n = 1, 2, . . . .

The ChGL collocation points (interpolation nodes) are defined to be the

extreme

τj = cos

(

jπ

N

)

, j = 0, 1, . . . , N,

of the Nth-order Chebyshev polynomial TN (τ). These collocation points,

τN = −1 < τN−1 < . . . < τ1 < τ0 = 1 are also viewed as the zeros of

(1 − τ2)ṪN (τ), where ṪN (τ) = dTN (τ)/dτ.

Clenshaw and Curtis ([4]) introduced the following Nth degree interpo-

lating polynomial of a function f ∈ L2[−1, 1],

fN (τ) =
N

∑

i=0

′′aiTi(τ), ai =
2

N

N
∑

j=0

′′f(τj)Ti(τj). (9)
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The summation symbol with double primes denotes a sum with both the

first and last terms halved. The first derivative of the function fN (τ) in

terms of f(τ) at the ChGL collocation point τj are given by [10]

ḟN (τj) =
N

∑

i=0

dj,if(τi), (10)

where

dj,i =
4θi

N

N
∑

n=0

n−1
∑

l = 0
(n + l)odd

nθn

cl
Tn(τi)Tl(τj), i, j = 0, 1, . . . , N, (11)

with θ0 = θN = 1/2, θi = 1 for i = 1, 2, . . . , N − 1, and c0 = 2, cl = 1 for

l > 1. As can be seen from (10), the first derivative of the function f(τ)

at any point from ChGL nodes are expanded as linear combination of

the values of the function at these points.

The unknown parameters in (9) are f(τ0), f(τ1), . . . , f(τN ); consequently,

(9) can be expressed in terms of these unknown parameters as follows

fN (τ) =
N

∑

j=0

′′f(τj)pj(τ), pj(τ) =
2

N

N
∑

i=0

′′Ti(τj)Ti(τ). (12)

It is readily verified that

pk(τj) =

{

1 k = j,
0 k 6= j,

(13)

and therefore fN (τj) = f(τj) for j = 0, 1, . . . , N .

Now we give some estimates for the interpolation error f − fN . Since

fN in (12) is the interpolating polynomial for function f , it follows that

(consult [1,11])

lim
N → ∞

∫ 1

−1
|fN (τ) − f(τ)|

p
(1 − τ2)−1/2dτ = 0, (14)

for every f ∈ C[−1, 1], the Banach space of continuous, real-valued

functions on [−1, 1], and for every p ∈ (0,∞). In terms of the usual Lp

norm (14) may be written as
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lim
N → ∞

‖fN (τ) − f(τ)‖p,w = 0, (15)

from which it follows that supN ‖fN‖p,w < ∞.

Furthermore, whenever f ∈ H l
w(−1, 1) for some l > 1, there is a constant

M independent of f and N such that [3]

‖f − fN‖L2,w(−1,1) 6 MN−l‖f‖Hl
w(−1,1). (16)

The next Theorem is a generalization of the above error estimate ([3]).

Theorem 3.1. For all f ∈ H l
w(−1, 1), l > 0, there exist a constant M

independent of f(τ) and N such that

‖f − fN‖Hs
w(−1,1) 6 MN2s−l‖f‖Hl

w(−1,1), (17)

for all 0 6 s 6 l.

As a consequence, we have

‖f ′ − (fN )′‖L2,w(−1,1) 6 MN2−l‖f‖Hl
w(−1,1). (18)

Thus, for smooth functions f , the rate of convergence of fN to f is faster

than any power of 1
N . The next Theorem shows uniform convergence

([11]).

Theorem 3.2. If τj, 1 6 j 6 N − 1 are the zeros of ṪN (τ) adjusted in

the interval (−1, 1), if f(z) has no singularities except a finite number

of poles, and if for some n, f(z)
zn → 0 as |z| → ∞, then fN (τ) → f(τ)

uniformly on [−1, 1].

