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Abstract. Stochastic differential equations(SDEs), arise from physical
systems that possess inherent noise and certainty. We derive a SDE for
electrical circuits. In this paper, we will explore the close relationship
between the SDE and autoregressive(AR) model. We will solve SDE
related to RC circuit with using of AR(1) model (Markov process) and
however with Euler-Maruyama(EM) method. Then, we will compare
this solutions. Numerical simulations in MATLAB are obtained.
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1. Introduction

One of the most important subjects in mathematical science is conve-
nient mathematical model fitting for prediction of events that will occur
in future. Deterministic and stochastic differential equations(SDEs), are
fundamental for the modeling in science and engineering.
A SDE is a differential equation in which one or more of the terms is a
stochastic process, thus resulting in a solution which is itself a stochastic
process.
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In physical science, SDEs are usually written as Langevin equation[15].
These consist of an ordinary differential equation containing a determin-
istic part and an additional random white noise term.
One of the more important applications of SDE, is in the modeling
electrical networks. A RC network, is an electric circuit composed of
resistors and capacitors driven by a voltage or current source. The 1st
order RC circuit composed of one resistor and one capacitor in series, is
the simplest example of an RC circuit ([19]).
The deterministic model of the circuit is replaced by a stochastic model
by adding a noise term in both the potential source and the resistance.
The random behavior of a RC circuit can be viewed as a stochastic pro-
cess. SDEs are powerful mathematical tools to analyze such processes.
Based on the theory of SDEs ([12,15]) randomly disturbed electric cir-
cuits can be modeled in the time domain.
With adding a noise term to the right side of a deterministic equation in
the Kirchoff circuit laws, we introduce a SDE ([14]). Two typs of noises
can exist in an electrical circuit; external noise and internal noise. The
effects of both types of noises in electrical circuits has been studied by
many researchers ([5]).
For example, Kampowsky et al (1992), described classification and nu-
merical simulation of electrical circuits with white noise ([10]). Addi-
tionally, Penski (1999), was presented a new numerical method for SDEs
with white noise and its application in circuit simulation ([16]). Recently,
Rawat (2008), showed an application of the Ito stochastic calculus to the
problem of modeling a series RC Circuit with white noise and colored
noise, including numerical solution ([17]).
Many SDEs cannot be solved explicitly. For this reason, it is convenient
to develop numerical methods that provide approximated simulations of
these equations.
Numerical solution of SDEs has been studied by many researchers (see,
for example, [2,3,11,12,13,18], and the references therein). In this paper,
we focus on numerically solution of stochastic model RC circuit with us-
ing of the first-order Autoregressive model.
The organization of this paper is as follows: In Section 2, stochastic cal-
culus theory is reviewed. Section 3 will introduced SDEs for RC circuit.
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Numerical solutions results will be presented in Section 4. A first-order
AR model, as a discrimination of the SDE, is discussed in Section 5.
The paper ends with a conclusion in Section 6.

2. Stochastic Calculus

In many physical applications, there are many processes in which the
random variables depend on space and/or time and this introductory
material will be the subject of this section.
A stochastic process X(t), is a family of random variables X(t, ω) of two
variables t ∈ T , ω ∈ Ω on a common probability space (Ω, F, P ) which
assumes real values and is P−measurable as a function of ω for each fixed
t. The parameter t is interpreted as time, with T being a time interval.
X(t, .) represents a random variable on the above probability space Ω,
while X(., ω) is called a sample path or trajectory of the stochastic
process, ([6]).

The best-known stochastic process to which stochastic calculus is
applied is the Wiener process or Brownian motion. A Wiener process is
a time continuous process with the property W (t) ∼ N(0, t) (0 6 t 6 T ),
usually it is differentiable almost nowhere.

For a generalized stochastic process, derivatives of any order can
be defined. Suppose that W (t) is a generalized version of a wiener
process which is used to model the motion of stock prices. An example
of a generalized stochastic processes is white noise. White noise ξ(t)
is defined as ξ(t) = dW (t)

dt ([15]). Stochastic calculus is a branch of
mathematics that operates on stochastic processes. It allows a consistent
theory of integration to be defined for integrals of stochastic processes
with respect to stochastic processes. The main part of stochastic calculus
are the Ito calculus and Stratonovich. Ito calculus, extends the methods
of calculus to stochastic processes such as Brownian motion.
We go back to the definition of an integral:

∫ t

0
f(t)dt = lim

n→∞

n∑

j=1

f(τj)(tj+1 − tj)
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where τj , is in the interval [tj , tj+1]. More generally has Riemann-
Stieltjes integral:

∫ t

0
f(t)dg(t) = lim

n→∞

n∑

j=1

f(τj)(g(tj+1)− g(tj)),

for a smooth measure g(t), limit converges to a unique value regardless of
where τj , taken in interval [tj , tj+1]. The Ito and Stratonovich calculus
follows the same rules as for the regular Riemann-Stieltjes calculus. If
our choose is lower end point, of the partition [tn, tn+1], we have the case
Ito integral, but if we choose midpoint tn+tn+1

2 , we have Stratonovich
case (where the symbol o, is employed).

(I)
∫ t

0
W (s)dW (s) =

1
2
[W 2(t)− t],

while

(S)
∫ t

0
W (s)o dW (s) =

1
2
[W 2(t)].

