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Abstract. In this paper, by using of C*-algebra we give a metric with
range in positive unit ball of a C*-algebra. Indeed this is a generalization
of a fuzzy metric space. Some definitions of compatible mappings of
types (I) and (II) are introduced and some fixed and common fixed
point theorems are proved.
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1. Introduction

The concept of fuzzy sets was introduced initially by Zadeh [34] in 1965.
Since then, to use this concept in topology and analysis, many authors
have expansively developed the theory of fuzzy sets and applications.
Deng (8], Ereeg [9], Fang [10], George [11], Kaleva and Seikkala [18],
Kramosil and Michalek [19] have introduced the concept of fuzzy metric
spaces in different ways.
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In fuzzy metric spaces given by Kramosil and Michalek [19], Grabiec
[12] obtained the fuzzy version of Banach contraction principle, which
has been improved and extended by some authors.

Sessa ([28]) defined a generalization of commutativity introduced by
Jungck ([16]), which is called the weak commutativity. Further, Jungck
([17]) introduced more generalized commutativity, so called compatibil-
ity. Mishra et al. [21] obtained some common fixed point theorems for
compatible mappings in fuzzy metric spaces. Pathak et al. [23] intro-
duced the concept of compatible mappings of type (I) and (I7) in metric
spaces.

Many authors ([13,20,27,26,29]) have also proved some fixed point the-
orems in fuzzy (probabilistic) metric spaces (see [1-6,10,12,14,15,30]).
Now we give basic definitions and their properties as follows:

Recall that, a complex algebra is a vector space A over the field C with
one multiplication from A x A into A that satisfies the following relations;

L. z(yz) = (zy),
2. 2(y+z2)=zy+xz, (v+y)z=zz+yz,
3. a(ry) = (ax)y = z(ay),

for all x,y,z in A and « in C.
If A is a Banach space with respect to ||.|| that satisfies multiplicative
inequality

eyl < [l Iyl (€ Ay e A)

and A contains unit element e such that
re=exr=ux (x € A)

and ||e|| = 1, then A is called a Banach algebra.
The map = — ™ from complex algebra A into itself is called an involu-
tion if for all x and A in C we have,

L (e+y) =2 +y°

2. (A\r)* = Az*
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*

3. (zy)" =y

Every Banach algebra with an involution x — z* with the following
relation is called a C*-algebra,

lea*|| = [l[[*  (z € A).

From now on, A is a C*-algebra. For every x € A, we define the spectrum
of z, is o(x), as follows,

o(x) ={A e C:Xe—=x isnot invertible in A}.

In [28], it has been that for all x € A, where A is a Banach algebra, o(z)
is non-empty and compact.

We say that « € A is positive (in symbol z = 0 ) if x = z* and o(x)
[0,00) and similarly z is strictly positive (z = 0) if x = z* and o(x)
(0,00). Positive unit ball of A is denoted by B} i.e

-
-

Bl ={ze€A:2>=0,|z|] <1}U{e}.

Let AT be the set of all positive elements of A.

Now we introduce two binary relation on A™ as, a = b and a = b, which
means that, a — b > 0 and a — b > O,respectively. These two binary
relations have some good properties that we are going to summarize
some of it:

1. ifa,band c € AT and a = b then a4+ c > b+,
2. if a = b then ta = tb for all non-negative real number,
3. a>0biff —b > —a.
Theorem 1.1. Let A be a C*- algebra
1. Ifa>=0and b= 0 then a+b > 0.

2. AT ={a*a| ae€ A}
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3. If a,b € A* and c € A, then b = a implies c*bc = c*ac.
4. If b= a = 0, then ||b]| > ||a]].

5. Ifa,b e A* and a,b are invertible elements, then b = a implies
al=b"! = 0.

6. If r > s, for all v,s € RT, then re = se.

7. If a,b € AT, then a = b and b = a, implies a = b.

Proof. See [21]. O

Definition 1.2. A binary operation e : Bj; XBX — BZ 18 a continuous
t -norm if it satisfies the following conditions:

1. e is associative and commutative,
2. e is conlinuous,

3. aoe:aforallaeBX,

BN

.aeb =< ced whenever a =X c and b < d for alla,b,c,deB:{,

v

- |laedlle = llalle o [[b]le.

