Module Amenability and Tensor Product of Semigroup Algebras

A. Bodaghi
Islamic Azad University-Garmsar Branch

Abstract

Let S be an inverse semigroup with an upward directed set of idempotents E. In this paper we prove that if S is amenable, then $\ell^{1}(S) \widehat{\bigotimes} \ell^{1}(S)$ is module amenable as an $\ell^{1}(E)$-module. Also we show that $\ell^{1}(S) \widehat{\bigotimes} \ell^{1}(S)$ is module super-amenable if an appropriate group homomorphic image of S is finite.

AMS Subject Classification: 46H25.
Keywords and Phrases: Banach modules, module derivation, module amenability, inverse semigroup.

1. Introduction

The notion of amenability of Banach algebras was introduced by Barry Johnson in [9]. A Banach algebra \mathcal{A} is amenable if every bounded derivation from \mathcal{A} into any dual Banach \mathcal{A}-module is inner, equivalently if $H^{1}\left(\mathcal{A}, X^{*}\right)=\{0\}$ for every Banach \mathcal{A}-module X, where $H^{1}\left(\mathcal{A}, X^{*}\right)$ is the first Hochschild cohomology group of \mathcal{A} with coefficients in X^{*}. He proved in [9, Proposition 5.4] that if \mathcal{A} and \mathcal{B} are amenable Banach algebra, then so is $\mathcal{A} \widehat{\otimes} \mathcal{B}$ (see also [6, Corollary 2.9.62]). Also \mathcal{A} is called super-amenable (contractible) if $H^{1}(\mathcal{A}, X)=\{0\}$ for every Banach \mathcal{A} bimodule X (see [6,12]). It is known $\mathcal{A} \widehat{\otimes} \mathcal{B}$ is super-amenable if \mathcal{A} and \mathcal{B} are super-amenable [12, Exercise 4.1.4].

For a discrete semigroup $S, \ell^{\infty}(S)$ is the Banach algebra of bounded complex-valued functions on S with the supremum norm and pointwise

[^0]multiplication. For each $t \in S$ and $f \in \ell^{\infty}(S)$, let $L_{t} f$ and $R_{t} f$ denote the left and the right translations of f by t, that is $\left\langle L_{t} f, s\right\rangle=\langle f, t s\rangle$ and $\left\langle R_{t} f, s\right\rangle=\langle f, s t\rangle$, for each $s \in S$. Then a linear functional $m \in\left(\ell^{\infty}(S)\right)^{*}$ is called a mean if $\|m\|=\langle m, 1\rangle=1 ; m$ is called a left (right) invariant mean if $\left\langle m, L_{t} f\right\rangle=\langle m, f\rangle\left(\left\langle m, R_{t} f\right\rangle=\langle m, f\rangle\right.$, respectively) for all $s \in S$ and $f \in \ell^{\infty}(S)$. A discrete semigroup S is called amenable if there exists a mean m on $\ell^{\infty}(S)$ which is both left and right invariant (see [7]). An inverse semigroup is a discrete semigroup S such that for each $s \in S$, there is a unique element $s^{*} \in S$ with $s s^{*} s=s$ and $s^{*} s s^{*}=s^{*}$. Elements of the form $s s^{*}$ are called idempotents of S. For an inverse semigroup S, a left invariant mean on $\ell^{\infty}(S)$ is right invariant and vise versa.
M. Amini in [1] introduced the concept of module amenability for a Banach algebra. He showed that for an inverse semigroup S with set of idempotents E, the semigroup algebra $\ell^{1}(S)$ is $\ell^{1}(E)$-module amenable if and only if S is amenable.

This extends the Johnson's theorem [9, Theorem 2.5] in the discrete case) which asserts that for a discrete group $G, \ell^{1}(G)$ is amenable if and only if G is amenable. The author and Amini in [4] introduced the concept of module super-amenability and showed that for an inverse semigroup S, the semigroup algebra $\ell^{1}(S)$ is module super-amenable if and only if the group homomorphic image S / \approx of S is finite, where \approx is an equivalence relation on S.

