Using a modified secant equation for unconstrained optimization
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Abstract

We make some efficient modifications on the modified secant equation proposed by Zhang
and Xu (2001). Then we introduce modified BFGS method using propose secant equation,
and obtain some attractive results in theory and practice. We establish the global con-
vergence property of the proposed method without convexity assumption on the objective
function. Numerical results on some testing problems from CUTEr collection show the pri-
ority of the proposed method to some existing modified secant methods in practice
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1 Introduction
Consider the unconstrained nonlinear optimization problem
min f(z), x€R", (1)

where f is twice continuously differentiable. Secant methods are popular iterative methods for
solving (1), with the iterates being constructed as follows:

Tpt1 = Tk + gy,

where «j is a step size and dj is a searchdirection obtained by solving Brdir = —gi, with
gr = Vf(zx) and By an approximation of the Hessian matrix of f at xj satisfying the secant
equation.

The standard secan equation can be established as follows (see [7]). We have

1
Gk+1 — gk = / V2 f (zk, + tsg)dtsg, (2)
0

where s = 241 — x}. Since By is to approximate G(z341) = V2f(241), the secant equation
is defined to be

Bi+18k = Yk, 3)



where yr = gr+1 — gr. The relation (3) is sometimes called the standard secant equation. (see
Dennise and Moré [6] for a comprehensive treatment of quasi-Newton methods particularly the
secant methods).

A family of secant methods is Broyden family [1] in which the updates are defined by
Bysist B yryi Yk Bisg
sgyk s{Bksk

Byi1 = By — + pwpwi,  wy, = (sF Brsp)

sF Bysi St Yk
where p is a scale parameter. The BFGS, DFP and SR1 updates are obtained by setting p = 0,
p=1and u=1/(1— s Bysy/s} By), respectively.

Among the secant methods, the most efficient quasi-Newton method is the BFGS method which
was proposed by Broyden [2], Fletcher [9], Goldfarb [14] and Shanno [21].

When f is convex, the global convergence of the BFGS method have been studied by some
authors (see [3, 4, 16, 20, 22]). Dai [5] have constructed an example to show that the standard
BFGS method may fail for non-convex functions with inexact line search. Mascarenhas [19]
showed that the nonconvergence of the standard BFGS method even with exact line search.
Li and Fukushima [17, 18] made a modification on the standard BFGS method and developed
a modified BFGS method that is globally convergent without a convexity assumption on the
objective function f.

The usual Secant equation employs only the gradients and the available function values are
ignored. In order to get a higher order accuracy of approximating the Hessian matrix of the
objective function, several researchers have modified the usual Secant equation (3) to make full
use of both the gradient and function values (see [23]-[26]).

Zhang and Xu [26] using Taylor’s Series modified (3) as follows:

Bi1sk = i, (5)

where 9
vl =k + w% Oy = 6(fx — frt1) + 3(gk + gr+1)” sk (6)

Using modified secant equation (5), they proposed the following BFGS update formula:

By.sist By, Z/;fnyT
siBesk  sTyls

Bjt1 =Bk — (7)

They showed that the modified BFGS method is localy and superlinearly converge with the
assumption f is uniformly convex function. However, if f is a general function may this method
nonconvergence.

This motivated us to modification on modified secant equation (5). Then, we make use of the
new secant equation in a BFGS update formula. Under some proper assumptions, we prove the
global convergence property for general functions.

The rest of our work is organized as follows: In Section 2, we introduce an alternative approx-
imation of the secant equation. In Section 3, we investigate the convergence of our proposed
method. In Section 4, we report the numerical results.



2 Modified secant equation

In this section, we first describe a modified secant equation in [26] that utilize both the available
gradient and function values. Moreover, this method has a better theoretical feature than the
usual secant equation and the secant equation introduced in [23].

Using the Taylor’s series for f(z), we have

fr = fes1 — Glarsk + 1Sk Gri15k — ;, b (Tes1se)sk + O(|] si |1, (8)
and
Sk Ok = S} gk+1 — St Gha15 + %Sz(TkHSk)Sk +O(|| sk 1), 9)
where
—~ & f( l“k:+1 P97 9
(Tk+15k SE = Z 8:6283318 A 0808705’ (10)

Cancelation of the terms which include the tensor yields
st Gryrsk = (ger1 — 9k) sk + 6(fr — frer) + 3(gk + grr1) " sn (11)
Then using a new approximation Bjy41, we have
sk Brr1sk = yi sk + (12)
where
Ok = 6(fr — frr1) + 3(gk + grr1)" sk (13)
This suggests the following new secant equation
By 1 = @/Zéa (14)

where 7 = yj + ﬁﬁsk and Vg = 6(fx — frr1) + 3(gx + grr1)" sk-
One theoretical advantages of the new modified secant method can be seen from the following
theorem [25].