Example 1.3. o : Bl x B} — B with e(a,b) = ab, where ab is the
product of C* -algebra A, is a continuous ¢- norm.

Definition 1.4. The pair (M, F) with F : X — BY is called a C*-
graded set on X. Every F(x) in BZ is celled graded membership of x in
BY.

Definition 1.5. A triple (X, M,e) is called a C*-graded metric space
if X is a non-empty arbitrary set, ® is a continuous t-norm and M is a
C*-graded set on X% x (0,00) satisfying the following conditions for all
x,Yy,z2 € X,u € BX and t,s = 0.

1. M(z,y,.): (0,00) — B} is continuous,
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2. M(x,y,t) =0,
3. M(x,y,t)=eifz =1y,
4' M(a’:? y’ t) = M(y’ x? t)7
5 M(x,y,t) e M(y,z,s) = M(x,z,t+s).
Definition 1.6. Let (X, M, o) be a C*-graded metric space. For any

t >0 and x € X we define the open ball B(x,r,t) with center x and
radius 0 < r < 1 is defined by,

B(z,r,t)={ye X : M(x,y,t) = (1 —r)e}.

Definition 1.7. Let (X, M, o) be a C*-graded metric space and A C X.

1. A sequence {x,} in X converges to x if and only if M (z,,x,t) — e
asn — oo for allt > 0.

2. Sequence {xyp} in X is called a Cauchy sequence if for each 0 < € <
1 and t > 0, there exists ng € N such that M (zy, Tm,t) = (1 —¢)e,
for any n,m = ng.

3. The C*-graded metric space (X, M,x) is said to be complete if
every Cauchy sequence is convergent.

4. Let T be the set of all A C X with x € A if and only if there exist
t>0and0<r <1 such that B(x,r,t) C A. Then T is a topology
on X (induced by the C*-graded metric M ).

Example 1.8. Let a® b = ab (ordinary product in A). For any ¢ €
(0, 00), define

t

M t)=(———

e, (z,y€X)

then (M, X, e) is a C*-graded metric space.
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Lemma 1.9. Let (X, M, e) be a C*-graded metric space then M (x,y,t)
18 non-decreasing with respect to t for all x,y in X.

Proof. If t; < to, then ty = t; + ¢, for some ¢ > 0. By using (5)
from Definition 1.5., if y = z, s = t; and t = ¢ we have M(x,z,c) o
M(z,z,t1) = M(x,z,t1 + ¢) then from (3) of Definition 1.5., and (3) of
Definition 1.2., we have

M(xwzvtl) = M(%,Z,tl +‘€) = M(ﬁ,z,tg)

for all z,y in X. Note that M (z, z,t1) < M(z, z, t2) means that M (x, z,t9)—
M (z,z,t1) is a positive element with norm less than one of C*-algebra
A or

M(z,z,t2) — M(x,2,t1) € BY. O

Definition 1.10. Let (X, M, o) be a C*-graded metric space. M is said
to be continuous on X2 x (0,00) if

limnM(xna Yn, tn) = M(CC, Y, t)
whenever a sequence {(Tpn, Yn,tn)}n in X2 x (0,00), evists such that
limp M (zp, x,t) = lim, M (yn,y,t) = e,

limp M (x,y,t,) = M(z,y,t).

Remark 1.11. Note that B} is a closed subset of A. Let {b,}, be a
sequence in B;{ such that converges to b € A, we show that b € BZ.
Since b, — b and ||by|| < 1 for every n, and norm is a continuous
function then ||b|| < 1. Moreover o(by,) C [0,00), for all n. If we prove
that o(b) C [0,00), proof will be completed. Note that o(bp) = bn(A)
where A is a compact and Hausdorff space, HZnHOO = ]/l;n(h)| < ||bpl] and
Dy —b=1by—b, 50 |[bn — bl|cc = ||bn — b|| < [|bw — b||. Since by — b,
the right hand side of the last inequality tends to zero, so En — b.
Now since o(by) = bp(A) C [0,00), and b —> b, then o(by) —> o(b).
Therefore o(b) C [0,00).
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Lemma 1.12. Let (X, M,e) be a C*-graded metric space, then M is a
continuous function on X2 x (0, 00).