In part two of this paper, we show that when \mathfrak{A} acts trivially on \mathcal{A} from left then under some mild conditions, module amenability of $\mathcal{A} \widehat{\otimes} \mathcal{A}$ implies amenability of $\mathcal{A} / J \widehat{\otimes} \mathcal{A} / J$ and vise versa, where J is the closed ideal of \mathcal{A} generated by $\alpha \cdot(a b)-(a b) \cdot \alpha$ for all $a \in \mathcal{A}$ and $\alpha \in \mathfrak{A}$. There is a similar result for super amenability.

Finally, we prove that if S is an amenable inverse semigroup with an upward directed set of idempotents E, then $\ell^{1}(S) \widehat{\otimes} \ell^{1}(S)$ is module amenable as an $\ell^{1}(E)$-module. Also we show that $\ell^{1}(S) \widehat{\bigotimes} \ell^{1}(S)$ is module super-amenable when the appropriate group homomorphic image S / \approx is finite.

2. Module Amenability of the Tensor Product of Banach Algebras

Let \mathcal{A} and \mathfrak{A} be Banach algebras such that \mathcal{A} is a Banach \mathfrak{A}-bimodule with compatible actions, as follows

$$
\alpha \cdot(a b)=(\alpha \cdot a) b, \quad(a b) \cdot \alpha=a(b \cdot \alpha) \quad(a, b \in \mathcal{A}, \alpha \in \mathfrak{A})
$$

Let X be a Banach \mathcal{A}-bimodule and a Banach \mathfrak{A}-bimodule with compatible actions, that is
$\alpha \cdot(a \cdot x)=(\alpha \cdot a) \cdot x, a \cdot(\alpha \cdot x)=(a \cdot \alpha) \cdot x,(\alpha \cdot x) \cdot a=\alpha \cdot(x \cdot a) \quad(a \in \mathcal{A}, \alpha \in \mathfrak{A}, x \in X)$
and the same for the right or two-sided actions. Then we say that X is a Banach \mathcal{A} - \mathfrak{A}-module. If moreover $\alpha \cdot x=x \cdot \alpha$ for all $\alpha \in \mathfrak{A}, x \in X$, then X is called a commutative $\mathcal{A}-\mathfrak{A}$-module. If X is a commutative Banach \mathcal{A} - \mathfrak{A}-module, then so is X^{*}, the first dual space of X, where the actions of \mathcal{A} and \mathfrak{A} on X^{*} are defined as follows
$\langle\alpha \cdot f, x\rangle=\langle f, x \cdot \alpha\rangle,\langle a \cdot f, x\rangle=\langle f, x \cdot a\rangle \quad\left(a \in \mathcal{A}, \alpha \in \mathfrak{A}, x \in X, f \in X^{*}\right)$
and the same for the right actions.
Note that, in general, \mathcal{A} is not an \mathcal{A} - \mathfrak{A}-module because \mathcal{A} does not satisfy in the compatibility condition $a \cdot(\alpha \cdot b)=(a \cdot \alpha) \cdot b$ for $\alpha \in \mathfrak{A}, a, b \in$ \mathcal{A} [2]. But when \mathcal{A} is a commutative \mathfrak{A}-module and acts on itself by multiplication from both sides, then it is also a Banach $\mathcal{A}-\mathfrak{A}$-module. It is well known that $\mathcal{A} \widehat{\otimes} \mathcal{A}$, the projective tensor product of \mathcal{A} and \mathcal{A} is a Banach algebra with respect to the canonical multiplication defined by $(a \otimes b)(c \otimes d)=(a c \otimes b d)$. Also it is a Banach \mathcal{A}-bimodule and a Banach \mathfrak{A}-bimodule by the following usual actions:

$$
\alpha \cdot(a \otimes b)=(\alpha \cdot a) \otimes b, \quad c \cdot(a \otimes b)=(c a) \otimes b \quad(\alpha \in \mathfrak{A}, a, b, c \in \mathcal{A})
$$