Theorem 2.1. Suppose that the function f is sufficiently smooth. If ||sg|| is small enough,
then we have:

st (Grrisk — ) = O(| se '), (15)

and

st (Grs1se — ye) = O(|| sk [I°). (16)

Notice thatt if the objective function f is uniformly convex, then

vl sk =y s+ 6(fr — frer) + 3(gk + ger1) sk = 6(fr — frar) + 2(gx + 20511) s, > 0.



which guarantees the positive definite of the matrix By, for uniformly convex function. However,
if f is a general function, may happen yZ,éTsk < 0. Hence the positive definiteness of the matrix

Bj can not be guarantee for general function.

In addition, Theorem 2.1, demonstrate if ||sg|| > 1, the standard secant equation is expected to
be more accurate than the modified secant equation (14). In this case, the use of (14) does not
seem to be suitable.

To overcome these problems, we introduce some modification on (14) as follows:

Bit15k = yi, (17)

with
* — 2 gzsk
Y, :yk_'_fYH.ng Sk"i'maX(_Hskugvo)Sk (18)

where ¥, = yr + pk”sﬁﬁsk and « is a positive constant and

—lsell 7§ sk <1
e or Skl = 1,
= 1
Pk { 0, othervise. (19)

Clearly, if ||sg|| — O then pr — 1 and if ||sg|| > 1 then py = 0.
It is easy to see

i sk > pryllokl skl > 0, (20)
which guarantees that positive definite of the update matrix By, for the general function.

We can now give a new BFGS algorithm using our new secant relation for solving (1) as follows.

Algorithm 1: New modified BFGS method:
Step 1 : given ¢ as a tolerance for convergence, o1 € (0,1), o2 € (01, 1), a sarting point o € R,
and a positive definite matrix By. Set k = 0.

Step 2 : If ||gx|| < € then stop.
Step 3 : Compute a search direction di : Solve Brd = —gy.

Step 4: Compute oy by using the following Wolfe conditions:

f(xk =+ Ozkdk) < f(l'k) + alakg,zdk, (21)

and
g(zk + akdk)Tdk > O'lez;dk. (22)

Step 5 : Set xj41 = 2 + ogdy. Compute y; by (18) . Update By by

BisisiBr  yiyiT
Bjy1 = By, — . bk

T T, %
53, Bisy S Yy
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Step 6: Set kK =k + 1 and go to Step 2.

Next, we will investigate the global and superlinear convergence of the proposed Algorithm
without convexity assumption on the objective function f.

3 Convergence analysis

Here, we establish the convergence of Algorithm 1. We need the following usual assumptions.

Assumption A. The level set D = {z | f(x) < f(x0)} is bounded.
Assumption B. The function f is continuously differentiable on D, and there is a constant
L > 0 such that, for all z,y € D, || g(x) —g(y) |[< L ||z -y | .

Clearly, these assumptions imply that there exists a constant m > 0 such that
lg(@)]| < m, Va € D. (24)

From assumption A and the Wolfe conditions we deduce that {f(xx)} is a nonincreasing se-
quence, which ensures {z}} C D and the existence of 2* such that

lim f(z) = f(z). (25)

k—o0

In order to establish the global convergence of Algorithm 1, we present the following useful Lem-
mas.
Lemma 3.1. Suppose that Assumption B holds and y;, define by (14). Then, there exist have

lyzll < M| sl| (26)

where M is positive constant.
Proof: Considering Assumption B and definition of ¥, we have

|9k < 3L||sk]] (See the relations leading to (5.10) of [23]). (27)

Therefore, since p € [0, 1] we can give

_ Uy, ||
Gkl = llyr + pkw%\l < [lyrll + Toell = L|[skll + 3L||skl = 4L]|sk|l- (28)
Hence, from (24) and (28) we have
il < 207l +llgulllsell < 2L + ym?)l|si |- (29)

This equation imply the (26) with M = 2L 4 ym?

