Journal of Mathematical Extension Vol. 4, No. 2 (2010), 97-106

Module Amenability and Tensor Product of Semigroup Algebras

A. Bodaghi

Islamic Azad University-Garmsar Branch

Abstract. Let S be an inverse semigroup with an upward directed set of idempotents E. In this paper we prove that if S is amenable, then $\ell^1(S)\widehat{\otimes}\ell^1(S)$ is module amenable as an $\ell^1(E)$ -module. Also we show that $\ell^1(S)\widehat{\otimes}\ell^1(S)$ is module super-amenable if an appropriate group homomorphic image of S is finite.

AMS Subject Classification: 46H25. **Keywords and Phrases:** Banach modules, module derivation, module amenability, inverse semigroup.

1. Introduction

The notion of amenability of Banach algebras was introduced by Barry Johnson in [9]. A Banach algebra \mathcal{A} is *amenable* if every bounded derivation from \mathcal{A} into any dual Banach \mathcal{A} -module is inner, equivalently if $H^1(\mathcal{A}, X^*) = \{0\}$ for every Banach \mathcal{A} -module X, where $H^1(\mathcal{A}, X^*)$ is the first Hochschild cohomology group of \mathcal{A} with coefficients in X^* . He proved in [9, Proposition 5.4] that if \mathcal{A} and \mathcal{B} are amenable Banach algebra, then so is $\mathcal{A} \widehat{\otimes} \mathcal{B}$ (see also [6, Corollary 2.9.62]). Also \mathcal{A} is called super-amenable (contractible) if $H^1(\mathcal{A}, X) = \{0\}$ for every Banach \mathcal{A} bimodule X (see [6,12]). It is known $\mathcal{A} \widehat{\otimes} \mathcal{B}$ is super-amenable if \mathcal{A} and \mathcal{B} are super-amenable [12, Exercise 4.1.4].

For a discrete semigroup S, $\ell^{\infty}(S)$ is the Banach algebra of bounded complex-valued functions on S with the supremum norm and pointwise

97

Received November 2009; Final Revised March 2010

A. BODAGHI

multiplication. For each $t \in S$ and $f \in \ell^{\infty}(S)$, let $L_t f$ and $R_t f$ denote the left and the right translations of f by t, that is $\langle L_t f, s \rangle = \langle f, ts \rangle$ and $\langle R_t f, s \rangle = \langle f, st \rangle$, for each $s \in S$. Then a linear functional $m \in (\ell^{\infty}(S))^*$ is called a mean if $||m|| = \langle m, 1 \rangle = 1$; m is called a left (right) invariant mean if $\langle m, L_t f \rangle = \langle m, f \rangle$ ($\langle m, R_t f \rangle = \langle m, f \rangle$, respectively) for all $s \in S$ and $f \in \ell^{\infty}(S)$. A discrete semigroup S is called amenable if there exists a mean m on $\ell^{\infty}(S)$ which is both left and right invariant (see [7]). An inverse semigroup is a discrete semigroup S such that for each $s \in S$, there is a unique element $s^* \in S$ with $ss^*s = s$ and $s^*ss^* = s^*$. Elements of the form ss^* are called idempotents of S. For an inverse semigroup S, a left invariant mean on $\ell^{\infty}(S)$ is right invariant and vise versa.

M. Amini in [1] introduced the concept of module amenability for a Banach algebra. He showed that for an inverse semigroup S with set of idempotents E, the semigroup algebra $\ell^1(S)$ is $\ell^1(E)$ -module amenable if and only if S is amenable.

This extends the Johnson's theorem [9, Theorem 2.5] in the discrete case) which asserts that for a discrete group G, $\ell^1(G)$ is amenable if and only if G is amenable. The author and Amini in [4] introduced the concept of module super-amenability and showed that for an inverse semigroup S, the semigroup algebra $\ell^1(S)$ is module super-amenable if and only if the group homomorphic image S/\approx of S is finite, where \approx is an equivalence relation on S.

