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Abstract

We make some efficient modifications on the modified secant equation proposed by Zhang
and Xu (2001). Then we introduce modified BFGS method using propose secant equation,
and obtain some attractive results in theory and practice. We establish the global con-
vergence property of the proposed method without convexity assumption on the objective
function. Numerical results on some testing problems from CUTEr collection show the pri-
ority of the proposed method to some existing modified secant methods in practice
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1 Introduction

Consider the unconstrained nonlinear optimization problem

min f(x), x ∈ Rn, (1)

where f is twice continuously differentiable. Secant methods are popular iterative methods for
solving (1), with the iterates being constructed as follows:

xk+1 = xk + αkdk,

where αk is a step size and dk is a searchdirection obtained by solving Bkdk = −gk, with
gk = ▽f(xk) and Bk an approximation of the Hessian matrix of f at xk satisfying the secant
equation.
The standard secan equation can be established as follows (see [7]). We have

gk+1 − gk =

∫ 1

0
▽2f(xk + tsk)dtsk, (2)

where sk = xk+1−xk. Since Bk+1 is to approximate G(xk+1) = ∇2f(xk+1), the secant equation
is defined to be

Bk+1sk = yk, (3)
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where yk = gk+1 − gk. The relation (3) is sometimes called the standard secant equation. (see
Dennise and Moré [6] for a comprehensive treatment of quasi-Newton methods particularly the
secant methods).
A family of secant methods is Broyden family [1] in which the updates are defined by

Bk+1 = Bk −
Bksks

T
kBk

sTkBksk
+

yky
T
k

sTk yk
+ µwk.w

T
k , wk = (sTkBksk)

1/2[
yk

sTk yk
− Bksk

sTkBksk
] (4)

where µ is a scale parameter. The BFGS, DFP and SR1 updates are obtained by setting µ = 0,
µ = 1 and µ = 1/(1− sTkBksk/s

T
kBk), respectively.

Among the secant methods, the most efficient quasi-Newton method is the BFGS method which
was proposed by Broyden [2], Fletcher [9], Goldfarb [14] and Shanno [21].

When f is convex, the global convergence of the BFGS method have been studied by some
authors (see [3, 4, 16, 20, 22]). Dai [5] have constructed an example to show that the standard
BFGS method may fail for non-convex functions with inexact line search. Mascarenhas [19]
showed that the nonconvergence of the standard BFGS method even with exact line search.
Li and Fukushima [17, 18] made a modification on the standard BFGS method and developed
a modified BFGS method that is globally convergent without a convexity assumption on the
objective function f .

The usual Secant equation employs only the gradients and the available function values are
ignored. In order to get a higher order accuracy of approximating the Hessian matrix of the
objective function, several researchers have modified the usual Secant equation (3) to make full
use of both the gradient and function values (see [23]-[26]).
Zhang and Xu [26] using Taylor’s Series modified (3) as follows:

Bk+1sk = y ̸=k , (5)

where

y ̸=k = yk +
ϑk

∥sk∥2
sk, ϑk = 6(fk − fk+1) + 3(gk + gk+1)

T sk. (6)

Using modified secant equation (5), they proposed the following BFGS update formula:

Bk+1 = Bk −
Bksks

T
kBk

sTkBksk
+

y ̸=k y
̸=
k
T

sTk y
̸=
k k

. (7)

They showed that the modified BFGS method is localy and superlinearly converge with the
assumption f is uniformly convex function. However, if f is a general function may this method
nonconvergence.
This motivated us to modification on modified secant equation (5). Then, we make use of the
new secant equation in a BFGS update formula. Under some proper assumptions, we prove the
global convergence property for general functions.
The rest of our work is organized as follows: In Section 2, we introduce an alternative approx-
imation of the secant equation. In Section 3, we investigate the convergence of our proposed
method. In Section 4, we report the numerical results.
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2 Modified secant equation