Similarly, for the right actions consider the module projective tensor
 where I is the closed ideal of the projective tensor product $\widehat{\mathcal{\otimes} \mathcal{A}}$ generated by elements of the form $\alpha \cdot a \otimes b-a \otimes b \cdot \alpha$ for $\alpha \in \mathfrak{A}, a, b \in \mathcal{A}$ [11]. Also we consider J, the closed ideal of \mathcal{A} generated by elements
of the form $(\alpha \cdot a) b-a(b \cdot \alpha)$ for $\alpha \in \mathfrak{A}, a, b \in \mathcal{A}$. Then \mathcal{A} / J is Banach \mathcal{A} - \mathfrak{A}-module when \mathcal{A} acts on \mathcal{A} / J canonically.
Let \mathcal{A} and \mathfrak{A} be as in the above and X be a Banach \mathcal{A} - \mathfrak{A}-module. A bounded map $D: \mathcal{A} \longrightarrow X$ is called a module derivation if

$$
D(a \pm b)=D(a) \pm D(b), \quad D(a b)=D(a) \cdot b+a \cdot D(b) \quad(a, b \in \mathcal{A})
$$

and

$$
D(\alpha \cdot a)=\alpha \cdot D(a), \quad D(a \cdot \alpha)=D(a) \cdot \alpha \quad(a \in \mathcal{A}, \alpha \in \mathfrak{A}) .
$$

Although D is not necessary linear, but still its boundedness implies its norm continuity (since it preserves subtraction). When X is commutative \mathcal{A} - \mathfrak{A}-module, each $x \in X$ defines a module derivation

$$
D_{x}(a)=a \cdot x-x \cdot a \quad(a \in \mathcal{A}) .
$$

These are called inner module derivations. The Banach algebra \mathcal{A} is called module amenable (as an \mathfrak{A}-module) if for any commutative Banach \mathcal{A} - \mathfrak{A}-module X, each module derivation $D: \mathcal{A} \longrightarrow X^{*}$ is inner [1]. Similarly, \mathcal{A} is called module super-amenable if each module derivation $D: \mathcal{A} \longrightarrow X$ is inner [4].
We say the Banach algebra \mathfrak{A} acts trivially on \mathcal{A} from left (right) if for each $\alpha \in \mathfrak{A}$ and $a \in \mathcal{A}, \alpha \cdot a=f(\alpha) a(a \cdot \alpha=f(\alpha) a)$, where f is a continuous linear functional on \mathfrak{A}. The following lemma is proved in [3].

Lemma 2.1. Let \mathcal{A} be a Banach algebra and Banach \mathfrak{A}-module with compatible actions, and J_{0} be a closed ideal of \mathcal{A} such that $J \subseteq J_{0}$. If \mathcal{A} / J_{0} has a left or right identity $e+J_{0}$, then for each $\alpha \in \mathfrak{A}$ and $a \in \mathcal{A}$ we have $a \cdot \alpha-\alpha \cdot a \in J_{0}$, i.e., \mathcal{A} / J_{0} is commutative Banach \mathfrak{A}-module.

Recall that \mathfrak{A} has a bounded approximate identity for \mathcal{A} if there is a bounded net $\left\{\gamma_{i}\right\}$ in \mathfrak{A} such that for each $a \in \mathcal{A},\left\|\gamma_{i} \cdot a-a\right\| \rightarrow 0$ and $\left\|a \cdot \gamma_{i}-a\right\| \rightarrow 0$, as $i \longrightarrow \infty$.

Theorem 2.2. Let \mathcal{A} be a Banach \mathfrak{A}-module with trivial left action and \mathcal{A} / J has an identity. If $\mathcal{A} \widehat{\otimes} \mathcal{A}$ is module amenable (module superamenable), then $\mathcal{A} / J \widehat{\otimes} \mathcal{A} / J$ is amenable (module super-amenable). The converse is true if \mathfrak{A} has a bounded approximate identity for \mathcal{A}.

Proof. We prove the result for the module amenability. Let X be a unital $\mathcal{A} / J \widehat{\bigotimes} \mathcal{A} / J$-bimodule and $D: \mathcal{A} / J \widehat{\bigotimes} \mathcal{A} / J \longrightarrow X^{*}$ be a bounded derivation (see [5, Lemma 43.6]). Then X is an $\mathcal{A} \widehat{\otimes} \mathcal{A}$-bimodule with module actions given by
$(a \otimes b) \cdot x:=((a+J) \otimes(b+J)) \cdot x, \quad x \cdot(a \otimes b):=x \cdot((a+J) \otimes(b+J))(x \in X, a \in \mathcal{A})$,
and X is \mathfrak{A}-bimodule with trivial actions, that is $\alpha \cdot x=x \cdot \alpha=f(\alpha) x$, for each $x \in X$ and $\alpha \in \mathfrak{A}$ which f is a continuous linear functional on \mathfrak{A}. Since $f(\alpha) a-a \cdot \alpha \in J$ (see Lemma 2.1.), we have $f(\alpha) a+J=a \cdot \alpha+J$, for each $\alpha \in \mathfrak{A}$, and the actions of \mathfrak{A} and $\mathcal{A} \widehat{\otimes} \mathcal{A}$ on X are compatible. Therefore X is commutative Banach $\mathcal{A} \widehat{\otimes} \mathcal{A}-\mathfrak{A}$-module. Consider Φ : $(\mathcal{A} \widehat{\bigotimes} \mathcal{A}) / I \longrightarrow \mathcal{A} / J \widehat{\bigotimes} \mathcal{A} / J$ defined by