In part two of this paper, we show that when \mathfrak{A} acts trivially on \mathcal{A} from left then under some mild conditions, module amenability of $\mathcal{A} \otimes \mathcal{A}$ implies amenability of $\mathcal{A}/J \otimes \mathcal{A}/J$ and vise versa, where J is the closed ideal of \mathcal{A} generated by $\alpha \cdot (ab) - (ab) \cdot \alpha$ for all $a \in \mathcal{A}$ and $\alpha \in \mathfrak{A}$. There is a similar result for super amenability.

Finally, we prove that if S is an amenable inverse semigroup with an upward directed set of idempotents E, then $\ell^1(S)\widehat{\otimes}\ell^1(S)$ is module amenable as an $\ell^1(E)$ -module. Also we show that $\ell^1(S)\widehat{\otimes}\ell^1(S)$ is module super-amenable when the appropriate group homomorphic image S/\approx is finite.

2. Module Amenability of the Tensor Product of Banach Algebras

Let \mathcal{A} and \mathfrak{A} be Banach algebras such that \mathcal{A} is a Banach \mathfrak{A} -bimodule with compatible actions, as follows

$$\alpha \cdot (ab) = (\alpha \cdot a)b, \quad (ab) \cdot \alpha = a(b \cdot \alpha) \quad (a, b \in \mathcal{A}, \alpha \in \mathfrak{A}).$$

Let X be a Banach \mathcal{A} -bimodule and a Banach \mathfrak{A} -bimodule with compatible actions, that is

$$\alpha \cdot (a \cdot x) = (\alpha \cdot a) \cdot x, \ a \cdot (\alpha \cdot x) = (a \cdot \alpha) \cdot x, \ (\alpha \cdot x) \cdot a = \alpha \cdot (x \cdot a) \quad (a \in \mathcal{A}, \alpha \in \mathfrak{A}, x \in X)$$

and the same for the right or two-sided actions. Then we say that X is a Banach \mathcal{A} - \mathfrak{A} -module. If moreover $\alpha \cdot x = x \cdot \alpha$ for all $\alpha \in \mathfrak{A}, x \in X$, then X is called a *commutative* \mathcal{A} - \mathfrak{A} -module. If X is a commutative Banach \mathcal{A} - \mathfrak{A} -module, then so is X^* , the first dual space of X, where the actions of \mathcal{A} and \mathfrak{A} on X^* are defined as follows

$$\langle \alpha \cdot f, x \rangle = \langle f, x \cdot \alpha \rangle, \ \langle a \cdot f, x \rangle = \langle f, x \cdot a \rangle \quad (a \in \mathcal{A}, \alpha \in \mathfrak{A}, x \in X, f \in X^*)$$

and the same for the right actions.

Note that, in general, \mathcal{A} is not an \mathcal{A} - \mathfrak{A} -module because \mathcal{A} does not satisfy in the compatibility condition $a \cdot (\alpha \cdot b) = (a \cdot \alpha) \cdot b$ for $\alpha \in \mathfrak{A}, a, b \in \mathcal{A}$ [2]. But when \mathcal{A} is a commutative \mathfrak{A} -module and acts on itself by multiplication from both sides, then it is also a Banach \mathcal{A} - \mathfrak{A} -module.

It is well known that $\mathcal{A} \bigotimes \mathcal{A}$, the projective tensor product of \mathcal{A} and \mathcal{A} is a Banach algebra with respect to the canonical multiplication defined by $(a \otimes b)(c \otimes d) = (ac \otimes bd)$. Also it is a Banach \mathcal{A} -bimodule and a Banach \mathfrak{A} -bimodule by the following usual actions:

$$\alpha \cdot (a \otimes b) = (\alpha \cdot a) \otimes b, \quad c \cdot (a \otimes b) = (ca) \otimes b \quad (\alpha \in \mathfrak{A}, a, b, c \in \mathcal{A}),$$

Similarly, for the right actions consider the module projective tensor product $\mathcal{A}\widehat{\otimes}_{\mathfrak{A}}\mathcal{A}$ which is isomorphic to the quotient space $(\mathcal{A}\widehat{\otimes}\mathcal{A})/I$, where I is the closed ideal of the projective tensor product $\mathcal{A}\widehat{\otimes}\mathcal{A}$ generated by elements of the form $\alpha \cdot a \otimes b - a \otimes b \cdot \alpha$ for $\alpha \in \mathfrak{A}, a, b \in \mathcal{A}$ [11]. Also we consider J, the closed ideal of \mathcal{A} generated by elements of the form $(\alpha \cdot a)b - a(b \cdot \alpha)$ for $\alpha \in \mathfrak{A}, a, b \in \mathcal{A}$. Then \mathcal{A}/J is Banach \mathcal{A} - \mathfrak{A} -module when \mathcal{A} acts on \mathcal{A}/J canonically.