Proof. Let M(x,,y,/,t,/) be a sequence in BX, then there is a subse-
quence {M (2, yn,tn)} such that converges to u belongs to B}. Since

t, — t, for 0 < § < %, there exists NV such that for all n > N,

|tn, — t| < d. From axiom (5) of C*-graded metric we have,
) J
M(l’n, ynatn) t M([L’n,l', 5) b M([E, yat - 25) b M(y7yn7 5)
So,
u = limpM(xp,Yn,tn) = e o M(x,y,t —25) e c.

Therefore,
u = M(x,y,t —20)

In a similar way, we have,

o

1)
7) d M(xn7yn7tn) L4 M(yn7y7 *)-

30
-
M(z,y,t+ 2)_M(x,xn,4 1

Therefore,
36
M(z,y,t+ ?) = limp M (zy, Yn, tn) = u.

Now from axiom (1) of C*-graded metric space, since § > 0 is arbitrary
we deduce that

u>= M(z,y,t) and M(z,y,t) = u.

So u = M(x,y,t) and therefore M is a continuous function on X2 x
(0,00). O

Lemma 1.13. Let (X, M,e) be a C*-graded metric space. If we define
EA,M X2 —RTU {O} by

Exnm(z,y) = inf{t > 0:[[M(z,y,t)|le - (1= Ae}

for all X € (0,1) and xz,y € X then the sequence {x,} is convergent
in C*-graded metric space (X, M,e) iff Ex p(xn, ) — 0. Also,the
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sequence {xy} is a Cauchy sequence iff it is a Cauchy sequence with
Exr-((i.e) Exp(2n, xm) converges to zero).
Proof. Since M is continuous in it’s third place and
Exy(z,y) =inf{t > 0:||M(z,y,t)|le = (1 — Ne},
we have
IM (2, z,m)lle = (1= XNe iff  Exm(en,z) <7
for all np > 0. O

Lemma 1.14. Let (X, M,e) be a C*-graded metric space, and {xy}n
be a sequence in X such that

IM (2, T, t)]le = || M (x0, 21, k" t)||e
for k =1 and m > n, then the sequence {x,} is a Cauchy sequence.
Proof. For all A € (0,1) we have

Exyv(zp, ) =inf {t >0:||M(zn, zm,t)||e = (1 —N)e}
Linf {t >0:||M(xo,z1,k"t)|le = (1 — N)e}

t

=l |[M (z0,21,t)||e = (1 — e}
1

= EEA,M(HEO,M)-

So from Lemma 1.13., {z,} is a Cauchy sequence. [

2. Compatible Mappings of Type (/) And (/1)

Definition 2.1. Let F and S be mappings from a C*-graded metric
space (X, M, o) into itself, then the pair (F,S) is said to be compatible
of type (I) if , for allt >0,

limy||M(FSxy, z,t)||le < ||M(Sz,z,t)||e

whenever {x,} is a sequence in X such that
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limpFx, = lim,Sx, =

and similarly we say (F,S) is compatible of type (I1) iff (S, F) be com-
patible of type (I).

Proposition 2.2. Let F and S be mappings from a C*-graded met-
ric space (X, M,e) into itself. Suppose that the pair (F,S) is com-
patible of type (I),(respectively,(II)) and Fz = Sz for some z € X
then for allt > 0, ||M(Fz,SSz,t)|le = ||M(Fz, FSz,t)||le, (respectively
||M(Sz, FFz,t)||le = ||M(Sz, SFz,t)||e).

Proof. Just take x,, = z for all n in Definition 2.1. [

3. Main Results

Let ® be the class of all continuous and increasing functions ¢ : (B})5 —
BZ in any coordinate and

o(te, te, te, te, te) = te
for all ¢ € 0, 1).

Example 3.1. The function ¢ : (B})® — B} defined as,
G(a1, w2, w3, w4, w5) = (min{[|a;][})e
for some 0 < h < 1, belongs to ®.

Example 3.2. ¢(z1,22,73,74,75) = ||21]|"e, for some 0 < h < 1,
belongs to .

Example 3.3. ¢(x1, 22,3, 24,25) = (Z?:l a;(t)||xi||)"e, such that 0 <
h < landforallt > 0, a; : RT — (0,1] are functions with, 337, a;(t) = 1.

