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Abstract. An application of the Exp-function method (EFM) to
search for exact solutions of nonlinear partial differential equations is
analyzed. This method is used for the modified KdV equation and
the generalized KdV equation. The EFM was used to construct peri-
odic wave and solitary wave solutions of nonlinear evolution equations
(NLEEs). This method is developed for searching exact travelling wave
solutions of nonlinear partial differential equations. It is shown that the
Exp-function method, with the help of symbolic computation, provides
a straightforward and powerful mathematical tool for solving nonlinear
evolution equations in mathematical physics and applied mathematics.
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1. Introduction

Nonlinear phenomena plays a fundamental role in applied mathematics
and physics. Recently, the study of nonlinear partial differential equa-
tions in modelling physical phenomena, has become an important tool.
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The investigation of the traveling wave solutions plays an important
role in nonlinear sciences. A variety of powerful methods have been
presented, such as the inverse scattering transform ([3]), Hirota’s bilin-
ear method ([17, 23]), homotopy analysis method ([1, 7]), variational
iteration method ([8, 9]), Adomian decomposition method ([10]), homo-
topy perturbation method ([11, 12, 19, 21, 22]), sine-cosine method ([24,
32]), tanh-function method ([4, 13, 25]), tanh-coth method ([26, 27]),
Bäcklund transformation ([18, 20]) and so on. Here, we use an effec-
tive method for constructing a range of exact solutions for the following
nonlinear partial differential equations which was first presented by J.
H. He ([14]). A new method called the Exp-function method (EFM)
is presented to look for traveling wave solutions of nonlinear evolution
equations (NLEEs). The Exp-function method has successfully been
applied to many situations. For example, He et al. ([15]) have solved
the nonlinear wave equations by using the Exp-function method. Wu
and He ([30]) have used the Exp-function method to give new periodic
solutions for nonlinear evolution equations. He and Abdou ([16]) have
examined the Exp-function method to find generalized solitary solutions
and compacton-like solutions of the Jaulent-Miodek equations. Abdou
([2]) has solved generalized solitary and periodic solutions for nonlin-
ear partial differential equations by the Exp-function method. Boz and
Bekir ([5]) have applied the Exp-function method for (3+1)-dimensional
nonlinear evolution equations. Chun ([6]) has obtained the solitons and
periodic solutions for the fifth–order KdV equation by using the Exp–
function method. The Exp-function method along with Hirota’s and
tanh-coth methods have been applied for computing solitary wave solu-
tions of the generalized shallow water wave equation by Wazwaz ([28]).
Wu and He ([31]) have applied the Exp-function method to nonlinear
equations. The EFM has recently been generalized by Zhang ([33]) to
high-dimensional nonlinear evolution equation. The KdV equation, that
plays an important role in the solitary wave theory, is given by

ut + 6uux + uxxx = 0, (1)

The balance between the weak nonlinear steepening of uux and the dis-
persion effect of uxxx in Eq. (1) generates solitons. The KdV equation
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is a spatially one dimensional model. The KdV equation is completely
integrable ([29]), admits multiple–soliton solutions and exhibits an infi-
nite number of conservation laws of energy. In this article, we have used
the Exp-function method to investigate the modified KdV equation and
the generalized KdV equation given by [25]

ut + 3au2ux + buxxx = 0, (2)

and
ut + a(n + 1)unux + buxxx = 0. (3)

By using the Exp-function method we obtained various solutions for the
modified KdV equation and the generalized KdV equation and some
new results are formally developed in this article. Our aim of this paper
is to obtain analytical solutions of the modified KdV equation and the
generalized KdV equation, and to determine the accuracy of the Exp–
function method in solving these kinds of problems. The remainder of
the paper is organized as follows: In Section 2, a brief discussions for the
Exp–function method is presented and exact solutions of Eqs. (2) and
(2) are obtained. In Section 3, we describe this method briefly and apply
this technique to the modified KdV equation. In Section 4, exact results
are considered for the generalized KdV equation by the aforementioned
method. Section 5, ends this report with a brief conclusion.