Let \mathcal{A} and \mathfrak{A} be as in the above and X be a Banach \mathcal{A} - \mathfrak{A} -module. A bounded map $D: \mathcal{A} \longrightarrow X$ is called a *module derivation* if

$$D(a \pm b) = D(a) \pm D(b), \ D(ab) = D(a) \cdot b + a \cdot D(b) \ (a, b \in \mathcal{A}),$$

and

$$D(\alpha \cdot a) = \alpha \cdot D(a), \quad D(a \cdot \alpha) = D(a) \cdot \alpha \quad (a \in \mathcal{A}, \alpha \in \mathfrak{A}).$$

Although D is not necessary linear, but still its boundedness implies its norm continuity (since it preserves subtraction). When X is commutative \mathcal{A} - \mathfrak{A} -module, each $x \in X$ defines a module derivation

$$D_x(a) = a \cdot x - x \cdot a \quad (a \in \mathcal{A}).$$

These are called *inner* module derivations. The Banach algebra \mathcal{A} is called *module amenable* (as an \mathfrak{A} -module) if for any commutative Banach \mathcal{A} - \mathfrak{A} -module X, each module derivation $D : \mathcal{A} \longrightarrow X^*$ is inner [1]. Similarly, \mathcal{A} is called *module super-amenable* if each module derivation $D : \mathcal{A} \longrightarrow X$ is inner [4].

We say the Banach algebra \mathfrak{A} acts trivially on \mathcal{A} from left (right) if for each $\alpha \in \mathfrak{A}$ and $a \in \mathcal{A}$, $\alpha \cdot a = f(\alpha)a$ $(a \cdot \alpha = f(\alpha)a)$, where f is a continuous linear functional on \mathfrak{A} . The following lemma is proved in [3].

Lemma 2.1. Let \mathcal{A} be a Banach algebra and Banach \mathfrak{A} -module with compatible actions, and J_0 be a closed ideal of \mathcal{A} such that $J \subseteq J_0$. If \mathcal{A}/J_0 has a left or right identity $e + J_0$, then for each $\alpha \in \mathfrak{A}$ and $a \in \mathcal{A}$ we have $a \cdot \alpha - \alpha \cdot a \in J_0$, i.e., \mathcal{A}/J_0 is commutative Banach \mathfrak{A} -module.

Recall that \mathfrak{A} has a bounded approximate identity for \mathcal{A} if there is a bounded net $\{\gamma_i\}$ in \mathfrak{A} such that for each $a \in \mathcal{A}$, $\|\gamma_i \cdot a - a\| \to 0$ and $\|a \cdot \gamma_i - a\| \to 0$, as $i \to \infty$.

Theorem 2.2. Let \mathcal{A} be a Banach \mathfrak{A} -module with trivial left action and \mathcal{A}/J has an identity. If $\mathcal{A}\widehat{\otimes}\mathcal{A}$ is module amenable (module superamenable), then $\mathcal{A}/J\widehat{\otimes}\mathcal{A}/J$ is amenable (module super-amenable). The converse is true if \mathfrak{A} has a bounded approximate identity for \mathcal{A} .