In this section, we first describe a modified secant equation in [26] that utilize both the available
gradient and function values. Moreover, this method has a better theoretical feature than the
usual secant equation and the secant equation introduced in [23].
Using the Taylor’s series for f(x), we have

fk = fk+1 − gTk+1sk +
1

2
sTkGk+1sk −

1

3!
sTk (Tk+1sk)sk +O(∥ sk ∥4), (8)

and

sTk gk = sTk gk+1 − sTkGk+1sk +
1

2
sTk (Tk+1sk)sk +O(∥ sk ∥4), (9)

where

sTk (Tk+1sk)sk =

n∑
i,j,l=1

∂3f(xk+1)

∂xi∂xj∂xl
∂si∂sj∂sl. (10)

Cancelation of the terms which include the tensor yields

sTkGk+1sk ≃ (gk+1 − gk)
T sk + 6(fk − fk+1) + 3(gk + gk+1)

T sk (11)

Then using a new approximation Bk+1, we have

sTkBk+1sk = yTk sk + ϑk (12)

where

ϑk = 6(fk − fk+1) + 3(gk + gk+1)
T sk (13)

This suggests the following new secant equation

Bk+1sk = y ̸=k , (14)

where y ̸=k = yk +
ϑk

∥sk∥2
sk and ϑk = 6(fk − fk+1) + 3(gk + gk+1)

T sk.

One theoretical advantages of the new modified secant method can be seen from the following
theorem [25].

Theorem 2.1. Suppose that the function f is sufficiently smooth. If ∥sk∥ is small enough,
then we have:

sTk (Gk+1sk − y ̸=k ) = O(∥ sk ∥4), (15)

and

sTk (Gk+1sk − yk) = O(∥ sk ∥3). (16)

Notice thatt if the objective function f is uniformly convex, then

y ̸=k
T sk = yTk sk + 6(fk − fk+1) + 3(gk + gk+1)

T sk = 6(fk − fk+1) + 2(gk + 2gk+1)
T sk > 0.
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which guarantees the positive definite of the matrix Bk for uniformly convex function. However,
if f is a general function, may happen y ̸=k

T sk ≤ 0. Hence the positive definiteness of the matrix
Bk can not be guarantee for general function.

In addition, Theorem 2.1, demonstrate if ∥sk∥ > 1, the standard secant equation is expected to
be more accurate than the modified secant equation (14). In this case, the use of (14) does not
seem to be suitable.
To overcome these problems, we introduce some modification on (14) as follows:

Bk+1sk = y∗k, (17)

with

y∗k = yk + γ∥gk∥2sk +max(−
yTk sk
∥sk∥2

, 0)sk (18)

where yk = yk + ρk
ϑk

∥sk∥2
sk and γ is a positive constant and

ρk =

{
e−∥sk∥ for ∥sk∥ ≤ 1,
0, othervise.

(19)

Clearly, if ∥sk∥ −→ 0 then ρk −→ 1 and if ∥sk∥ > 1 then ρk = 0.

It is easy to see

y∗k
T sk ≥ ρkγ∥gk∥2∥sk∥2 > 0, (20)

which guarantees that positive definite of the update matrix Bk, for the general function.

We can now give a new BFGS algorithm using our new secant relation for solving (1) as follows.

Algorithm 1: New modified BFGS method:
Step 1 : given ε as a tolerance for convergence, σ1 ∈ (0, 1), σ2 ∈ (σ1, 1), a sarting point x0 ∈ Rn,
and a positive definite matrix B0. Set k = 0.

Step 2 : If ∥gk∥ < ε then stop.

Step 3 : Compute a search direction dk : Solve Bkdk = −gk.

Step 4: Compute αk by using the following Wolfe conditions:

f(xk + αkdk) ≤ f(xk) + σ1αkg
T
k dk, (21)

and
g(xk + αkdk)

Tdk ≥ σ2g
T
k dk. (22)

Step 5 : Set xk+1 = xk + αkdk. Compute y∗k by (18) . Update Bk+1 by

Bk+1 = Bk −
Bksks

T
kBk

sTkBksk
+

y∗ky
∗
k
T

sTk y
∗
k

. (23)
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Step 6: Set k = k + 1 and go to Step 2.