2. Basic Idea of the Exp-Function Method

We first consider the nonlinear equation of the form:

N (u,ut, ux,uxx,utt, utx, ...) = 0, (4)

and introduce a transformation

u(x, t) = u(η), η = kx + ωt, (5)

where k and ω are constant to be determined later. Therefore Eq. (4)
is reduced to an ODE as follows

M(u, ωu′, ku′, k2u′′, ...) = 0. (6)
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The EFM is based on the assumption that travelling wave solutions as
in ([15]) can be expressed in the form

u(η) =
∑d

n=−c an exp(nη)∑q
m=−p bm exp(mη)

, (7)

where c, d, p and q are positive integers which could be freely chosen and
an’s and bm’s are unknown constants to be determined. To determine
the values of c and p, we balance the linear term of highest order in Eq.
(6) with the highest order nonlinear term. Also to determine the values
of d and q, we balance the linear term of lowest order in Eq. (6) with
the lowest order nonlinear term.

3. The Modified KdV Equation

In this section we employ the Exp-function method to the modified KdV
equation

ut + 3au2ux + buxxx = 0, (8)

and by using the wave variable η = µ(x− ct) reduces it to an ODE [25],

−cµu′ + 3aµu2u′ + bµ3u′′′ = 0. (9)

Then by integrating Eq. (9) and neglecting the constant of integration
we obtain

−cu + au3 + bµ2u′′ = 0. (10)

In order to determine the values of c and p, we balance the linear term
of the highest order u′′ with the highest order nonlinear term u3 in Eq.
(10) and get

u′′ =
c1 exp((c + 3p)η) + ...

c2 exp(4pη) + ...
(11)

u3 =
c3 exp(3cη) + ...

c4 exp(3pη) + ...
=

c3 exp((3c + p)η) + ...

c4 exp(4pη) + ...
(12)
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respectively. Balancing highest order of the Exp–function in (11) and
(12) and get

c + 3p = 3c + p, (13)

which leads to the result c = p.
Similarly, to determine the values of d and q, for the terms u′′ and

u3 in Eq. (10) by simple calculation, we obtain

u′′ =
... + d1 exp(−(d + 3q)η)

... + d2 exp(−4qη)
, (14)

u3 =
... + d3 exp(−3dη)
... + d4 exp(−3qη)

=
... + d3 exp(−(3d + q)η)

... + d4 exp(−4qη)
, (15)

respectively. Balancing lowest order of the Exp-function in (14) and (15)
gives us

−(d + 3q) = −(3d + q), (16)

which leads to the result d = q.

Now we consider the following cases:

Case I: p = c = 1 and q = d = 1.
For simplicity, we set b1 = 1, p = c = 1 and d = q = 1. Then (7) reduces
to

u(η) =
a1 exp(η) + a0 + a−1 exp(−η)
b1 exp(η) + b0 + b−1 exp(−η)

. (17)

Substituting (17) into Eq. (10), and using the well-known Maple soft-
ware, we have

1
A

[
C3 exp(3η) + C2 exp(2η) + C1 exp(η) + C0 + C−1 exp(−η)+ (18)

C−2 exp(−2η) + C−3 exp(−3η)
]

= 0,

where

A =
[
b−1 exp(−η) + b0 + exp(η)

]3
, (19)
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and Cn’ are coefficients of exp(nη)’. Equating the coefficients of exp(nη)
to zero, we obtain the following set of algebraic equations for a1, a0, a−1, b0,b−1

and c, as



C3 = 0, C2 = 0, C1 = 0,
C0 = 0,
C−3 = 0, C−2 = 0, C−1 = 0.