$$
\Phi((a \otimes b)+I)=(a+J) \otimes(b+J)
$$

For each $a, b \in \mathcal{A}$ and $\alpha \in \mathfrak{A}$ we have

$$
\begin{aligned}
(\alpha \cdot a+J) \otimes(b+J)-(a+J) \otimes(b \cdot \alpha+J) & =(f(\alpha) a+J) \otimes(b+J) \\
& -(a+J) \otimes(f(\alpha) b+J) \\
& =f(\alpha)(a+J) \otimes(b+J) \\
& -f(\alpha)(a+J) \otimes(b+J)=0 .
\end{aligned}
$$

We have used Lemma 2.1., in the first equality, hence Φ is well defined. Obviously Φ is \mathfrak{A}-bimodule morphism. We show that the map $\bar{D}=$ $D \circ \Phi \circ \pi: \mathcal{A} \widehat{\otimes} \mathcal{A} \longrightarrow X^{*}$ is module derivation where $\pi: \mathcal{A} \widehat{\otimes} \mathcal{A} \longrightarrow$ $(\mathcal{A} \widehat{\bigotimes} \mathcal{A}) / I$ is the projection map. For each $a, b, c, d \in \mathcal{A}$ and $\alpha \in \mathfrak{A}$, we have

$$
\begin{aligned}
\bar{D}((a \otimes b)(c \otimes d)) & =D(((a+J) \otimes(b+J))((c+J) \otimes(d+J))) \\
& =D((a+J) \otimes(b+J)) \cdot((c+J) \otimes(d+J)) \\
& +((a+J) \otimes(b+J)) \cdot D((c+J) \otimes(d+J)) \\
& =\bar{D}(a \otimes b) \cdot(c \otimes d)+(a \otimes b) \cdot \bar{D}(c \otimes d) .
\end{aligned}
$$

For each $a, b \in \mathcal{A}$ we have $\bar{D}((a \otimes b) \pm(c \otimes d))=\bar{D}(a \otimes b) \pm \bar{D}(c \otimes d)$.

Also $\mathcal{A} / J \widehat{\bigotimes} \mathcal{A} / J$ is an \mathfrak{A}-bimodule, hence for $\alpha \in \mathfrak{A}$, we have

$$
\begin{aligned}
\bar{D}((a \otimes b) \cdot \alpha) & =D((a+J) \otimes(b \cdot \alpha+J)) \\
& =D((a+J) \otimes(f(\alpha) b+J)) \\
& =f(\alpha) D((a+J) \otimes(b+J)) \\
& =\bar{D}(a \otimes b) \cdot \alpha .
\end{aligned}
$$

On the other hand, since the left \mathfrak{A}-module actions on \mathcal{A} and X are trivial, $\bar{D}(\alpha \cdot(a \otimes b))=\bar{D}(f(\alpha)(a \otimes b))=\alpha \cdot \bar{D}(a \otimes b)$. Therefore there exists $x^{*} \in X^{*}$ such that $\bar{D}(a \otimes b)=(a \otimes b) \cdot x^{*}-x^{*} \cdot(a \otimes b)$, hence $D((a+J) \otimes(b+J))=((a+J) \otimes(b+J)) \cdot x^{*}-x^{*} \cdot((a+J) \otimes(b+J))$, and so D is inner.
For the converse, we note that for every derivation $D: \mathcal{A} \longrightarrow X$ on unital Banach algebra \mathcal{A} with identity e, we have $D(e)=0$ and without loss of generality we can assume that $e \cdot D(a)=D(a) \cdot e=D(a)$ for all $a \in \mathcal{A}$. We use this fact in the rest of the proof. Now, suppose that X is a commutative Banach $\mathcal{A} \widehat{\otimes} \mathcal{A}-\mathcal{A}$-module. We consider the following module actions $\mathcal{A} / J \widehat{\bigotimes} \mathcal{A} / J$ on X,
$((a+J) \otimes(b+J)) \cdot x:=(a \otimes b) \cdot x, \quad x \cdot((a+J) \otimes(b+J)):=x \cdot(a \otimes b) \quad(x \in X, a \in \mathcal{A})$.
For each $a, b, c, d \in \mathcal{A}, x \in X$, and $\alpha, \beta \in \mathfrak{A}$, we have