100

Proof. We prove the result for the module amenability. Let X be a unital $\mathcal{A}/J\widehat{\otimes}\mathcal{A}/J$ -bimodule and $D: \mathcal{A}/J\widehat{\otimes}\mathcal{A}/J \longrightarrow X^*$ be a bounded derivation (see [5, Lemma 43.6]). Then X is an $\mathcal{A}\widehat{\otimes}\mathcal{A}$ -bimodule with module actions given by

$$(a \otimes b) \cdot x := ((a+J) \otimes (b+J)) \cdot x, \ x \cdot (a \otimes b) := x \cdot ((a+J) \otimes (b+J)) \ (x \in X, a \in \mathcal{A}),$$

and X is \mathfrak{A} -bimodule with trivial actions, that is $\alpha \cdot x = x \cdot \alpha = f(\alpha)x$, for each $x \in X$ and $\alpha \in \mathfrak{A}$ which f is a continuous linear functional on \mathfrak{A} . Since $f(\alpha)a - a \cdot \alpha \in J$ (see Lemma 2.1.), we have $f(\alpha)a + J = a \cdot \alpha + J$, for each $\alpha \in \mathfrak{A}$, and the actions of \mathfrak{A} and $\mathcal{A}\widehat{\otimes}\mathcal{A}$ on X are compatible. Therefore X is commutative Banach $\mathcal{A}\widehat{\otimes}\mathcal{A}$ - \mathfrak{A} -module. Consider Φ : $(\mathcal{A}\widehat{\otimes}\mathcal{A})/I \longrightarrow \mathcal{A}/J\widehat{\otimes}\mathcal{A}/J$ defined by

$$\Phi((a \otimes b) + I) = (a + J) \otimes (b + J).$$

For each $a, b \in \mathcal{A}$ and $\alpha \in \mathfrak{A}$ we have

$$(\alpha \cdot a + J) \otimes (b + J) - (a + J) \otimes (b \cdot \alpha + J) = (f(\alpha)a + J) \otimes (b + J)$$
$$- (a + J) \otimes (f(\alpha)b + J)$$
$$= f(\alpha)(a + J) \otimes (b + J)$$
$$- f(\alpha)(a + J) \otimes (b + J) = 0.$$

We have used Lemma 2.1., in the first equality, hence Φ is well defined. Obviously Φ is \mathfrak{A} -bimodule morphism. We show that the map $\overline{D} = D \circ \Phi \circ \pi : \mathcal{A} \widehat{\otimes} \mathcal{A} \longrightarrow X^*$ is module derivation where $\pi : \mathcal{A} \widehat{\otimes} \mathcal{A} \longrightarrow (\mathcal{A} \widehat{\otimes} \mathcal{A})/I$ is the projection map. For each $a, b, c, d \in \mathcal{A}$ and $\alpha \in \mathfrak{A}$, we have

$$\overline{D}((a \otimes b)(c \otimes d)) = D(((a + J) \otimes (b + J))((c + J) \otimes (d + J)))$$

= $D((a + J) \otimes (b + J)) \cdot ((c + J) \otimes (d + J))$
+ $((a + J) \otimes (b + J)) \cdot D((c + J) \otimes (d + J))$
= $\overline{D}(a \otimes b) \cdot (c \otimes d) + (a \otimes b) \cdot \overline{D}(c \otimes d).$

For each $a, b \in \mathcal{A}$ we have $\overline{D}((a \otimes b) \pm (c \otimes d)) = \overline{D}(a \otimes b) \pm \overline{D}(c \otimes d)$.

Also $\mathcal{A}/J\widehat{\otimes}\mathcal{A}/J$ is an \mathfrak{A} -bimodule, hence for $\alpha \in \mathfrak{A}$, we have

$$\overline{D}((a \otimes b) \cdot \alpha) = D((a + J) \otimes (b \cdot \alpha + J))$$
$$= D((a + J) \otimes (f(\alpha)b + J))$$
$$= f(\alpha)D((a + J) \otimes (b + J))$$
$$= \overline{D}(a \otimes b) \cdot \alpha.$$

On the other hand, since the left \mathfrak{A} -module actions on \mathcal{A} and X are trivial, $\overline{D}(\alpha \cdot (a \otimes b)) = \overline{D}(f(\alpha)(a \otimes b)) = \alpha \cdot \overline{D}(a \otimes b)$. Therefore there exists $x^* \in X^*$ such that $\overline{D}(a \otimes b) = (a \otimes b) \cdot x^* - x^* \cdot (a \otimes b)$, hence $D((a+J) \otimes (b+J)) = ((a+J) \otimes (b+J)) \cdot x^* - x^* \cdot ((a+J) \otimes (b+J))$, and so D is inner.