(20)

Solving the system of algebraic equations with the help of Maple gives
the following set of non-trivial solutions

(I) The first set is:

a−1 = 0 b0 = 0, b−1 =
1
8

aa2
0

µ2b
, a0 = a0, a1 = 0, c = µ2b, µ = µ, (21)

which gives:

u1(x, t) =
a0

1
8

aa2
0

µ2b
exp[−µ(x− µ2bt)] + exp[(µ(x− µ2bt)]

. (22)

If we choose a0 = 2
√

2µ2b
a or a0 = 2

√
−2µ2b

a , then the Solution (22) be-
comes to

u1,1(x, t) =
√

2µ2b
a sech[µ(x− µ2bt)],

u1,2(x, t) =
√
−2µ2b

a csch
[
µ(x− µ2bt)

]
.

(II) The second set is:

a−1 = −a1b−1, b0 = 0, b−1 = b−1, a0 = 0, a1 = a1, c = aa2
1, µ =

√
− a

2b
a1,

(23)
which gives:

u2(x, t) =
−a1b−1 exp

[−√− a
2ba1(x− aa2

1t)
]
+ a1 exp

[√− a
2ba1(x− aa2

1t)
]

b−1 exp
[−√− a

2ba1(x− aa2
1t)

]
+ exp

[√− a
2ba1(x− aa2

1t)
]

(24)
If we choose b−1 = 1 or b−1 = −1, then the Solution (24) becomes to

u2,1(x, t) = a1 tanh
[√− a

2ba1(x− aa2
1t)

]
,

u2,2(x, t) = a1 coth
[√− a

2ba1(x− aa2
1t)

]
.
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Respectively, where a1 is an arbitrary constant. In the case µ is an
imaginary number, each of the obtained solitonary solutions above can
be converted into a periodic solution or compact-like solution. Here, we
only discuss the solution given by (24). If µ = iµ in (24), then we obtain

exp[iµ(x− 2bµ2t)] = cos[µ(x− 2bµ2t)] + i sin[µ(x− 2bµ2t)], (25)

and

exp[−iµ(x− 2bµ2t)] = cos[µ(x− 2bµ2t)]− i sin[µ(x− 2bµ2t)]. (26)

and (24) becomes:

u2(x, t) = a1
(1− b−1)cos[µ(x− 2bµ2t)] + i(1 + b−1)sin[µ(x− 2bµ2t)]
(1 + b−1)cos[µ(x− 2bµ2t)] + i(1− b−1)sin[µ(x− 2bµ2t)]

.

(27)
or

u2(x, t) = a1
(1− b−1) + i(1 + b−1)tan[µ(x− 2bµ2t)]
(1 + b−1) + i(1− b−1)tan[µ(x− 2bµ2t)]

. (28)

If we choose b−1 = 1 or b−1 = −1, then the complex Solution (28) re-
spectively gives:

u2,3(x, t) = a1i tan[µ(x− 2bµ2t)], u2,4(x, t) = a1i cot[µ(x− 2bµ2t)],

where a1 is an arbitrary constant.

Case II: p = c = 2 and q = d = 1.
For simplicity, we set b2 = 1, p = c = 2 and d = q = 1. Then (7) reduces
to

u(η) =
a2 exp(2η) + a1 exp(η) + a0 + a−1 exp(−η)
exp(2η) + b1 exp(η) + b0 + b−1 exp(−η)

. (29)

Substituting (29) into Eq. (10), and using the well-known Maple soft-
ware, we get

1
A

[
C6 exp(6η) + C5 exp(5η) + C4 exp(4η) + C3 exp(3η) + C2 exp(2η)

(30)
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C1 exp(η) + C0 + C−1 exp(−η) + C−2 exp(−2η) + C−3 exp(−3η)] = 0,

where

A =
[
b−1 exp(−η) + b0 + b1 exp(η) + exp(2η)

]3
, (31)

and Cn’ are coefficients of exp(nη)’. Equating the coefficients of exp(nη) to zero,
we obtain the following set of algebraic equations for a1, a0, a−1,b1, b0, b−1 and
c, as 




C6 = 0, C5 = 0, C4 = 0, C3 = 0, C2 = 0, C1 = 0,
C0 = 0,
C−3 = 0, C−2 = 0, C−1 = 0.