$$
\begin{aligned}
((\alpha \cdot a b-a b \cdot \alpha) \otimes(\beta \cdot c d-c d \cdot \beta)) \cdot x & =(\alpha \cdot a b \otimes \beta \cdot c d-\alpha \cdot a b \otimes c d \cdot \beta \\
& -a b \cdot \alpha \otimes \beta \cdot c d \\
& +a b \cdot \alpha \otimes c d \cdot \beta) \cdot x \\
& =\beta \cdot((f(\alpha) a b \otimes c d) \cdot x) \\
& -((f(\alpha) a b \otimes c d) \cdot x) \cdot \beta \\
& -\beta \cdot((a b \cdot \alpha \otimes c d) \cdot x) \\
& +((a b \cdot \alpha \otimes c d) \cdot x) \cdot \beta=0 .
\end{aligned}
$$

Similarly if $a \in J$ or $b \in J$, we can show that $(a \otimes b) \cdot x=0$ and $x \cdot(a \otimes b)=$ 0 . Therefore X is a Banach $\mathcal{A} / J \widehat{\otimes} \mathcal{A} / J$-bimodule. Suppose that D : $\mathcal{A} \widehat{\otimes} \mathcal{A} \longrightarrow X^{*}$ is a module derivation, and consider $\tilde{D}: \mathcal{A} / J \widehat{\otimes} \mathcal{A} / J \longrightarrow$ X^{*} defined by $\tilde{D}((a+J) \otimes(b+J)):=D(a \otimes b)$, for all $a, b \in \mathcal{A}$. Suppose
that $e+J$ is identity for \mathcal{A} / J, we have

$$
\begin{aligned}
D(a \otimes(\alpha \cdot c d-c d \cdot \alpha)) & =\alpha \cdot D(a \otimes c d)-D(a \otimes c d) \cdot \alpha \\
& =\alpha \cdot D(a e \otimes c d)-D(a e \otimes c d) \cdot \alpha \\
& =\alpha \cdot D(a \otimes c) \cdot(e \otimes d)+\alpha \cdot(a \otimes c) \cdot D(e \otimes d) \\
& -D(a \otimes c) \cdot(e \otimes d) \cdot \alpha-(a \otimes c) \cdot D(e \otimes d) \cdot \alpha=0 .
\end{aligned}
$$

Although $a e$ is not equal with a, but we have
$D(a \otimes c d)=\tilde{D}((a+J) \otimes(c d+J))=\tilde{D}((a e+J) \otimes(c d+J))=D(a e \otimes c d)$.
By the above observation, \tilde{D} is also well-defined. Suppose that \mathfrak{A} has a bounded approximate identity $\left(\gamma_{i}\right)$ for \mathcal{A}. Since f is bounded, $\left\{\left|f\left(\gamma_{i}\right)\right|\right\}$ is a bounded sequence in \mathbb{C}. Without loss of generality, we may assume that $f\left(\gamma_{i}\right) \longrightarrow 1$, as $i \longrightarrow \infty$. Then for each $\lambda \in \mathbb{C}$ we have

$$
e \cdot\left(\lambda \gamma_{i}\right)-f\left(\gamma_{i}\right) e=(\lambda e) \cdot \gamma_{i}-f\left(\gamma_{i}\right) e \longrightarrow \lambda e-e
$$

in norm. Since J is a closed ideal of $\mathcal{A}, \lambda e-e \in J$. Next, for each $\lambda \in \mathbb{C}$, and $a, b \in \mathcal{A}$, we have