Next, we will investigate the global and superlinear convergence of the proposed Algorithm
without convexity assumption on the objective function f .
.

3 Convergence analysis

Here, we establish the convergence of Algorithm 1. We need the following usual assumptions.

Assumption A. The level set D = {x | f(x) ≤ f(x0)} is bounded.
Assumption B. The function f is continuously differentiable on D, and there is a constant
L ≥ 0 such that, for all x, y ∈ D, ∥ g(x)− g(y) ∥≤ L ∥ x− y ∥ .

Clearly, these assumptions imply that there exists a constant m > 0 such that

∥g(x)∥ ≤ m, ∀x ∈ D. (24)

From assumption A and the Wolfe conditions we deduce that {f(xk)} is a nonincreasing se-
quence, which ensures {xk} ⊂ D and the existence of x∗ such that

lim
k→∞

f(xk) = f(x∗). (25)

In order to establish the global convergence of Algorithm 1, we present the following useful Lem-
mas.
Lemma 3.1. Suppose that Assumption B holds and y∗k define by (14). Then, there exist have

∥y∗k∥ ≤ M∥sk∥ (26)

where M is positive constant.
Proof: Considering Assumption B and definition of ϑk, we have

|ϑk| ≤ 3L∥sk∥ (See the relations leading to (5.10) of [23]). (27)

Therefore, since ρk ∈ [0, 1] we can give

∥yk∥ = ∥yk + ρk
ϑk

∥sk∥2
sk∥ ≤ ∥yk∥+

|ϑk|
∥sk∥

≤ L∥sk∥+ 3L∥sk∥ = 4L∥sk∥. (28)

Hence, from (24) and (28) we have

∥y∗k∥ ≤ 2∥yk∥+ γ∥gk∥2∥sk∥ ≤ (2L+ γm2)∥sk∥. (29)

This equation imply the (26) with M = 2L+ γm2

Lemma 3.2. Let f satisfy assumptions A and B, and {xk} be generated by Algorithm 1
and there exist constants a1 and a2 such that

∥Bksk∥ ≤ a1∥sk∥, sTkBksk ≥ a2∥sk∥2, (30)
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for infinitely many k. Then, we have

lim inf
k→∞

g(xk) = 0. (31)

Proof: Since sk = αkdk, it is clear that (30) holds true if sk is replaced by dk. From (30) and
the relation gk = −Bkdk, we have

dTkBkdk ≥ a2∥dk∥2, a2∥dk∥ ≤ ∥gk∥ ≤ a1∥dk∥. (32)

Let Λ be the set of indices k for which (30) hold. By using (22) and Assumption B, we have

Lαk∥dk∥2 ≥ (gk+1 − gk)
Tdk ≥ −(1− σ2)g

T
k dk. (33)

This implies that, for any k ∈ Λ,

αk ≥
−(1− σ2)g

T
k dk

L∥dk∥2
=

(1− σ2)d
T
kBkdk

L∥dk∥2
≥ (1− σ2)a2

L
. (34)

Moreover, by (25), we obtain

∞∑
k=1

(fk − fk+1) = lim
N→∞

N∑
k=1

(fk − fk+1) = lim
N→∞

f(x1)− f(xN )) = f(x1)− f(x∗),

which yields
∞∑
k=1

(fk − fk+1) < ∞.

Using (21), we obtain
∞∑
k=1

αkg
T
k dk < ∞,

which ensures
lim
k→∞

αkg
T
k dk = 0.

This together with (34) lead to

lim
k∈Λ,k→∞

dTkBkdk = lim
k∈Λ,k→∞

−gTk dk = 0.

which long with (32), yields (31). �

The following Lemma is taken from [3], we represent it here but omit the proof.