(32)

Solving the system of algebraic equations gives the following sets of non-
trivial solutions

(I) The first set is:

a−1 = −a2b−1, b−1 = b−1, a0 = 0 b0 = 0, a2 = a2, c = aa2
2, (33)

a1 = 0, b1 = 0, µ =

√
−2a

9b
a2,

which gives:

u1(x, t) =
−a2b−1 exp

[
−

√
− 2a

9ba2(x− aa2
2t)

]
+ a2 exp

[
2
√
− 2a

9ba2(x− aa2
2t)

]

b−1 exp
[
−

√
− 2a

9ba2(x− aa2
2t)

]
+ exp

[
2
√
− 2a

9ba2(x− aa2
2t)

] .

(34)
If we choose b−1 = 1 or b−1 = −1, then the solution (34) respectively

gives

u1,1(x, t) = a2 tanh
[√

−2a
9b a2(x− aa2

2t)
]
,

u1,2(x, t) = a2 coth
[√

−2a
9b a2(x− aa2

2t)
]
.

where a2 is an arbitrary constant.

(II) The second set is:

a−1 =
1
8

(a2
2b

2
1 − 4a2

2b0 − a2
1)(a2b1 − a1)

a2
2

, a0 = −1
2

a2
2b

2
1 − 2a2

2b0 − a2
1

a2
,

(35)
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b−1 = −1
8

(a2
2b

2
1 − 4a2

2b0 − a2
1)(a2b1 − a1)

a3
2

, b0 = b0, a2 = a2, c = aa2
2,

a1 = a1, b1 = b1, µ =
√
− a

2b
a2, η =

√
− a

2b
a2(x− aa2

2t),

which gives:

u2(x, t) =
1
8

(a2
2b

2
1−4a2

2b0−a2
1)(a2b1−a1)

a2
2

e(−η) − 1
2

a2
2b

2
1−2a2

2b0−a2
1

a2
+ a1e(η) + a2e(2η)

− 1
8

(a2
2b

2
1−4a2

2b0−a2
1)(a2b1−a1)

a3
2

e(−η) + b0 + b1e(η) + e(2η)
.

Case III: p = c = 2 and q = d = 2.
Since the values of c and d can be freely chosen, we set p = c = 2 and
d = q = 2 and then the trial function (7), becomes

u(η) =
a2 exp(2η) + a1 exp(η) + a0 + a−1 exp(−η) + a−2 exp(−2η)
b2 exp(2η) + b1 exp(η) + b0 + b−1 exp(−η) + b−2 exp(−2η)

. (36)

There are some free parameters in (36). We set b2 = 1 and b1 = b−1 = 0
for simplicity, the trial function, Eq. (36) is simplified as follows

u(η) =
a2 exp(2η) + a1 exp(η) + a0 + a−1 exp(−η) + a−2 exp(−2η)

exp(2η) + b0 + b−2 exp(−2η)
. (37)

Substituting (37), into Eq. (10), and using the well-known Maple soft-
ware, we will have

1
A

[C6 exp(6η) + C5 exp(5η) + C4 exp(4η) + C3 exp(3η) + C2 exp(2η)

(38)
+C1 exp(η) + C0 + C−1 exp(−η) + C−2 exp(−2η) + C−3 exp(−3η)+

C−4 exp(−4η) + C−5 exp(−5η) + C−6 exp(−6η)] = 0,

where

A =
[
b−1 exp(−η) + b0 + b1 exp(η) + exp(2η)

]3
, (39)

and Cn’ are coefficients of exp(nη)’. Equating the coefficients of exp(nη) to zero,
we obtain the following set of algebraic equations for a2, a−2, a1, a0, a−1, b0,b−2

and c, as




C6 = 0, C5 = 0, C4 = 0, C3 = 0, C2 = 0, C1 = 0.
C0 = 0,
C−6 = 0, C−5 = 0, C−4 = 0, C−3 = 0, C−2 = 0, C−1 = 0.