Theorem 3.4. Let (X, M, e) be a complete C*-graded metric space with
aea =a for all a € Bj. let F,B,S and T be mappings from X into
itself such that,

1. F(X) C T(X), B(X) C S(X),
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2. there exists a constant k € (0, 3) such that

[[M(Sz, Ty, t)]le,
||M(Fx,Sx,t)|e,
||[M(Fx, By, kt)||le = ¢ [|M(By, Ty, t)|le, ,
||M(Fx, Ty, at)||e,
[|M(By, Sz, (2 — a)t)||e

forall z,y € X, a € (0,2),t > 0 and ¢ € ®. If the mappings
F,B,S and T satisfy any one of the following conditions:

3. the pairs (F,S) and (B,T) are compatible of type (II) and F or B
18 continuous,

4. the pairs (F,S) and (B,T) are compatible of type (I) and S or T
18 continuous,

then F,B,S and T have a unique common fized point in X.

Proof. Let z € X be an arbitrary point. Since FI(X) C T(X), B(X) C
S(X), there exists x1,x2 € X such that Faxg = Tz, Bxy = Sxz. Induc-
tively, construct the sequences y, and z, in X such that

Yon = Fxon = TTont1, Yont1 = Brops1 = Sronto

for n = 0,1,2,---. Then, by « = 1 — ¢ and ¢ € (%,1), if we set
dn(t) = ||M(Ym,Ym+1,t)|le for all ¢ > 0, then we prove that d,,(t)
is increasing with respect to m. Setting m = 2n, then we have

don(kt) = [|M (y2n, yont1, kt)||e = ||M (Axop, Brany1, kt)l|e

|| M (Sxon, Txonti1,t)lle,
||M(F.§L‘2n,5$2n,t>||€,
= ¢ ||M(Bx2ns1, Tront1,t)|le,
||M(Fﬂj‘2n, T$2n+1, (1 — (])t||€,
| M (Bx2n1, Sx2n, (14 q))t)]e
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”M(yZn 1, Y2n, )||€
HM(anaan 1, )He
= ¢ |’M(Z/2n+1,y2n, )||6
HM y2nyy2n7( Q)tHe
|| M (y2n+1,Y2n—1, (1 + q))t)||e

= ¢(dan—1(t), d2n—1(t),d2n(t), €, || M (y2n+t1, Y2n—1, (1 + q)t)|e),

that is,

don(kt) = ¢(dan—1(qt), d2n—1(qt), d2n(qt), e, don—1(t) ® d2,(qt)). (1)

We claim that, for all n € N, da,(t) = dan-1(t). In fact if do,(t) <

dan—1(t) then, since day,(qt) ® dop—1(t) = don(qt) @ dan(qt) = dan(gt). In
the inequality (1) we have

dan(kt) = ¢(dan(qt), d2n(qt), dan(qt), d2n(qt), don(qt)) = dan(qt)

that is, da,(kt) > dan(gt), which is a contradiction. Hence day,(t) >
don—1(qt) for all n € N and ¢ > 0.

Similarly, for m = 2n + 1, we have da,11(t) > d2,(t) and so {d,(t)} is
an increasing sequence in B;. By the inequality (1), we have

dan(kt) = ¢(dan—1(qt), dan—1(qt), don—1(qt), d2n—1(qt), d2n—1(qt))
- dgn_l(qt).
Similarly for m = 2n + 1 we have dap+1(kt) = dan(qt) and so d,(kt) >
dpn—1(qt) for all n € N. That is,

q q
HM(ynayn-‘rlat)He = ||M(yn—l7yna %t)HG oz HM(yanl) (E)nt)He

Hence, by Lemma 1.14., {y,} is a cauchy sequence and, by the complete-
ness of X, {yn} converges to a point z in X. Let lim,y, = z. Hence we
have
limpyon = limp F oy, = limpTxon 1
= limny2n+l = limnB$2n+1

= lim,STopto = 2.
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Now, suppose that 7" is continuous and the pairs (F,S) and (B,T) are
compatible of type (I). Hence we have

limnTTl'2n+1 == TZ,

||M(Tz,z,t)|le = limy,||M(BTx2,—1, z,t)||e.