Lemma 3.2. Let f satisfy assumptions A and B, and {z}} be generated by Algorithm 1
and there exist constants a; and ag such that

| Brsk|l < a1llskl], st Brsi > az||sk®, (30)



for infinitely many k. Then, we have

liminf g(zx) = 0. (31)
k—ro0

Proof: Since s = aydy, it is clear that (30) holds true if sj is replaced by di. From (30) and
the relation gy = — Bydy, we have

di Brdy > az|dy |, agldi |l < llgll < axl|dgl]- (32)
Let A be the set of indices k for which (30) hold. By using (22) and Assumption B, we have
Loyl di|l* = (gr+1 — g) " di > —(1 — 02) g d. (33)

This implies that, for any k € A,

—(1 — Ug)ggdk (1 — Ug)dszdk (1 — UQ)CZQ

ag > = > . 34

7 PATE A PATE L (34
Moreover, by (25), we obtain

N

D (i = fin) = Jim > (fi = firr) = Jim f(@r) = f(an) = f(a1) = f(2),
k=1

k 1

which yields
oo
> (i = fr1) < oo
k=1

Using (21), we obtain

o
> argidy < oo,
k=1

which ensures
lim akggdk =0.
k—00

This together with (34) lead to

lim dlBpdp = lim —gld,=0.

ke k—o0 ke k—o0

which long with (32), yields (31). O

The following Lemma is taken from [3], we represent it here but omit the proof.

Lemma 3.3. (Theorem 2.1 of [3]) If there are positive constants M; and My such that for
all £ > 0,

|2

Hyk - < M; and 5 =
Skyk HSkH

STy*

> Mo, (35)



then there exist constants a; and ag such that, for any positive integer ¢, (30) holds for at least
[4] values of k € {1,2,...,t}.

Now, we prove the global convergence for Algorithm 1.

Theorem 3.1. Let f satisfy the assumptions A and B, and {x} be generated by Algorithm 1.
Then (31) holds.

Proof: Assume, to the contrary that the conclusion is not true. Then, there exists a positive
constant ¢ such that, for all k,

gkl > 6, (36)
Hence, (20) imply that
v sk > 8% |sk]?, (37)

Therefore, using Lemma 3.1 and (37), we obtain

* |2
”fj’zu* <M, Vk>0.
Sk Yk

Hence, (35) holds for all k. Using Lemma 3.3 to the subsequence {By}rek, clearly there exist
constants a; > 0 and ay > 0 such that (30) holds for infinitely many k. Then Lemma 3.2 com-
pltes the proof. [

The above theorem shows a global convergence property of MBFGS method without convexity
assumption on the objective function.

To establish the superlinear convergence of Algorithm 1, we need further the following assump-
tion.

Assumption C. Suppose xp — x* at which g(z*) = 0, G(z) is positive definite, and G(z) is
Holder continuous at z*, i.e., there exist constants v € (0,1) and Lo > 0 such that

1G(z) = G(")|| < Laflx — 2™[|"

for all  in the neighborhood of z*.

Similar to the proof of Theorem 3.8 in [18], it is not difficult to prove the superlinear con-
vergence of Algorithm 1. Hence, we only present the theorem without giving the proof.

Theorem 3.2. Suppose that assumptions A, B and C hold. Let the sequence {zj} be generated
by the Algorithm 1. Then {x} is superlinearly convergent.

4  Numerical results

We are to compare the performance of the following four methods on some unconstrained opti-
mization problems:

BFGS: the usual BFGS method.



MBFGS: proposed method (Algorithm 1).

ZXMBFGS: the modified BFGS of Zhang and Xu using (5) [26].

BFGSA(2): using the following Modified secant equation to update By which suggest by Wei
et.al in [23]

O
Bry1sk = Yk + 75 5k (38)
skl

where 0 = 2(fi — for1) + (96 + grs1)” sk

We have tested all the considered algorithms on 120 test problems from CUTEr library [15]. A
summary of these problems are given in Table 1. All codes were written in Matlab 2012 and
run on PC with CPU Intel(R) Core(TM) i5-4200 3.6 GHz, 4 GB of RAM memory and Centos

6.2 server Linux operation system.

In all algorithms, the initial matrix is By = I and the steplengths «j satisfyies the Wolfe
conditions, with o1 = 0.001, and o3 = 0.1.

For all the test problems, the termination condition is ||gx|| < 107°, or || frx1—fx|l < 10720 max(1, f).
We use the profiles of Dolan and Moré (see [8]) to evaluate performance of these four algorithms
with respect to number of iteration and the total number of function and gradient evaluations
being equal to Ny + nNy, where Ny and N, denote the number of function and gradient evalu-
ations respectively. Figs 1 and 2 demonstrate the results of the comparisons. From Figs. 1 and

2, it is easy to observe that the MBFGS method is the most efficient for solving these 120 test
problems among the four methods. We see that MBFGS method solves about 75% and 74% of
the test problems with the fewest number of iterations and function evaluations, respectively.