(40)
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Solving the system of algebraic equations we get

(I) The first set is:

a1 = a1, a−2 = 0, a−1 = −1
8

a1(aa2
1 − 8bµ2b0)
bµ2

, b0 = b0, a0 = 0, (41)

c = bµ2, b−2 = − 1
64

aa2
1(aa2

1 − 8bµ2b0)
b2µ4

, a2 = 0, µ = µ,

which gives:

u1(x, t) =
a−1e−A + a1eA

b−2e−2A + b0 + e2A
,

where A = µ(x− bµ2t), a0, b0, a1 and a2 are arbitrary constants.

(II) The second set is:

a1 = 0, a−2 = 0, a−1 = 0, b0 = 0, a0 = a0, a2 = 0, (42)

c = 4bµ2, b−2 =
1
32

aa2
0

bµ2
, µ = µ,

which gives:

u2(x, t) =
a0

1
32

aa2
0

bµ2 exp[−2µ(x− 4bµ2t)] + exp[2µ(x− 4bµ2t)]
. (43)

If we choose a0 = 4
√

2µ2b
a or a0 = 4

√
−2µ2b

a , then the solution (43) re-
spectively gives

u2,1(x, t) =
√

8bµ2

a sech
[
2µ(x− 4bµ2t)

]
,

u2,2(x, t) =
√

−8bµ2

a csch
[
2µ(x− 4bµ2t)

]
.

Obtained results in above are the exact solutions of the modified KdV
equation.
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4. The Generalized KdV Equation

We next apply the Exp-function method to the generalized KdV equa-
tion

ut + a(n + 1)unux + buxxx = 0, (44)

and by using the wave variable η = µ(x− ct) reduce it to an ODE [25].

−cµu′ + a(n + 1)µunu′ + bµ3u′′′ = 0, (45)

where by integrating (45) and neglecting the constant of integration we
obtain

−cu + aun+1 + bµ2u′′ = 0. (46)

For various values of n we introduce the transformation

u = v
1
n , (47)

that carries Eq. (46) to

−cn2v2 + an2v3 + bnµ2vv′′ + b(1− n)µ2(v′)2 = 0. (48)

In order to determine the values of c and p, we balance v3 with vv′′ in
Eq. (48), to get

vv′′ =
c1 exp((2c + 3p)η) + ...

c2 exp(5pη) + ...
, (49)

v3 =
c3 exp(3cη) + ...

c4 exp(3pη) + ...
=

c3 exp((3c + 2p)η) + ...

c4 exp(5pη) + ...
, (50)

respectively. Balancing highest order of the Exp–function in (49) and
(50), we obtain

c = p. (51)

Similarly, to determine the values of d and q, we balance v3 with vv′′ in
Eq. (48), we obtain

vv′′ =
... + d1 exp(−(2d + 3q)η)

... + d2 exp(−5qη)
, (52)
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v3 =
... + d3 exp(−3dη)
... + d4 exp(−3qη)

=
... + d3 exp(−(3d + 2q)η)

... + d4 exp(−5qη)
, (53)

respectively. Balancing lowest order of the Exp–function in (52) and
(53), we obtain

d = q. (54)

Case I: p = c = 1 and q = d = 1.
For simplicity, we set b1 = 1, p = c = 1 and d = q = 1. Then (7) reduces
to

v(η) =
a1 exp(η) + a0 + a−1 exp(−η)
b1 exp(η) + b0 + b−1 exp(−η)

. (55)

Substituting (55) into Eq. (48) and using the well-known Maple soft-
ware, we will have

1
A

[C4 exp(4η) + C3 exp(3η) + C2 exp(2η) + C1 exp(η) + C0 (56)

