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Abstract. Let S be an inverse semigroup with an upward directed set
of idempotents E. In this paper we prove that if S is amenable, then

`1(S)
⊗̂

`1(S) is module amenable as an `1(E)-module. Also we show

that `1(S)
⊗̂

`1(S) is module super-amenable if an appropriate group
homomorphic image of S is finite.
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1. Introduction

The notion of amenability of Banach algebras was introduced by Barry
Johnson in [9]. A Banach algebra A is amenable if every bounded deriva-
tion from A into any dual Banach A-module is inner, equivalently if
H1(A, X∗) = {0} for every Banach A-module X, where H1(A, X∗) is
the first Hochschild cohomology group of A with coefficients in X∗. He
proved in [9, Proposition 5.4] that if A and B are amenable Banach al-
gebra, then so is A⊗̂B (see also [6, Corollary 2.9.62]). Also A is called
super-amenable (contractible) if H1(A, X) = {0} for every Banach A-
bimodule X (see [6,12]). It is known A⊗̂B is super-amenable if A and
B are super-amenable [12, Exercise 4.1.4].

For a discrete semigroup S, `∞(S) is the Banach algebra of bounded
complex-valued functions on S with the supremum norm and pointwise
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multiplication. For each t ∈ S and f ∈ `∞(S), let Ltf and Rtf denote
the left and the right translations of f by t, that is 〈Ltf, s〉 = 〈f, ts〉 and
〈Rtf, s〉 = 〈f, st〉, for each s ∈ S. Then a linear functional m ∈ (`∞(S))∗

is called a mean if ‖m‖ = 〈m, 1〉 = 1; m is called a left (right) invariant
mean if 〈m,Ltf〉 = 〈m, f〉 (〈m,Rtf〉 = 〈m, f〉, respectively) for all s ∈ S

and f ∈ `∞(S). A discrete semigroup S is called amenable if there exists
a mean m on `∞(S) which is both left and right invariant (see [7]). An
inverse semigroup is a discrete semigroup S such that for each s ∈ S,
there is a unique element s∗ ∈ S with ss∗s = s and s∗ss∗ = s∗. Elements
of the form ss∗ are called idempotents of S. For an inverse semigroup
S, a left invariant mean on `∞(S) is right invariant and vise versa.

M. Amini in [1] introduced the concept of module amenability for a
Banach algebra. He showed that for an inverse semigroup S with set of
idempotents E, the semigroup algebra `1(S) is `1(E)-module amenable
if and only if S is amenable.

This extends the Johnson’s theorem [9, Theorem 2.5] in the discrete
case) which asserts that for a discrete group G, `1(G) is amenable if
and only if G is amenable. The author and Amini in [4] introduced
the concept of module super-amenability and showed that for an inverse
semigroup S, the semigroup algebra `1(S) is module super-amenable if
and only if the group homomorphic image S/ ≈ of S is finite, where ≈
is an equivalence relation on S.

In part two of this paper, we show that when A acts trivially on A
from left then under some mild conditions, module amenability of A⊗̂A
implies amenability of A/J

⊗̂A/J and vise versa, where J is the closed
ideal of A generated by α · (ab)− (ab) ·α for all a ∈ A and α ∈ A. There
is a similar result for super amenability.

Finally, we prove that if S is an amenable inverse semigroup with
an upward directed set of idempotents E, then `1(S)

⊗̂
`1(S) is module

amenable as an `1(E)-module. Also we show that `1(S)
⊗̂

`1(S) is mod-
ule super-amenable when the appropriate group homomorphic image
S/ ≈ is finite.
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2. Module Amenability of the Tensor Product
of Banach Algebras

Let A and A be Banach algebras such that A is a Banach A-bimodule
with compatible actions, as follows

α · (ab) = (α · a)b, (ab) · α = a(b · α) (a, b ∈ A, α ∈ A).

Let X be a Banach A-bimodule and a Banach A-bimodule with com-
patible actions, that is

α·(a·x) = (α·a)·x, a·(α·x) = (a·α)·x, (α·x)·a = α·(x·a) (a ∈ A, α ∈ A, x ∈ X)

and the same for the right or two-sided actions. Then we say that X

is a Banach A-A-module. If moreover α · x = x · α for all α ∈ A, x ∈ X,
then X is called a commutative A-A-module. If X is a commutative
Banach A-A-module, then so is X∗, the first dual space of X, where the
actions of A and A on X∗ are defined as follows