4. Employing ChFD Method to Optimal Con-

trol Problem

In this section we explain the procedure of converting the optimal control

problem in (5)-(8) into a nonlinear mathematical programming problem

using ChFD method. To this end, the interpolation (12) and the ChGL

collocation points are utilized to approximate the performance index,

system dynamics and the inequality constraints.
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4.1 The Performance Index Approximation

We approximate the performance index in (5) as follows: Let

xN (τ) = [xN
1 (τ), xN

2 (τ), . . . , xN
m(τ)]T , (19)

uN (τ) = [uN
1 (τ), uN

2 (τ), . . . , uN
n (τ)]T . (20)

where, by (12), we have

xN
i (τ) =

N
∑

k=0

′′xi(τk)pk(τ), i = 1, 2, . . . , m, (21)

uN
j (τ) =

N
∑

k=0

′′uj(τk)pk(τ), j = 1, 2, . . . , n. (22)

Vectors xN (τ) and uN (τ) in (19)-(20) can be expressed using Kronecker

product [2] as follows:

xN (τ) = (Im ⊗ P T (τ))a, (23)

uN (τ) = (In ⊗ P T (τ))b, (24)

where ⊗ denotes the Kronecker product, Im and In are m×m and n×n

identity matrices, respectively,

aT = [x1(τ0), x1(τ1), . . . , x1(τN ), . . . , xm(τ0), . . . , xm(τN )],

bT = [u1(τ0), u1(τ1), . . . , u1(τN ), . . . , un(τ0), . . . , un(τN )],

are 1 × m(N + 1) and 1 × n(N + 1) vectors of unknown parameters,

P T (τ) = [
1

2
p0(τ), p1(τ), . . . , pN−1(τ),

1

2
pN (τ)], (25)

and pk(τ), k = 0, 1, . . . , N are defined in (13).
Now we approximate the performance index by substituting (23)-(24)
into (6) to get

JN =
1

2
aT (Im ⊗ P (1))S(Im ⊗ PT (1))a +

tf
4

∫

1

−1

[aT (Im ⊗ P )q(τ)(Im ⊗ PT )a

+bT (In ⊗ P )r(τ)(In ⊗ PT )b ]dτ, (26)

where JN is the approximate value of J .
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From Kronecker product properties ([2]), it is known that if matrices
A, B, D, E and vector z are of appropriate dimensions then (A⊗B)(D⊗
E) = AD⊗BEand A(I ⊗ zT ) = A⊗ zT . Therefore, (27) can be simplified to

JN =
1

2
aT (S⊗P (1)PT (1))a+

tf
4

∫

1

−1

[

aT (q(τ) ⊗ PPT )a + bT (r(τ) ⊗ PPT )b
]

dτ,

(27)

which can be rewritten as follows

JN = aT H1a + bT H2b, (28)

where

H1 =
1

2
(S ⊗ P (1)P T (1)) +

tf
4

∫ 1

−1
(q(τ) ⊗ PP T )dτ,

H2 =
tf
4

∫ 1

−1
(r(τ) ⊗ PP T )dτ.

4.2 The System Dynamics and the Inequality Constraints Approx-

imations

The system dynamics and the constraints in (7)-(9), which are infinite

dimensional constraints, can be handled by requiring their satisfaction

at the ChGL collocation points τj . To do so, we first using (11) express

the relationship between ẋN
i (τ) and xi(τ) at the ChGL nodes τj for

j = 0, 1, . . . , N, as

ẋN
i (τj) =

N
∑

k=0

dj,kxi(τk), i = 1, 2, . . . , m. (29)

Consequently, the vectors ẋN (τj) = [ẋN
1 (τj), ẋ

N
2 (τj), . . . , ẋ

N
m(τj)]

T , j =

0, 1, . . . , N, can be expressed using Kronecker product as follows

ẋN (τj) = (Im ⊗ DT
j )a, j = 0, 1, . . . , N, (30)

where aT = [x1(t0), x1(t1), . . . , x1(tN ), . . . , xm(t0), . . . , xm(tN )] is vector

of unknown parameters, Dj = [dj,0, dj,1, . . . , dj,N ]T is an (N + 1) × 1

vector of derivative coefficients defined in (12).