+C−1 exp(−η) + C−2 exp(−2η) + C−3 exp(−3η) + C−4 exp(−4η)] = 0

where

A = [b−1 exp(−η) + b0 + exp(η)]4, (57)

and Cn’ are coefficients of exp(nη)’. Equating the coefficients of exp(nη) to
zero, we obtain the following set of algebraic equations for a1, a0, a−1, b0,b−1

and c, as 



C4 = 0, C3 = 0, C2 = 0, C1 = 0,
C0 = 0,
C−4 = 0, C−3 = 0, C−2 = 0, C−1 = 0.

(58)

Solving the system of algebraic equations we get

(I) The first set is:

a−1 = 0 b0 = b0, b−1 =
1
4
b2

0, a0 =
bµ2b0(n + 2)

an2
, a1 = 0, c =

µ2b
n2

, µ = µ,

(59)
which gives:

v1(x, t) =
bµ2b0(n+2)

an2

1
4b2

0exp[−µ(x− µ2b
n2 t)] + b0 + exp[(µ(x− µ2b

n2 t)]
,
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u1(x, t) =

{
bµ2b0(n+2)

an2

1
4b2

0exp[−µ(x− µ2b
n2 t)] + b0 + exp[(µ(x− µ2b

n2 t)]

} 1
n

.(60)

If we choose b0 = 2 or b0 = −2, then the solution (60) respectively gives
(cf. Eqs. (38) and (37) in [25])

u1,1(x, t) =
{

bµ2(n + 2)
2an2

sech2

[
µ

2

(
x− µ2b

n2
t
)]} 1

n

,

u1,2(x, t) =
{
−bµ2(n + 2)

2an2
csch2

[
µ

2

(
x− µ2b

n2
t
)]} 1

n

.

If µ = iµ in (60) then we obtain

exp
[
iµ

(
x +

µ2b
n2

t
)]

= cos
[
µ

(
x +

µ2b
n2

t
)]

+ i sin
[
µ

(
x +

µ2b
n2

t
)]

, (61)

and

exp
[
−iµ

(
x +

µ2b
n2

t
)]

= cos
[
µ

(
x +

µ2b
n2

t
)]

− i sin
[
µ

(
x +

µ2b
n2

t
)]

. (62)

and (60) becomes

u1(x, t) =



−

4bµ2b0(n+2)

an2

(4 + b2
0)cos

[
µ

(
x + µ2b

n2 t
)]

+ 4b0 + i(4− b2
0)sin

[
µ

(
x + µ2b

n2 t
)]





1
n

.

(63)

It should be pointed out that the transformation µ = iµ was first used
by He and Wu in [16] to find periodic solutions or compact-like solutions
from the obtained solitary solutions. If we search for a periodic solution
or compact-like solution, the imaginary part in the denominator of (63)
must be zero, that requires that

b0 = ±2. (64)

by applying (64) then (63) reduces to a compact-like solution, which
reads

u1(x, t) =



∓

bµ2(n+2)
an2

cos
[
µ

(
x + µ2b

n2 t
)]
± 1





1
n

. (65)
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Also (65) is further simplified to obtain a periodic solution respectively
(cf. Eqs. (40) and (39) in [25])

u1,3(x, t) =
{
−bµ2(n + 2)

an2
sec2

[
µ

2

(
x +

µ2b
n2

t
)]} 1

n

, (66)

u1,4(x, t) =
{
−bµ2(n + 2)

an2
csc2

[
µ

2

(
x +

µ2b
n2

t
)]} 1

n

. (67)

Case II: p = c = 2 and q = d = 1.
For simplicity, we set b2 = 1, p = c = 2 and d = q = 1. Then (7) reduces
to

v(η) =
a2 exp(2η) + a1 exp(η) + a0 + a−1 exp(−η)
exp(2η) + b1 exp(η) + b0 + b−1 exp(−η)

. (68)