Lemma 3.3. (Theorem 2.1 of [3]) If there are positive constants M1 and M2 such that for
all k ≥ 0,

∥y∗k∥2

sTk y
∗
k

≤ M1 and
sTk y

∗
k

∥sk∥2
≥ M2, (35)
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then there exist constants a1 and a2 such that, for any positive integer t, (30) holds for at least
[ t2 ] values of k ∈ {1, 2, ..., t}.

Now, we prove the global convergence for Algorithm 1.

Theorem 3.1. Let f satisfy the assumptions A and B, and {xk} be generated by Algorithm 1.
Then (31) holds.
Proof: Assume, to the contrary that the conclusion is not true. Then, there exists a positive
constant δ such that, for all k,

∥gk∥ > δ, (36)

Hence, (20) imply that

y∗k
T sk ≥ δ2∥sk∥2, (37)

Therefore, using Lemma 3.1 and (37), we obtain

∥y∗k∥2

s∗k
T y∗k

≤ M, ∀k ≥ 0.

Hence, (35) holds for all k. Using Lemma 3.3 to the subsequence {Bk}k∈K, clearly there exist
constants a1 > 0 and a2 > 0 such that (30) holds for infinitely many k. Then Lemma 3.2 com-
pltes the proof. �
The above theorem shows a global convergence property of MBFGS method without convexity
assumption on the objective function.
To establish the superlinear convergence of Algorithm 1, we need further the following assump-
tion.

Assumption C. Suppose xk → x∗ at which g(x∗) = 0, G(x) is positive definite, and G(x) is
Holder continuous at x∗, i.e., there exist constants v ∈ (0, 1) and L2 > 0 such that

∥G(x)−G(x∗)∥ ≤ L2∥x− x∗∥v

for all x in the neighborhood of x∗.

Similar to the proof of Theorem 3.8 in [18], it is not difficult to prove the superlinear con-
vergence of Algorithm 1. Hence, we only present the theorem without giving the proof.

Theorem 3.2. Suppose that assumptions A, B and C hold. Let the sequence {xk} be generated
by the Algorithm 1. Then {xk} is superlinearly convergent.

4 Numerical results

We are to compare the performance of the following four methods on some unconstrained opti-
mization problems:

BFGS: the usual BFGS method.
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MBFGS: proposed method (Algorithm 1).
ZXMBFGS: the modified BFGS of Zhang and Xu using (5) [26].
BFGSAk(2): using the following Modified secant equation to update Bk which suggest by Wei
et.al in [23]

Bk+1sk = yk +
θk

∥sk∥2
sk (38)

where θk = 2(fk − fk+1) + (gk + gk+1)
T sk.

We have tested all the considered algorithms on 120 test problems from CUTEr library [15]. A
summary of these problems are given in Table 1. All codes were written in Matlab 2012 and
run on PC with CPU Intel(R) Core(TM) i5-4200 3.6 GHz, 4 GB of RAM memory and Centos
6.2 server Linux operation system.

In all algorithms, the initial matrix is B0 = I and the steplengths αk satisfyies the Wolfe
conditions, with σ1 = 0.001, and σ2 = 0.1.
For all the test problems, the termination condition is ∥gk∥ ≤ 10−5, or ∥fk+1−fk∥ ≤ 10−20max(1, fk).
We use the profiles of Dolan and Moré (see [8]) to evaluate performance of these four algorithms
with respect to number of iteration and the total number of function and gradient evaluations
being equal to Nf + nNg, where Nf and Ng denote the number of function and gradient evalu-
ations respectively. Figs 1 and 2 demonstrate the results of the comparisons. From Figs. 1 and
2, it is easy to observe that the MBFGS method is the most efficient for solving these 120 test
problems among the four methods. We see that MBFGS method solves about 75% and 74% of
the test problems with the fewest number of iterations and function evaluations, respectively.
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Table 1: Test problems taken from CUTEr library.