Now, for @ = 1, put & = 9, and y = T'x2,,+1 in the inequality (1) then
we obtain

||M(S£L’2n, TT$2n+1, t)||e,
HM(F.%‘Qn, S%Qn, t)He,
||M(F$2n, BTI2n+1, k‘t)| |6 t (;5 HM(BTCL‘Qn+1, TTCCQnJrl, t)He,
|| M (Fzapn, TTzon,t)|e,
||M (BT x2n+1, STon, t)||e

Letting n — oo, then we have

[|M(z,Tz,t)]|e,

[|M(z,z,t)|le,

1Mz, Ui BT o1, kt)le = ¢ | ||M (limy BT w01, T, 1)]le
[|M(z,Tz,t)|le,

|| M (lim, BT oy 11, 2, t)||e
[|M (2, Tz, %)lle,
MGz Dl

= ¢ | ||M(lim,BTx2n11,Tz,%)]le,
1M (2, Tz, 5)]le,

HM(limnBTmnH’Z»%)He

Thus it follows that

t
limp||M (BT z2p+1, Tz, t)||e =lim,||M(BTzon+1, 2, 5)

t
o limy,||M(z,Tz, 5)”6

le

and so

. . t
limp||M (BT z2p+1,Tz,t)||e = limy,||M (BT xon+1, 2, §)||e
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Since ¢(t,t,t,t,t) = t, by the above inequalities we have

. . t
||M (2, limp—oo BT on 1, kt)||e = ||M(z, limy— oo BT x2n41, §)||e,

which is a contradiction. It follows that lim, BT xop+1 = 2.
Now, using the compatibility of type (), we have

||M(Tz, z,t)||e = lim,||M(z, BTzop+1,t)|le = €

and so Tz = z.
Again, replacing x by z9, and y by z in (3.1). For a = 1, we have

[ M (Sz2p, Tz, t)|le,
HM(F:L'Qn,S.%'Qn,t)He,

|| M (Fx9y, Bz, kt)|le = ¢ |M(Bz,Tz,1)|le,
HM<Fx27L7TZ7t)H€7

||M(Bz, Sxan,t)||e

Letting n — oo, we have

IM(Bz, z, kt)|le = |[M(Bz, z,t)||e.

Which implies that Bz = z. Since B(X) C S(X), there exist u € X
such that Su = z = Bz. So, for a = 1, we have

1M (Su, T2, ) e
|| M (Fu, Su,t)|le,
||M(Fu, Bz, kt)|le = ¢ | ||[M(Bz,Tz,t)|e,
||M(Fu,Tz,t)|e,
||M(Bz, Su,t)||e

and so,
|M(Fu, z, kt)||e = ||M(z, Fu, t)|le,

which implies that F'u = z. Since the pair (F,S) is compatible of type
(I) and Fu = z, by proposition (2.2.), we have
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[|M(Fu,SSu,t)||le = ||M(Fz, FSu,t)||e

and so,
|| M (z,Sz,t)||le = ||M(z, Fz,t)||e.

Again, for a = 1,we have

[|M(Sz,Tz,t)
||M(Fz,Sz,t)
||M(Fz, Bz, kt)|le = ¢ | ||M(Bz,Tz,t)
||M(Fz,Tz,t)
||M(Bz,Sz,t)]

)

It follows that

M(Fz,Sz,t) = M(Fz,z,-) e M(z,Sz,

Hence we have

~—

D[+
(@)

o

(

(
IM(Fz, 2, kt)]le = ¢ | ||M(Fz, >||M(27Fz,§)||€

(

_F_

USSR R
o

< N — —

o

and so F'z = z. Therefore, Fz = Bz =5z =Tz = z and z is a common
fixed point for the self- mappings F, B, S and T'.

The uniqueness of a common fixed point of the mappings F, B, S, T is
easily verified by using (1). In fact, if £ is another fixed point for F, B, S

and T, then for a = 1, we have
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IM (2, 2,t)[le = ||M(Fz, BZ, kt)||e

||M(Sz,TZ,t)|e,
||M(Fz,Sz,t)|le,
= ¢ | IM(BZT%t)le,
[|M(Fz,TZ,t)|e,
||M(BZ,Sz,t)||e

= 1M (2, 2, t)||e

and so z = 2. [
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