〈α ·f, x〉 = 〈f, x ·α〉, 〈a ·f, x〉 = 〈f, x ·a〉 (a ∈ A, α ∈ A, x ∈ X, f ∈ X∗)

and the same for the right actions.
Note that, in general, A is not anA-A-module becauseA does not satisfy
in the compatibility condition a · (α · b) = (a · α) · b for α ∈ A, a, b ∈
A [2]. But when A is a commutative A-module and acts on itself by
multiplication from both sides, then it is also a Banach A-A-module.
It is well known that A⊗̂A, the projective tensor product of A and A
is a Banach algebra with respect to the canonical multiplication defined
by (a ⊗ b)(c ⊗ d) = (ac ⊗ bd). Also it is a Banach A-bimodule and a
Banach A-bimodule by the following usual actions:

α · (a⊗ b) = (α · a)⊗ b, c · (a⊗ b) = (ca)⊗ b (α ∈ A, a, b, c ∈ A),

Similarly, for the right actions consider the module projective tensor
product A⊗̂

AA which is isomorphic to the quotient space (A⊗̂A)/I,
where I is the closed ideal of the projective tensor product A⊗̂A gen-
erated by elements of the form α · a ⊗ b − a ⊗ b · α for α ∈ A, a, b ∈ A
[11]. Also we consider J , the closed ideal of A generated by elements
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of the form (α · a)b− a(b · α) for α ∈ A, a, b ∈ A. Then A/J is Banach
A-A-module when A acts on A/J canonically.
Let A and A be as in the above and X be a Banach A-A-module. A
bounded map D : A −→ X is called a module derivation if

D(a± b) = D(a)±D(b), D(ab) = D(a) · b + a ·D(b) (a, b ∈ A),

and

D(α · a) = α ·D(a), D(a · α) = D(a) · α (a ∈ A, α ∈ A).

Although D is not necessary linear, but still its boundedness implies its
norm continuity (since it preserves subtraction). When X is commuta-
tive A-A-module, each x ∈ X defines a module derivation

Dx(a) = a · x− x · a (a ∈ A).

These are called inner module derivations. The Banach algebra A is
called module amenable (as an A-module) if for any commutative Banach
A-A-module X, each module derivation D : A −→ X∗ is inner [1].
Similarly, A is called module super-amenable if each module derivation
D : A −→ X is inner [4].
We say the Banach algebra A acts trivially on A from left (right) if for
each α ∈ A and a ∈ A, α · a = f(α)a (a · α = f(α)a), where f is a
continuous linear functional on A. The following lemma is proved in [3].

Lemma 2.1. Let A be a Banach algebra and Banach A-module with
compatible actions, and J0 be a closed ideal of A such that J ⊆ J0. If
A/J0 has a left or right identity e + J0, then for each α ∈ A and a ∈ A
we have a · α− α · a ∈ J0, i.e., A/J0 is commutative Banach A-module.

Recall that A has a bounded approximate identity for A if there is
a bounded net {γi} in A such that for each a ∈ A, ‖γi · a− a‖ → 0 and
‖a · γi − a‖ → 0, as i −→∞.

Theorem 2.2. Let A be a Banach A-module with trivial left action
and A/J has an identity. If A⊗̂A is module amenable (module super-
amenable), then A/J

⊗̂A/J is amenable (module super-amenable). The
converse is true if A has a bounded approximate identity for A.
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Proof. We prove the result for the module amenability. Let X be a
unital A/J

⊗̂A/J-bimodule and D : A/J
⊗̂A/J −→ X∗ be a bounded

derivation (see [5, Lemma 43.6]). Then X is an A⊗̂A-bimodule with
module actions given by

(a⊗b)·x := ((a+J)⊗(b+J))·x, x·(a⊗b) := x·((a+J)⊗(b+J)) (x ∈ X, a ∈ A),

and X is A-bimodule with trivial actions, that is α · x = x · α = f(α)x,
for each x ∈ X and α ∈ A which f is a continuous linear functional on A.
Since f(α)a−a ·α ∈ J (see Lemma 2.1.), we have f(α)a+J = a ·α+J ,
for each α ∈ A, and the actions of A and A⊗̂A on X are compatible.
Therefore X is commutative Banach A⊗̂A-A-module. Consider Φ :
(A⊗̂A)/I −→ A/J

⊗̂A/J defined by

Φ((a⊗ b) + I) = (a + J)⊗ (b + J).

For each a, b ∈ A and α ∈ A we have

(α · a + J)⊗ (b + J)− (a + J)⊗ (b · α + J) = (f(α)a + J)⊗ (b + J)
− (a + J)⊗ (f(α)b + J)
= f(α)(a + J)⊗ (b + J)
− f(α)(a + J)⊗ (b + J) = 0.