No test function dim No test function dim No test function dim

1 AIRCRFTB 10 41 GULF 3 81 ARWHEAD 500
2 ALLINITU 20 42 HATFLDD d3 82 BOX 100
3 ARGLINA 200 43 HEART8LS d10 83 BRKMCC 2
4 BARD 100 44 HELIX 3 84 BROYDN7D 1000
5 BIGGS3B 100 45 HILBERTA 2 85 CHAINWOO 3000
6 BIGGS5 100 46 HILBERTB 10 86 COSINE 1000
7 BIGGS6 100 47 HILBERTF 5 87 CUBE 2
8 BOX2 100 48 HILBERTG 2 88 CURLY10 3000
9 BOX3 200 49 HILBERTH 2 89 CURLY20 3000
10 BROWNAL 200 50 JENSMP 2 90 CURLY30 3000
11 BROWNBS 200 51 KOWOSB 5 91 DENSCHNE 3
12 BRYBND 5000 52 LIARWHD 3000 92 DENSCHNF 2
13 CHNROSNB 50 53 LMINSURF 3000 93 EDENSCH 50
14 DECONVU 60 54 test LMINSURY 2 94 EG2 1000
15 DENSCHNA 10 55 MANCINO 100 95 ENGVAL1 100
16 DENSCHNB 10 56 MOREBV 3000 96 FLETCBV2 3000
17 DENSCHNC 10 57 NLMSURF 3000 97 FLETCHCR 1000
18 DIXMAANA 2000 58 NONDIA d3000 98 FMINSURF 961
19 DIXMAANB 2000 59 NONDQUAR 3000 99 GENHUMPS 3000
20 DIXMAANC 2000 60 OSBORNEB 10 100 GENROSE 500
21 DIXMAAND 2000 61 PALMER5C 6 101 HAIRY 2
2 DIXMAANE 2000 62 POWELLSG 1000 102 HATFLDFL 3
3 DIXMAANF 2000 63 QUARTC 3000 103 HUMPS 2
4 DIXMAANG 2000 64 ROSENBR 2 104 JIMACK 3000
5 DIXMAANH 2000 65 S308 d2 105 MARATOSB 2
6 DIXMAANI 2000 66 SCHMVETT 3 106 MSQRTALS 500
7 DIXMAANJ 2000 67 SCHMVETT 2 107 MSQRTBLS 500
8 DIXMAANK 20 68 SNAIL 2 108 NCB20 120
29 DIXMAANL 2000 69 SPARSQUR 3000 109 NCB20B 20
30 DIXON3DQ 3000 70 SPMSRTLS 2000 110 NONCVXU2 1000
31 DQDRTIC 3000 71 SROSENBR 2000 111 PENALTY1 50
32 DQRTIC 20 72 TESTQUAD 2000 112 PENALTY2 50
33 EIGENALS 200 73 TOINTTGSS 3000 113 PENALTY3 100
34 EIGENBLS 1000 74 TQUARTIC 3000 114 POWER dim
35 EIGENCLS 500 75 TRIDIA dim 115 SINEVAL 2
36 ENGVAL2 6 76 VAREIGVL 50 116 SINQUAD 5
37 EXPFIT 16 77 WATSON 10 117 SPARSINE 3000
38 EXTROSNB 1000 78 WOODS 3000 118 TOINTQOR 50
39 FMINSRF2 3000 79 YFITU 5 119 VARDIM 10
40 GROWTHLS 10 80 ZANGWIL2 2 120 VIBRBEAM 10

9



Figure 1: The Dolan-Moré performance profiles using number of function evoluations.

Figure 2: The Dolan-Moré performance profiles using number of iterations.

5 Conclusion

We introduced a modified BFGS (MBFGS) method using a new secant equation. An interesting feature
of the proposed method is to take both the gradient and function values into account. Under suitable
assumptions, we established the global convergence of the proposed method for the general functions.
Numerical results on the collection of problems in CUTER show that the proposed method is efficient as
compared to several proposed BFGS methods.
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