For the converse, we note that for every derivation $D : \mathcal{A} \longrightarrow X$ on unital Banach algebra \mathcal{A} with identity e, we have D(e) = 0 and without loss of generality we can assume that $e \cdot D(a) = D(a) \cdot e = D(a)$ for all $a \in \mathcal{A}$. We use this fact in the rest of the proof. Now, suppose that Xis a commutative Banach $\mathcal{A} \widehat{\otimes} \mathcal{A}$ - \mathfrak{A} -module. We consider the following module actions $\mathcal{A}/J \widehat{\otimes} \mathcal{A}/J$ on X,

$$((a+J)\otimes (b+J))\cdot x:=(a\otimes b)\cdot x, \ x\cdot ((a+J)\otimes (b+J)):=x\cdot (a\otimes b) \ (x\in X, a\in \mathcal{A}).$$

For each $a, b, c, d \in \mathcal{A}, x \in X$, and $\alpha, \beta \in \mathfrak{A}$, we have

$$\begin{aligned} ((\alpha \cdot ab - ab \cdot \alpha) \otimes (\beta \cdot cd - cd \cdot \beta)) \cdot x &= (\alpha \cdot ab \otimes \beta \cdot cd - \alpha \cdot ab \otimes cd \cdot \beta \\ &- ab \cdot \alpha \otimes \beta \cdot cd \\ &+ ab \cdot \alpha \otimes cd \cdot \beta) \cdot x \\ &= \beta \cdot ((f(\alpha)ab \otimes cd) \cdot x) \\ &- ((f(\alpha)ab \otimes cd) \cdot x) \cdot \beta \\ &- \beta \cdot ((ab \cdot \alpha \otimes cd) \cdot x) \\ &+ ((ab \cdot \alpha \otimes cd) \cdot x) \cdot \beta = 0. \end{aligned}$$

Similarly if $a \in J$ or $b \in J$, we can show that $(a \otimes b) \cdot x = 0$ and $x \cdot (a \otimes b) = 0$. Therefore X is a Banach $\mathcal{A}/J\widehat{\otimes}\mathcal{A}/J$ -bimodule. Suppose that $D : \mathcal{A}\widehat{\otimes}\mathcal{A} \longrightarrow X^*$ is a module derivation, and consider $\tilde{D} : \mathcal{A}/J\widehat{\otimes}\mathcal{A}/J \longrightarrow X^*$ defined by $\tilde{D}((a+J) \otimes (b+J)) := D(a \otimes b)$, for all $a, b \in \mathcal{A}$. Suppose

103

that e + J is identity for \mathcal{A}/J , we have

$$D(a \otimes (\alpha \cdot cd - cd \cdot \alpha)) = \alpha \cdot D(a \otimes cd) - D(a \otimes cd) \cdot \alpha$$

= $\alpha \cdot D(ae \otimes cd) - D(ae \otimes cd) \cdot \alpha$
= $\alpha \cdot D(a \otimes c) \cdot (e \otimes d) + \alpha \cdot (a \otimes c) \cdot D(e \otimes d)$
- $D(a \otimes c) \cdot (e \otimes d) \cdot \alpha - (a \otimes c) \cdot D(e \otimes d) \cdot \alpha = 0.$

Although ae is not equal with a, but we have

$$D(a \otimes cd) = \tilde{D}((a+J) \otimes (cd+J)) = \tilde{D}((ae+J) \otimes (cd+J)) = D(ae \otimes cd).$$