$$
\begin{aligned}
\tilde{D}((\lambda a+J) \otimes(b+J)) & =\tilde{D}((a+J) \otimes(b+J))(e+J) \otimes(\lambda e+J)) \\
& =\tilde{D}((a+J) \otimes(b+J)) \cdot((e+J) \otimes(\lambda e+J)) \\
& +((a+J) \otimes(b+J)) \cdot \tilde{D}((e+J) \otimes(\lambda e+J)) \\
& =\lambda \tilde{D}((a+J) \otimes(b+J)) \cdot((e+J) \otimes(e+J)) \\
& +((a+J) \otimes(b+J)) \cdot \tilde{D}((e+J) \otimes(e+J)) \\
& =\lambda \tilde{D}((a+J) \otimes(b+J)) .
\end{aligned}
$$

Thus \tilde{D} is \mathbb{C}-linear, and so it is inner. Therefore D is an inner module derivation.

In this part we find conditions on a (discrete) inverse semigroup S such that the tensor product $\ell^{1}(S) \widehat{\bigotimes} \ell^{1}(S)$ is $\ell^{1}(E)$-module amenable and super-amenable, where E is the set of idempotents of S, acting on S trivially from left and by multiplication from right. Let S be an inverse semigroup with set idempotent E, where the order of E is defined by

$$
e \leqslant d \Longleftrightarrow e d=e \quad(e, d \in E)
$$

It is easy to show that E is a (commutative) subsemigroup of $S[8$, Theorem V.1.2]. In particular $\ell^{1}(E)$ could be regard as a subalgebra of $\ell^{1}(S)$, and thereby $\ell^{1}(S)$ is a Banach algebra and a Banach $\ell^{1}(E)$ module with compatible actions ([1]). Here we let $\ell^{1}(E)$ act on $\ell^{1}(S)$ by multiplication from right and trivially from left, that is

$$
\delta_{e} \cdot \delta_{s}=\delta_{s}, \delta_{s} \cdot \delta_{e}=\delta_{s e}=\delta_{s} * \delta_{e} \quad(s \in S, e \in E)
$$

In this case, the ideal J is the closed linear span of $\left\{\delta_{\text {set }}-\delta_{s t}: s, t \in\right.$ $S, e \in E\}$. We consider an equivalence relation on S as follows

$$
s \approx t \Longleftrightarrow \delta_{s}-\delta_{t} \in J \quad(s, t \in S)
$$

Recall that E is called upward directed if for every $e, f \in E$ there exists $g \in E$ such that $e g=e$ and $f g=f$. This is precisely the assertion that S satisfies the D_{1} condition of Duncan and Namioka [7]. It is shown in [10, Theorem 3.2.], that if E is upward directed, then the quotient S / \approx is a discrete group. As in [10, Theorem 3.3], we may observe that $\ell^{1}(S) / J \cong \ell^{1}(S / \approx)$. With the above notations, $\ell^{1}(S) / J \cong \ell^{1}(S / \approx)$ is a commutative $\ell^{1}(E)$-bimodule with the following actions

$$
\delta_{e} \cdot\left(\delta_{s}+J\right)=\delta_{s}+J,\left(\delta_{s}+J\right) \cdot \delta_{e}=\delta_{s e}+J \quad(s \in S, e \in E)
$$

Theorem 2.3. Let S be an inverse semigroup with an upward directed set of idempotents E and $\ell^{1}(S)$ be a Banach $\ell^{1}(E)$-module with trivial left action and canonical right action. Then the following statements hold:
(i) If S is amenable, then $\ell^{1}(S) \widehat{\otimes} \ell^{1}(S)$ is module amenable.
(ii) If S / \approx is finite, then $\ell^{1}(S) \widehat{\bigotimes} \ell^{1}(S)$ is module super-amenable.