We have used Lemma 2.1., in the first equality, hence Φ is well defined.
Obviously Φ is A-bimodule morphism. We show that the map D =
D ◦ Φ ◦ π : A⊗̂A −→ X∗ is module derivation where π : A⊗̂A −→
(A⊗̂A)/I is the projection map. For each a, b, c, d ∈ A and α ∈ A, we
have

D((a⊗ b)(c⊗ d)) = D(((a + J)⊗ (b + J))((c + J)⊗ (d + J)))

= D((a + J)⊗ (b + J)) · ((c + J)⊗ (d + J))

+ ((a + J)⊗ (b + J)) ·D((c + J)⊗ (d + J))

= D(a⊗ b) · (c⊗ d) + (a⊗ b) ·D(c⊗ d).

For each a, b ∈ A we have D((a ⊗ b) ± (c ⊗ d)) = D(a ⊗ b) ±D(c ⊗ d).
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Also A/J
⊗̂A/J is an A-bimodule, hence for α ∈ A, we have

D((a⊗ b) · α) = D((a + J)⊗ (b · α + J))

= D((a + J)⊗ (f(α)b + J))

= f(α)D((a + J)⊗ (b + J))

= D(a⊗ b) · α.

On the other hand, since the left A-module actions on A and X are
trivial, D(α · (a⊗ b)) = D(f(α)(a⊗ b)) = α ·D(a⊗ b). Therefore there
exists x∗ ∈ X∗ such that D(a ⊗ b) = (a ⊗ b) · x∗ − x∗ · (a ⊗ b) , hence
D((a + J)⊗ (b + J)) = ((a + J)⊗ (b + J)) · x∗ − x∗ · ((a + J)⊗ (b + J)),
and so D is inner.
For the converse, we note that for every derivation D : A −→ X on
unital Banach algebra A with identity e, we have D(e) = 0 and without
loss of generality we can assume that e ·D(a) = D(a) · e = D(a) for all
a ∈ A. We use this fact in the rest of the proof. Now, suppose that X

is a commutative Banach A⊗̂A-A-module. We consider the following
module actions A/J

⊗̂A/J on X,

((a+J)⊗(b+J))·x := (a⊗b)·x, x·((a+J)⊗(b+J)) := x·(a⊗b) (x ∈ X, a ∈ A).

For each a, b, c, d ∈ A, x ∈ X, and α, β ∈ A, we have

((α · ab− ab · α)⊗ (β · cd− cd · β)) · x = (α · ab⊗ β · cd− α · ab⊗ cd · β
− ab · α⊗ β · cd
+ ab · α⊗ cd · β) · x
= β · ((f(α)ab⊗ cd) · x)

− ((f(α)ab⊗ cd) · x) · β
− β · ((ab · α⊗ cd) · x)

+ ((ab · α⊗ cd) · x) · β = 0.

Similarly if a ∈ J or b ∈ J , we can show that (a⊗b)·x = 0 and x·(a⊗b) =
0. Therefore X is a Banach A/J

⊗̂A/J-bimodule. Suppose that D :
A⊗̂A −→ X∗ is a module derivation, and consider D̃ : A/J

⊗̂A/J −→
X∗ defined by D̃((a+J)⊗ (b+J)) := D(a⊗b), for all a, b ∈ A. Suppose
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that e + J is identity for A/J , we have

D(a⊗ (α · cd− cd · α)) = α ·D(a⊗ cd)−D(a⊗ cd) · α
= α ·D(ae⊗ cd)−D(ae⊗ cd) · α
= α ·D(a⊗ c) · (e⊗ d) + α · (a⊗ c) ·D(e⊗ d)
−D(a⊗ c) · (e⊗ d) · α− (a⊗ c) ·D(e⊗ d) · α = 0.

Although ae is not equal with a, but we have

D(a⊗cd) = D̃((a+J)⊗(cd+J)) = D̃((ae+J)⊗(cd+J)) = D(ae⊗cd).