By the above observation, \tilde{D} is also well-defined. Suppose that \mathfrak{A} has a bounded approximate identity (γ_i) for \mathcal{A} . Since f is bounded, $\{|f(\gamma_i)|\}$ is a bounded sequence in \mathbb{C} . Without loss of generality, we may assume that $f(\gamma_i) \longrightarrow 1$, as $i \longrightarrow \infty$. Then for each $\lambda \in \mathbb{C}$ we have

$$e \cdot (\lambda \gamma_i) - f(\gamma_i)e = (\lambda e) \cdot \gamma_i - f(\gamma_i)e \longrightarrow \lambda e - e$$

in norm. Since J is a closed ideal of \mathcal{A} , $\lambda e - e \in J$. Next, for each $\lambda \in \mathbb{C}$, and $a, b \in \mathcal{A}$, we have

$$\begin{split} D((\lambda a + J) \otimes (b + J)) &= D((a + J) \otimes (b + J))(e + J) \otimes (\lambda e + J)) \\ &= \tilde{D}((a + J) \otimes (b + J)) \cdot ((e + J) \otimes (\lambda e + J)) \\ &+ ((a + J) \otimes (b + J)) \cdot \tilde{D}((e + J) \otimes (\lambda e + J)) \\ &= \lambda \tilde{D}((a + J) \otimes (b + J)) \cdot ((e + J) \otimes (e + J)) \\ &+ ((a + J) \otimes (b + J)) \cdot \tilde{D}((e + J) \otimes (e + J)) \\ &= \lambda \tilde{D}((a + J) \otimes (b + J)) \cdot \tilde{D}((e + J) \otimes (e + J)) \end{split}$$

Thus \tilde{D} is \mathbb{C} -linear, and so it is inner. Therefore D is an inner module derivation. \Box

In this part we find conditions on a (discrete) inverse semigroup S such that the tensor product $\ell^1(S)\widehat{\otimes}\ell^1(S)$ is $\ell^1(E)$ -module amenable and super-amenable, where E is the set of idempotents of S, acting on S trivially from left and by multiplication from right. Let S be an inverse semigroup with set idempotent E, where the order of E is defined by

$$e \leqslant d \iff ed = e \quad (e, d \in E).$$

A. BODAGHI

It is easy to show that E is a (commutative) subsemigroup of S [8, Theorem V.1.2]. In particular $\ell^1(E)$ could be regard as a subalgebra of $\ell^1(S)$, and thereby $\ell^1(S)$ is a Banach algebra and a Banach $\ell^1(E)$ module with compatible actions ([1]). Here we let $\ell^1(E)$ act on $\ell^1(S)$ by multiplication from right and trivially from left, that is

$$\delta_e \cdot \delta_s = \delta_s, \ \delta_s \cdot \delta_e = \delta_{se} = \delta_s * \delta_e \ (s \in S, e \in E).$$

In this case, the ideal J is the closed linear span of $\{\delta_{set} - \delta_{st} : s, t \in S, e \in E\}$. We consider an equivalence relation on S as follows

$$s \approx t \iff \delta_s - \delta_t \in J \ (s, t \in S).$$

Recall that E is called *upward directed* if for every $e, f \in E$ there exists $g \in E$ such that eg = e and fg = f. This is precisely the assertion that S satisfies the D_1 condition of Duncan and Namioka [7]. It is shown in [10, Theorem 3.2.], that if E is upward directed, then the quotient S/\approx is a discrete group. As in [10, Theorem 3.3], we may observe that $\ell^1(S)/J \cong \ell^1(S/\approx)$. With the above notations, $\ell^1(S)/J \cong \ell^1(S/\approx)$ is a commutative $\ell^1(E)$ -bimodule with the following actions

 $\delta_e \cdot (\delta_s + J) = \delta_s + J, \ (\delta_s + J) \cdot \delta_e = \delta_{se} + J \ (s \in S, e \in E).$

Theorem 2.3. Let S be an inverse semigroup with an upward directed set of idempotents E and $\ell^1(S)$ be a Banach $\ell^1(E)$ -module with trivial left action and canonical right action. Then the following statements hold:

- (i) If S is amenable, then $\ell^1(S)\widehat{\bigotimes}\ell^1(S)$ is module amenable.
- (ii) If $S \approx is$ finite, then $\ell^1(S) \widehat{\bigotimes} \ell^1(S)$ is module super-amenable.

Proof. (i) The semigroup algebra S is amenable if and only if $\ell^1(S)$ is module amenable [1. Theorem 3.1]. Thus $\ell^1(S/\approx)$ is unital amenable Banach algebra by [3, Proposition 3.2], and so the tensor product $\ell^1(S/\approx) \widehat{\otimes} \ell^1(S/\approx)$ is amenable [6. Corollary 2.9.62]. Now the proof is completed by using Theorem 2.2.