10 M. MALEKI AND M. DADKHAH TIRANI

A formal substitution of (23), (24) and (30) into (7)-(9) and collocating

at the ChGL nodes τj for j = 0, 1, . . . , N , (7)-(9) become the system of

algebraic equations:

2(Im ⊗ DT
j )a = tf (e(τj)(Im ⊗ P T (τj))a + f(τj)(In ⊗ P T (τj))b), (31)

(Im ⊗ P T (τN ))a = X0, (32)

g(τj)(Im ⊗ P T (τj))a + h(τj)(In ⊗ P T (τj))b 6 r̄(τj). (33)

From the previous reformulation in (28) and (31)-(33), the optimal con-

trol problem in (2)-(5) can be approximated by the following nonlinear

programming problem:

Minimize

JN = aT H1a + bT H2b, (34)

subject to

F1a − b1 = 0, (35)

F2a + F3b = 0, (36)

F4a + F5b − b2 6 0, (37)

where
F1 = (Im ⊗ P T (τN )),

b1 = X0,

F2 = 2
tf

(Im ⊗ DT
j ) − e(τj)(Im ⊗ P T (τj)),

F3 = −f(τj)(In ⊗ P T (τj)),

F4 = g(τj)(Im ⊗ P T (τj)),

F5 = h(τj)(In ⊗ P T (τj)),

b2 = r̄(τj).

Note, by (13), (14), and (25), that
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P T (τj) =







1
2e1 j = 0,
ej+1 j = 1, . . . , N − 1,
1
2eN+1 j = N,

where ek is an 1 × (N + 1) vector whose kth component is 1 and other

components are 0. The nonlinear mathematical programming problem

in (34)-(37) can be solved using, for example, active set methods ([23]).

Remark 4.2.1. As the theorems and error estimates in Section 3.

promise us, the truncation error in ChFD method decays as fast as the

global smoothness of the underlying solution permits. Specially, since the

integrand in the functional (6) is continuously differentiable with respect

to x(τ) and u(τ), then xN T
qxN + uN T

ruN → xT qx + uT ru as N → ∞.

From that it follows immediately that as N → ∞, JN → J .

Remark 4.2.2. The selection of N is crucial for the computational

efficiency. Clearly as N increases the time needed to solve the problem

increases. To avoid selecting large N we propose to solve any problem

as follows: Select N = N1 = 4 or 5, then solve the problem and obtain

the optimal value JN1. Increase N to become N2 = N1 +2 and solve the

problem again to obtain the optimal value JN2. If the difference between

JN1 and JN2 is not too big, then we can keep increasing N by 2 until

the reduction in the performance index become negligible. Nevertheless,

if the difference is too big, then we may consider increasing N1 by 3 and

proceeding as described above.

5. Numerical Examples

In this Section, three examples are given to demonstrate the applicability

and accuracy of the proposed method. Note that we have computed

the numerical results by the well-known symbolic software “Mathematica

5.2”.

In order to decide whether or not the computed solution is close enough

to the optimal solution, we use, for computational purposes, practical

and easy-to-use error estimates [12]: Substituting the calculated control
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uN (τ) in (7), gives

2

tf
ẋ(τ) = e(τ)x(τ) + f(τ)uN (τ), − 1 6 τ 6 1. (38)

Numerical integration of (38) is possible for a given initial or final con-

ditions. Let x̂(τ) be the solution obtained from numerical integration of

(38), and define a practical easy-to-use error estimate for the dynamical

equations

εdyn = ‖xN − x̂‖∞ = max
−1 6 τ 6 1

|xN (τ) − x̂(τ)|. (39)

Another important error estimate is the SAK

SAK =
N

∑

j=0

|
2

tf
ẋ(τj) − e(τj)x(τj) − f(τj)u(τj)|. (40)

5.1 Example 1

This problem is adapted from [21]. Consider the following problem:

Minimize

J =

∫ 1

0
(X2

1 (t) + X2
2 (t) + U2(t))dt, (41)

subject to
[

Ẋ1(t)

Ẋ2(t)

]

=

[

0 1
0 0

] [

X1(t)
X2(t)

]

+

[

1
1

]

U(t), (42)

and the boundary conditions

X1(0) + X2(0) = 3, X2(1) = 1. (43)

Here the problem is to find optimal control U(t) which minimizes (41)

subject to (42)-(43). After transforming the interval of the problem into

the interval [−1, 1], using the transformation t = 1
2(τ + 1), the following

problem is achieved.