Substituting (68) into Eq. (48), we have

1
A

[
C8 exp(8η) + C7 exp(7η) + C6 exp(6η) + C5 exp(5η) + C4 exp(4η)+

(69)
C3 exp(3η) + C2 exp(2η) + C1 exp(η) + C0 + C−1 exp(−η)+

C−2 exp(−2η) + C−3 exp(−3η) + C−4 exp(−4η)] = 0,

where

A =
[
b−1 exp(−η) + b0 + b1 exp(η) + exp(2η)

]4
, (70)

and Cn’ are coefficients of exp(nη)’. Equating the coefficients of exp(nη) to zero,
we obtain the following set of algebraic equations for a1, a0, a−1,b1, b0, b−1 and
c, as





C8 = 0,C7 = 0,C6 = 0,C5 = 0,C4 = 0,C3 = 0,C2 = 0,C1 = 0,
C0 = 0,
C−4 = 0,C−3 = 0,C−2 = 0,C−1 = 0.

(71)

By the same manipulation as illustrated above, we get

(I) The first set is:

a−1 = 0, b−1 = b−1, a0 = a0, a1 =
4b2µ4b−1(n + 2)2

a2n4a0
, (72)
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c =
µ2b
n2

, µ = µ, a2 = 0,

b0 =
a3
0a

3n6 + 4b3µ6b2
−1n

3 + 24b3µ6b2
−1n

2 + 48b3µ6b2
−1n + 32b3µ6b2

−1

bµ2a2n4(n + 2)a2
0

,

b1 =
a3
0a

3n6 + 16b3µ6b2
−1n

3 + 96b3µ6b2
−1n

2 + 192b3µ6b2
−1n + 128b3µ6b2

−1

4b2µ4aa0n2(n + 2)2b−1
,

which gives:

v1(x, t) =
a0 + 4b2µ4b−1(n+2)2

a2n4a0
e

[
µ

(
x−µ2b

n2 t

)]

b−1e
[
−µ

(
x−µ2b

n2 t
)]

+ b0 + b1e
[
µ
(
x−µ2b

n2 t
)]

+ e
[
2µ

(
x−µ2b

n2 t
)] ,

u1(x, t) =





a0 + 4b2µ4b−1(n+2)2

a2n4a0
e

[
µ

(
x−µ2b

n2 t

)]

b−1e
[
−µ

(
x−µ2b

n2 t
)]

+ b0 + b1e
[
µ
(
x−µ2b

n2 t
)]

+ e
[
2µ

(
x−µ2b

n2 t
)]





1
n

.

Case III: p = c = 2 and q = d = 2.

Since the values of c and d can be freely chosen, we set p = c = 2 and
d = q = 2. Then the trial function, (7) becomes

v(η) =
a2 exp(2η) + a1 exp(η) + a0 + a−1 exp(−η) + a−2 exp(−2η)
b2 exp(2η) + b1 exp(η) + b0 + b−1 exp(−η) + b−2 exp(−2η)

.

(73)
There are some free parameters in (73), we set b2 = 1, b1 = b−1 = 0 for
simplicity, the trial function, (73) is simplified as follows

u(η) =
a2 exp(2η) + a1 exp(η) + a0 + a−1 exp(−η) + a−2 exp(−2η)

exp(2η) + b0 + b−2 exp(−2η)
.

(74)
Substituting (74) into Eq. (48), to get

1
A

[C8 exp(8η) + C7 exp(7η) + C6 exp(6η) + C5 exp(5η) + C4 exp(4η)+

(75)
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C3 exp(3η) + C2 exp(2η) + C1 exp(η) + C0 + C−1 exp(−η)+

C−2 exp(−2η) + C−3 exp(−3η) + C−4 exp(−4η) + C−5 exp(−5η)+

C−6 exp(−6η) + C−7 exp(−7η) + C−8 exp(−8η)] = 0,

where
A =

[
b−1 exp(−η) + b0 + b1 exp(η) + exp(2η)