(*ii*) Since S/\approx is a finite (discrete)group, $\ell^1(S)$ is module superamenable as $\ell^1(E)$ -module, hence $\ell^1(S/\approx)$ is super-amenable by [4,

104

105

Lemma 2.7]. By [12, Exercise 4.1.4], $\ell^1(S/\approx) \bigotimes \ell^1(S/\approx)$ is superamenable. Now the result follows from Theorem 2.2 with $\mathcal{A} = \ell^1(S)$ and $\mathfrak{A} = \ell^1(E)$. \Box

Example 2.4. (i) Let C be the bicyclic inverse semigroup generated by a and b, that is

$$C = \{a^m b^n : m, n \ge 0\}, \ (a^m b^n)^* = a^n b^m.$$

The set of idempotents of C is $E_{C} = \{a^{n}b^{n} : n = 0, 1, ...\}$ which is totally ordered (and so is upward directed) with the following order

$$a^n b^n \leqslant a^m b^m \iff m \leqslant n$$

It is shown in [3] that \mathcal{C}/\approx is isomorphic to the group of integers \mathbb{Z} , hence \mathcal{C} is amenable. Therefore the tensor product $\ell^1(\mathcal{C})\widehat{\otimes}\ell^1(\mathcal{C})$ is module amenable by Theorem 2.3.

(ii) Let (\mathbb{N}, \vee) be the commutative semigroup of positive integers with maximum operation $m \vee n = max(m, n)$, then each element of \mathbb{N} is an idempotent, that is $E_{\mathbb{N}} = \mathbb{N}$. Hence \mathbb{N}/\approx is the trivial group with one element. Therefore by Theorem 2.2., the tensor product $\ell^1(\mathbb{N})\widehat{\otimes}\ell^1(\mathbb{N})$ is module super-amenable, as an $\ell^1(\mathbb{N})$ -module.

Acknowledgements

The author would like to thank the referee for careful reading of the paper and giving some useful suggestions.

References

- M. Amini, Module amenability for semigroup algebras, Semigroup Forum 69 (2004), 243–254.
- [2] M. Amini, Corrigendum, Module amenability for semigroup algebras, Semigroup Forum 72 (2006), 493–494.
- [3] M. Amini, A. Bodaghi, and D. Ebrahimi Bagha, Module amenability of the second dual and module topological center of semigroup algebras, Semigroup Forum, 80 (2010), 302–312.

A. BODAGHI

- [4] A. Bodaghi and M. Amini, Module super amenability for semigroup algebras, arXiv:0912.4624V1.
- [5] F. F. Bonsall and J. Duncan, *Complete Normed Algebra*, Springer-Verlag, Berlin-Heidelberg-New York, 1973.
- [6] H. G. Dales, Banach Algebras and Automatic Continuity, Oxford University Press, Oxford, 2000.
- [7] J. Duncan and I. Namioka, Amenability of inverse semigroups and their semigroup algebras, Proc. Roy. Soc. Edinburgh 80A (1988), 309-321.
- [8] J. M. Howie, An Introduction to Semigroup Theory, Academic Press, London, 1976.
- [9] B. E. Johnson, Cohomology in Banach Algebras, Memoirs Amer. Math. Soc. 127, 1972.
- [10] R. Rezavand, M. Amini, M. H. Sattari, and D. Ebrahimi Bagha, Module Arens regularity for semigroup algebras, *Semigroup Forum*, 77 (2008), 300–305.
- [11] M. A. Rieffel, Induced Banach representations of Banach algebras and locally compact groups, J. Funct. Anal. 1 (1967), 443–491.
- [12] V. Runde, *Lectures on Amenability*, Lecture Notes in Mathematics 1774, Springer-Verlag, Berlin-Heidelberg-New York, 2002.

Abasalt Bodaghi

Department of Mathematics Assistant Professor of Mathematics Islamic Azad University, Garmsar-Branch Garmsar, Iran. E-mail: abasalt.bodaghi@gmail.com