Minimize

J =
1

2

∫ 1

−1
(x2

1(τ) + x2
2(τ) + u2(τ))dτ, (44)
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subject to

2

[

ẋ1(τ)
ẋ2(τ)

]

=

[

0 1
0 0

] [

x1(τ)
x2(τ)

]

+

[

1
1

]

u(τ), (45)

x1(−1) + x2(−1) = 3, x2(1) = 1. (46)

In Table 1, the error estimates εdyn and SAK are given and a comparison

is made between the estimated values of J using the present method with

N = 8, 10, 12 and method in [21] using extended one-step methods.

0.2 0.4 0.6 0.8 1

-2

-1

1

2

UHtL

X2HtL

X1HtL

Figure 1: Optimal control and states for N = 12 for Example 1.

Note that in [21], methods (2.3), (2.4), and (2.5) are trapezoidal rule, a

one-step third order, and a one-step fourth order extended methods for

ODEs, respectively.

In Table 2, we list the values of state and control variables obtained using

the present method and method in [21]. For N = 12, the optimal states

and the optimal control are shown in Fig. 1. The boundary conditions

in (43) are accurately satisfied and the errors for N = 12 are 1.2×10−14

and 2.3 × 10−14, respectively.

Table 1: Estimated values of J and error estimates for Example 1.

Methods SAK εdyn J
Extended one-step [21]
L = 12 and method (2.3) — — 4.20789817
L = 12 and method (2.4) — — 4.20767792
L = 12 and method (2.5) — — 4.20767790
Present method with
N = 8 4.3 × 10−12 8.5 × 10−7 4.20767795
N = 10 2.0 × 10−12 8.2 × 10−7 4.20767794
N = 12 1.4 × 10−12 8.1 × 10−7 4.20767790
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Table 2: Values of state and control variables for Example 1.

t Method (2.5) in [21], L = 10 Present method, N = 10
X1(t) X2(t) U(t) X1(t) X2(t) U(t)

0.0 1.20973 1.79026 -2.42200 1.20971 1.79029 -2.42194
0.2 1.11926 1.38490 -1.65660 1.11925 1.38487 -1.65655
0.4 1.10222 1.11950 -1.01371 1.10220 1.11952 -1.01365
0.6 1.16421 0.97403 -0.45156 1.16419 0.97403 -0.45156
0.8 1.31544 0.93598 0.06658 1.31541 0.93598 0.06657
1.0 1.57137 1.00000 0.57477 1.57134 1.00000 0.57477

5.2 Example 2

Consider the linear system with inequality control constraint ([22])

[

Ẋ1(t)

Ẋ2(t)

]

=

[

0 1
0 −1

] [

X1(t)
X2(t)

]

+

[

0
1

]

U(t), (47)

[

X1(0)
X2(0)

]

=

[

0
10

]

, |U(t)| 6 r(t) = 1, (48)

with the performance index

J =
1

2

∫ 1

0
(X2

1 (t) + U2(t))dt. (49)

The objective is to find optimal control U(t) which minimizes (48) sub-

ject to (47)-(48). In the first step of the present method, the transfor-

mation t = 1
2(τ + 1) is utilized to get the following problem:

Minimize

J =
1

4

∫ 1

−1
(x2

1(τ) + u2(τ))dτ, (50)

subject to

2

[

ẋ1(τ)
ẋ2(τ)

]

=

[

0 1
0 −1

] [

x1(τ)
x2(τ)

]

+

[

0
1

]

u(τ), (51)

[

x1(−1)
x2(−1)

]

=

[

0
10

]

, |u(τ)| 6 r̄(τ) = 1. (52)
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After approximating each of the state and control variables using (21)-

(22), the optimal control problem in (50)-(52) is solved using the pro-

posed method. In Table 3, we give the approximated values of the cost

functional J and the error estimates εdyn and SAK using the present

method for N = 6, 9, 12, and 15, together with the method outlined in

[18] using hybrid of block-pulse and Legendre polynomials and the exact

solution.