Table 1: Test problems taken from CUTEr library.

No | test function dim | No | test function dim No | test function dim
1 AIRCRFTB 10 41 | GULF 3 81 | ARWHEAD 500
2 ALLINITU 20 42 | HATFLDD d3 82 | BOX 100
3 ARGLINA 200 | 43 | HEARTSLS d10 83 | BRKMCC 2

4 BARD 100 | 44 | HELIX 3 84 | BROYDN7D 1000
5 BIGGS3B 100 | 45 | HILBERTA 2 85 | CHAINWOO 3000
6 BIGGS5 100 | 46 | HILBERTB 10 86 | COSINE 1000
7 BIGGS6 100 | 47 | HILBERTF 5 87 | CUBE 2

8 BOX2 100 | 48 | HILBERTG 2 88 | CURLY10 3000
9 BOX3 200 | 49 | HILBERTH 2 89 | CURLY20 3000
10 | BROWNAL 200 | 50 | JENSMP 2 90 | CURLY30 3000
11 | BROWNBS 200 | 51 | KOWOSB 5 91 | DENSCHNE 3

12 | BRYBND 5000 | 52 | LIARWHD 3000 | 92 | DENSCHNF 2

13 | CHNROSNB 50 53 | LMINSURF 3000 | 93 | EDENSCH 50
14 | DECONVU 60 54 | test LMINSURY 2 94 | EG2 1000
15 | DENSCHNA 10 55 | MANCINO 100 95 | ENGVALIL 100
16 | DENSCHNB 10 56 | MOREBV 3000 | 96 | FLETCBV2 3000
17 | DENSCHNC 10 57 | NLMSURF 3000 | 97 | FLETCHCR 1000
18 | DIXMAANA 2000 | 58 | NONDIA d3000 | 98 | FMINSURF 961
19 | DIXMAANB 2000 | 59 | NONDQUAR 3000 | 99 | GENHUMPS 3000
20 | DIXMAANC 2000 | 60 | OSBORNEB 10 100 | GENROSE 500
21 | DIXMAAND 2000 | 61 | PALMER5C 6 101 | HAIRY 2

2 DIXMAANE 2000 | 62 | POWELLSG 1000 | 102 | HATFLDFL 3

3 DIXMAANF 2000 | 63 | QUARTC 3000 | 103 | HUMPS 2

4 DIXMAANG 2000 | 64 | ROSENBR 2 104 | JIMACK 3000
5 DIXMAANH 2000 | 65 | S308 d2 105 | MARATOSB 2

6 DIXMAANI 2000 | 66 | SCHMVETT 3 106 | MSQRTALS 500
7 DIXMAANJ 2000 | 67 | SCHMVETT 2 107 | MSQRTBLS 500
8 DIXMAANK 20 68 | SNAIL 2 108 | NCB20 120
29 | DIXMAANL 2000 | 69 | SPARSQUR 3000 | 109 | NCB20B 20
30 | DIXON3DQ 3000 | 70 | SPMSRTLS 2000 | 110 | NONCVXU2 1000
31 | DQDRTIC 3000 | 71 | SROSENBR 2000 | 111 | PENALTY1 50
32 | DQRTIC 20 72 | TESTQUAD 2000 | 112 | PENALTY2 50
33 | EIGENALS 200 | 73 | TOINTTGSS 3000 | 113 | PENALTY3 100
34 | EIGENBLS 1000 | 74 | TQUARTIC 3000 | 114 | POWER dim
35 | EIGENCLS 500 | 75 | TRIDIA dim 115 | SINEVAL 2

36 | ENGVAL2 6 76 | VAREIGVL 50 116 | SINQUAD 5

37 | EXPFIT 16 77 | WATSON 10 117 | SPARSINE 3000
38 | EXTROSNB 1000 | 78 | WOODS 3000 | 118 | TOINTQOR 50
39 | FMINSREF2 3000 | 79 | YFITU 5 119 | VARDIM 10
40 | GROWTHLS 10 80 | ZANGWIL2 2 120 | VIBRBEAM 10
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Figure 1: The Dolan-Moré performance profiles using number of function evoluations.
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Figure 2: The Dolan-Moré performance profiles using number of iterations.

5 Conclusion

We introduced a modified BFGS (MBFGS) method using a new secant equation. An interesting feature
of the proposed method is to take both the gradient and function values into account. Under suitable
assumptions, we established the global convergence of the proposed method for the general functions.
Numerical results on the collection of problems in CUTER show that the proposed method is efficient as
compared to several proposed BFGS methods.
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