By the above observation, D̃ is also well-defined. Suppose that A has a
bounded approximate identity (γi) for A. Since f is bounded, {|f(γi)|}
is a bounded sequence in C. Without loss of generality, we may assume
that f(γi) −→ 1, as i −→∞. Then for each λ ∈ C we have

e · (λγi)− f(γi)e = (λe) · γi − f(γi)e −→ λe− e

in norm. Since J is a closed ideal of A, λe−e ∈ J . Next, for each λ ∈ C,
and a, b ∈ A, we have

D̃((λa + J)⊗ (b + J)) = D̃((a + J)⊗ (b + J))(e + J)⊗ (λe + J))

= D̃((a + J)⊗ (b + J)) · ((e + J)⊗ (λe + J))

+ ((a + J)⊗ (b + J)) · D̃((e + J)⊗ (λe + J))

= λD̃((a + J)⊗ (b + J)) · ((e + J)⊗ (e + J))

+ ((a + J)⊗ (b + J)) · D̃((e + J)⊗ (e + J))

= λD̃((a + J)⊗ (b + J)).

Thus D̃ is C-linear, and so it is inner. Therefore D is an inner module
derivation. ¤

In this part we find conditions on a (discrete) inverse semigroup S

such that the tensor product `1(S)
⊗̂

`1(S) is `1(E)-module amenable
and super-amenable, where E is the set of idempotents of S, acting on
S trivially from left and by multiplication from right. Let S be an inverse
semigroup with set idempotent E, where the order of E is defined by

e 6 d ⇐⇒ ed = e (e, d ∈ E).
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It is easy to show that E is a (commutative) subsemigroup of S [8,
Theorem V.1.2]. In particular `1(E) could be regard as a subalgebra
of `1(S), and thereby `1(S) is a Banach algebra and a Banach `1(E)-
module with compatible actions ([1]). Here we let `1(E) act on `1(S) by
multiplication from right and trivially from left, that is

δe · δs = δs, δs · δe = δse = δs ∗ δe (s ∈ S, e ∈ E).

In this case, the ideal J is the closed linear span of {δset − δst : s, t ∈
S, e ∈ E}. We consider an equivalence relation on S as follows

s ≈ t ⇐⇒ δs − δt ∈ J (s, t ∈ S).

Recall that E is called upward directed if for every e, f ∈ E there exists
g ∈ E such that eg = e and fg = f . This is precisely the assertion that
S satisfies the D1 condition of Duncan and Namioka [7]. It is shown
in [10, Theorem 3.2.], that if E is upward directed, then the quotient
S/≈ is a discrete group. As in [10, Theorem 3.3], we may observe that
`1(S)/J ∼= `1(S/ ≈). With the above notations, `1(S)/J ∼= `1(S/ ≈) is
a commutative `1(E)-bimodule with the following actions

δe · (δs + J) = δs + J, (δs + J) · δe = δse + J (s ∈ S, e ∈ E).

Theorem 2.3. Let S be an inverse semigroup with an upward directed
set of idempotents E and `1(S) be a Banach `1(E)-module with trivial
left action and canonical right action. Then the following statements
hold:

(i) If S is amenable, then `1(S)
⊗̂

`1(S) is module amenable.
(ii) If S/ ≈ is finite, then `1(S)

⊗̂
`1(S) is module super-amenable.

Proof. (i) The semigroup algebra S is amenable if and only if `1(S) is
module amenable [1. Theorem 3.1]. Thus `1(S/ ≈) is unital amenable
Banach algebra by [3, Proposition 3.2], and so the tensor product `1(S/ ≈
)
⊗̂

`1(S/ ≈) is amenable [6. Corollary 2.9.62]. Now the proof is com-
pleted by using Theorem 2.2.

(ii) Since S/ ≈ is a finite (discrete)group, `1(S) is module super-
amenable as `1(E)-module, hence `1(S/ ≈) is super-amenable by [4,
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Lemma 2.7]. By [12, Exercise 4.1.4], `1(S/ ≈)
⊗̂

`1(S/ ≈) is super-
amenable. Now the result follows from Theorem 2.2 with A = `1(S)
and A = `1(E). ¤

Example 2.4. (i) Let C be the bicyclic inverse semigroup generated by
a and b, that is

C = {ambn : m,n > 0}, (ambn)∗ = anbm.

The set of idempotents of C is EC = {anbn : n = 0, 1, ...} which is totally
ordered (and so is upward directed) with the following order

anbn 6 ambm ⇐⇒ m 6 n.

It is shown in [3] that C/ ≈ is isomorphic to the group of integers Z, hence
C is amenable. Therefore the tensor product `1(C)⊗̂`1(C) is module
amenable by Theorem 2.3.

(ii) Let (N,∨) be the commutative semigroup of positive integers
with maximum operation m∨n = max(m,n), then each element of N is
an idempotent, that is EN = N. Hence N/≈ is the trivial group with one
element. Therefore by Theorem 2.2., the tensor product `1(N)

⊗̂
`1(N)

is module super-amenable, as an `1(N)-module.
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