Proof. (i) The semigroup algebra S is amenable if and only if $\ell^{1}(S)$ is module amenable [1. Theorem 3.1]. Thus $\ell^{1}(S / \approx)$ is unital amenable Banach algebra by [3, Proposition 3.2], and so the tensor product $\ell^{1}(S / \approx$ $\widehat{\bigotimes} \ell^{1}(S / \approx)$ is amenable [6. Corollary 2.9.62]. Now the proof is completed by using Theorem 2.2.
(ii) Since S / \approx is a finite (discrete)group, $\ell^{1}(S)$ is module superamenable as $\ell^{1}(E)$-module, hence $\ell^{1}(S / \approx)$ is super-amenable by [4,

Lemma 2.7]. By [12, Exercise 4.1.4], $\ell^{1}(S / \approx) \widehat{\otimes}^{1}(S / \approx)$ is superamenable. Now the result follows from Theorem 2.2 with $\mathcal{A}=\ell^{1}(S)$ and $\mathfrak{A}=\ell^{1}(E)$.

Example 2.4. (i) Let \mathcal{C} be the bicyclic inverse semigroup generated by a and b, that is

$$
\mathcal{C}=\left\{a^{m} b^{n}: m, n \geqslant 0\right\}, \quad\left(a^{m} b^{n}\right)^{*}=a^{n} b^{m} .
$$

The set of idempotents of \mathcal{C} is $E_{\mathcal{C}}=\left\{a^{n} b^{n}: n=0,1, \ldots\right\}$ which is totally ordered (and so is upward directed) with the following order

$$
a^{n} b^{n} \leqslant a^{m} b^{m} \Longleftrightarrow m \leqslant n .
$$

It is shown in [3] that \mathcal{C} / \approx is isomorphic to the group of integers \mathbb{Z}, hence \mathcal{C} is amenable. Therefore the tensor product $\ell^{1}(\mathcal{C}) \widehat{\bigotimes} \ell^{1}(\mathcal{C})$ is module amenable by Theorem 2.3 .
(ii) Let (\mathbb{N}, \vee) be the commutative semigroup of positive integers with maximum operation $m \vee n=\max (m, n)$, then each element of \mathbb{N} is an idempotent, that is $E_{\mathbb{N}}=\mathbb{N}$. Hence \mathbb{N} / \approx is the trivial group with one element. Therefore by Theorem 2.2., the tensor product $\ell^{1}(\mathbb{N}) \widehat{\bigotimes} \ell^{1}(\mathbb{N})$ is module super-amenable, as an $\ell^{1}(\mathbb{N})$-module.

Acknowledgements

The author would like to thank the referee for careful reading of the paper and giving some useful suggestions.

References

[1] M. Amini, Module amenability for semigroup algebras, Semigroup Forum 69 (2004), 243-254.
[2] M. Amini, Corrigendum, Module amenability for semigroup algebras, Semigroup Forum 72 (2006), 493-494.
[3] M. Amini, A. Bodaghi, and D. Ebrahimi Bagha, Module amenability of the second dual and module topological center of semigroup algebras, Semigroup Forum, 80 (2010), 302-312.
[4] A. Bodaghi and M. Amini, Module super amenability for semigroup algebras, arXiv:0912.4624V1.
[5] F. F. Bonsall and J. Duncan, Complete Normed Algebra, Springer-Verlag, Berlin-Heidelberg-New York, 1973.
[6] H. G. Dales, Banach Algebras and Automatic Continuity, Oxford University Press, Oxford, 2000.
[7] J. Duncan and I. Namioka, Amenability of inverse semigroups and their semigroup algebras, Proc. Roy. Soc. Edinburgh 80A (1988), 309-321.
[8] J. M. Howie, An Introduction to Semigroup Theory, Academic Press, London, 1976.
[9] B. E. Johnson, Cohomology in Banach Algebras, Memoirs Amer. Math. Soc. 127, 1972.
[10] R. Rezavand, M. Amini, M. H. Sattari, and D. Ebrahimi Bagha, Module Arens regularity for semigroup algebras, Semigroup Forum, 77 (2008), 300-305.
[11] M. A. Rieffel, Induced Banach representations of Banach algebras and locally compact groups, J. Funct. Anal. 1 (1967), 443-491.
[12] V. Runde, Lectures on Amenability, Lecture Notes in Mathematics 1774, Springer-Verlag, Berlin-Heidelberg-New York, 2002.

Abasalt Bodaghi
Department of Mathematics
Assistant Professor of Mathematics
Islamic Azad University, Garmsar-Branch
Garmsar, Iran.
E-mail: abasalt.bodaghi@gmail.com

[^0]: Received November 2009; Final Revised March 2010