]4
, (76)

and Cn’ are coefficients of exp(nη)’. Equating the coefficients of exp(nη) to zero,
we obtain the following set of algebraic equations for a2, a−2, a1, a0, a−1, b0,b−2

and c, as




C8 = 0,C7 = 0,C6 = 0,C5 = 0,C4 = 0,C3 = 0,C2 = 0,C1 = 0.
C0 = 0,
C−8 = 0,C−7 = 0,C−6 = 0,C−5 = 0,C−4 = 0,C−3 = 0,C−2 = 0,C−1 = 0.

(77)
By the same manipulation as illustrated above, we get

(I) The first set is:

a1 = 0, a−2 = 0, a−1 = 0, b0 = b0, a0 =
4b0µ

2b(n + 2)
an2

,

(78)

c =
4bµ2

n2
, b−2 =

1
4
b2

0, a2 = 0, µ = µ,

which gives:

v1(x, t) =
4b0µ2b(n+2)

an2

1
4b2

0exp
[
−2µ

(
x− 4µ2b

n2 t
)]

+ b0 + exp
[
2µ

(
x− 4µ2b

n2 t
)] ,

u1(x, t) =





4b0µ2b(n+2)
an2

1
4b2

0exp
[
−2µ

(
x− 4µ2b

n2 t
)]

+ b0 + exp
[
2µ

(
x− 4µ2b

n2 t
)]





1
n

.

(79)
If we choose b0 = 2 or b0 = −2 and then the solution (79) respectively
gives (cf. Eqs. (38) and (37) in [25])

u1,1(x, t) =
{

bµ2(n + 2)
2an2

sech2

[
µ

(
x− 4µ2b

n2
t
)]} 1

n

,
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u1,2(x, t) =
{
−bµ2(n + 2)

2an2
csch2

[
µ

(
x− 4µ2b

n2
t
)]} 1

n

.

As illustrated in the previous case, the obtained solitonary solutions
can be converted into periodic solutions or compact-like solutions if µ

is chosen as an imaginary number. Here, we only discuss the solution
given by (79). If µ = iµ, then it becomes

u1(x, t) =

{
−

4bµ2b0(n+2)
an2

(4 + b2
0)cos(B) + 4b0 + i(4− b2

0)sin(B)

} 1
n

. (80)

where B = 2µ
(
x + 4µ2b

n2 t
)
. Elimination of the imaginary part requires

that
b0 = ±2. (81)

We therefore, by applying (81) obtain from (80) the periodic solutions

u1(x, t) =



∓

bµ2(n+2)
an2

cos
[
2µ

(
x + 4µ2b

n2 t
)]
± 1





1
n

. (82)

and (82) is further simplified to obtain a periodic solution respectively
(cf. Eqs. (40) and (39) in [25])

u1,3(x, t) =
{
−bµ2(n + 2)

an2
sec2

[
µ

(
x +

4µ2b
n2

t
)]} 1

n

, (83)

u1,4(x, t) =
{
−bµ2(n + 2)

an2
csc2

[
µ

(
x +

4µ2b
n2

t
)]} 1

n

. (84)

Obtained results in above are the exact solutions of the generalized KdV
equation.

5.Conclusion

Based on the Exp-function method, some nonlinear evolution equations
are solved exactly. In this article we investigated the modified KdV
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equation and the generalized KdV equation. The Exp-function method
is a useful method for finding travelling wave solutions of nonlinear evo-
lution equations. This method has been successfully applied to obtain
some new generalized solitonary solutions to the modified KdV equation
and the generalized KdV equation. The Exp-function method is more
powerful in searching for exact solutions of NLPDEs. Comparing our
results and Wazwaz’s results [25] it can be seen that the results are the
same. Also, new results are formally developed in this article. It can be
concluded that the this method is a very powerful and efficient technique
in finding exact solutions for wide classes of problems.
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