The computational results for optimal state and control trajectories us-

ing the present method for N = 15 are given in Figs. 2 and 3, respec-

tively. The maximum violation in the inequality constraint for N = 15

is found to be 0.0048.

Table 3: Estimated and exact values of J and error estimates for Example 2.

Methods SAK εdyn J
Hybrid functions [18]
M = 3, N = 4 — — 8.07059
M = 4, N = 4 — — 8.07056
Present method with
N = 6 4.7 × 10−10 7.0 × 10−6 8.07110
N = 9 9.5 × 10−11 3.5 × 10−6 8.07061
N = 12 8.6 × 10−11 5.1 × 10−7 8.07055
N = 15 5.5 × 10−11 3.8 × 10−7 8.07056
Exact 8.07054
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Figure 2: Optimal states for N = 15 for Example 2.
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5.3 Example 3

This problem is adapted from [15] and also studied by using classical

Chebyshev approach ([24]), Fourier-based state parametrization ([25]),

spectral Chebyshev ([14]), hybrid functions ([18]), and rationalized Haar

functions ([19]). Find the control function U(t) which minimizes the cost

functional

J =

∫ 1

0
(X2

1 (t) + X2
2 (t) + 0.005U2(t))dt, (53)

subject to

[

Ẋ1(t)

Ẋ2(t)

]

=

[

0 1
0 −1

] [

X1(t)
X2(t)

]

+

[

0
1

]

U(t), (54)
[

X1(0)
X2(0)

]

=

[

0
−1

]

, (55)

and the following state variable inequality constraint

X2(t) 6 8(t − 0.5)2 − 0.5. (56)

In order to obtain the ChFD method approximations, we first convert

the interval t ∈ [0, 1] into τ ∈ [−1, 1]. The inequality constraint in (56)

can be expressed in terms of τ as follows

x2(τ) 6 8(
1

2
(τ + 1) − 0.5)2 − 0.5 = 2τ2 − 0.5.

In Table 4, the obtained results for the error estimates εdyn and SAK

and the performance index J using the present method together with

other methods in the literature are listed. The computational result for

X1(t), X2(t) and U(t) using the present method for N = 13 are given in

Figs. 4 and 5. The maximum violation in the inequality constraint for

N = 13 is found to be 0.007.

As can be seen from the Table 4, ChFD method can produces more

accurate results in comparison with both classical Chebyshev ([24]) and

spectral Chebyshev ([14]) methods.
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Figure 3: Optimal control for N = 15 for Example 2.

Table 4: Results of J and error estimates for Example 4.

Methods SAK εdyn J
Classical Chebyshev [24]
m = 10, k = 22 — — 0.178800
m = 12, k = 26 — — 0.173580
m = 13, k = 28 — — 0.171850
Fourier-based [25]
k = 7 — — 0.17039
k = 9 — — 0.17013
Spectral Chebyshev [14]
N = 13 — — 0.170785
Hybrid functions [18]
w = 15, M = 4, N = 4 — — 0.170136
Haar functions [19]
k = 32, w = 100 — — 0.170185
k = 64, w = 100 — — 0.170115
k = 128, w = 100 — — 0.170103
Present method with
N = 7 8.8 × 10−10 4.5 × 10−4 0.174064
N = 10 6.8 × 10−11 3.2 × 10−5 0.170875
N = 13 3.4 × 10−12 5.0 × 10−6 0.169826
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Figure 4: Optimal states for N = 13 for Example 3.
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6. Conclusion

In this paper, the Chebyshev finite difference method has been used for

the numerical solution of constrained quadratic optimal control prob-

lems. The problem was reduced to solve a nonlinear programming prob-

lem by parameterizing the performance index and satisfaction of the

system dynamics and the constraints at the Chebyshev Gauss-Lobatto

nodes. This method is not faced with necessity of large computer mem-

ory and time and is computationally attractive. Applications was demon-

strated through three examples.

0.2 0.4 0.6 0.8 1
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15

Figure 5: Optimal control for N = 13 for Example 3.
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