A SDE is given by

X ′(t) = f(t,X(t)) + g(t,X(t))ξ(t), X(0) = x0, (0 6 t), (1)

where f is the deterministic part, gξ(t) is the stochastic part, and ξ(t)
denotes a generalized stochastic process ([12]).
If we replace ξ(t)dt by dW (t) in equation (1), an Ito SDE can be rewrit-
ten as [9,15]:

dX(t) = f(t,X(t))dt + g(t,X(t))dW (t), (2)

where f(t,X(t)) and g(t,X(t)) are drift and diffusion term, respectively,
and X(t) is a solution which we try to find based on the experimental
data ([3]). We can represent the SDE in the integral form

X(t) = X(0) +
∫ T

0
f(s,X(s))ds +

∫ T

0
g(s,X(s))dW (s) (3)

where the first integral in (3) is an ordinary Riemann integral, and the
second integral in (3) is the Ito stochastic integral. Let 0 6 t1 6 ... 6
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tn = T, be a partition of the interval [0, T ] and λn = max(ti−ti−1). The
Ito integral

∫ T
0 g(s,X(s))dW (s) is defined as the limit in the quadratic

mean:

lim
λn→0

n∑

i=1

(g(ti−1, X(ti−1))(W (ti)−W (ti−1))). (4)

If the integrand g is jointly measurable and
∫ T
0 E(|g(s,X(s))|2)ds < ∞,

then the limit in (4) exists ([15]).

3. Modeling Electrical Circuit

Any electrical circuit consists of resistor (R), capacitor (C) and inductor
(L). These circuit elements can be combined to form an electrical circuits
in four distinct ways: the RC, RL, LC and RLC circuits. Then a resistor-
capacitor circuit(RC), or RC network, is an electric circuit composed
of resistor and capacitors driven by a voltage or current source. We
consider model stochastic RC circuit by Rawat and Parthasarathy ([17]).
Let Q(t) be the charge on the capacitor and V (t) be the potential source
applied to the input of a RC circuit. Using Kirchoff’s second law,

V (t) = I(t)R +
Q(t)
C

, (5)

and since I(t) = dQ(t)
dt = Q′(t), the following equation holds [9]:

Q′(t) + (RC)−1Q(t) = R−1V (t). (6)

If V (t) is a piecewise continuous function, the solution of the first order
linear differential equation (6) is:

Q(t) = Q(0) exp(
−t

RC
) +

1
R

∫ t

0
exp(

−(t− s)
RC

)V (s)ds, (7)

where Q(0) is the initial charge stored in the capacitor. The resistance
and potential source may not be deterministic but of the form:

R∗ = R + ”noise” = R + αW (t), (8)
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V ∗(t) = V (t) + ”noise” = V (t) + βN1(t), (9)

where W (t) is a zero mean, exponentially correlated stationary process
and N1(t) is a white noise process of mean Zero and variance one, and
α, β, are non negative constant, known as the intensity of noise. Sub-
stituting (8) and (9) in (6) we get:

dQ(t) = − Q(t)
C(R + αW (t))

dt +
V (t)

(R + αW (t))
dt +

βdN2(t)
(R + αW (t))

(10)

where, dN2(t) = N1(t)dt and N2(t) is the Brownian motion process,
independent of N1(t). Form (10) is a model stochastic RC circuit [17].

4. Numerical Solution of SDE with EM Method

When a differential equation model for some physical phenomenon is for-
mulated preferably the exact solution can be obtained. However, even
for ODEs, this is generally not possible and numerical methods must be
used.
The Euler-Maruyama(EM) numerical method is used for the simulation
of X(t). There are similar relationships the numerical methods for or-
dinary differential equations(ODEs) and those for SDEs.
Let X = {X(t); t ∈ [t0, T ]} satisfying the scaler SDE (2) on t0 6 t 6 T ,
with the initial value X(t0) = x0 and for a given partition t0 = τ0 6
τ1 6 ... 6 τn 6 · · · 6 τN = T, of the time interval [t0, T ].
Euler approximation is a continuous time stochastic process

Y = {Y (t); t0 6 t 6 T}

satisfying the iterative scheme equation ([3]),

Yn+1 = Yn + f(τn, Yn)(τn+1 − τn) + g(τn, Yn)(W (τn+1)−W (τn)), (11)

for n = 0, 1, · · · , N − 1 with initial value Y0 = x0, where we have
Yn = Y (τn), ∆n = T−t0

n , τn = t0 + n∆, ∆ = maxn∆n, ∆Wn =
W (τn+1)−W (τn) ∼ N(0, ∆n), and from this we know that

E(∆Wn) = 0,
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V ar(∆Wn) = E(∆W 2
n)− µ2 = E(∆W 2

n) = 1.

The sequence Y = {Yn; n = 0, 1, · · · , N − 1} is the value of the EM
approximation at the instants τn (n = 0, 1, · · · , N−1). The EM method
has strong order of accuracy o.5, is numerically stable and converges to
the Ito solution of system (2) ([12]). Beginning with W1 = 0, we can run
a simulation of a pollen track by using the random number generation
capabilities of any programming language. In Matlab, for example, the
randn routine returns a normally distributed random number with mean
0 and variance 1. Over 256 time steps, the particle track of a pollen grain
is shown in Figure 1. Assume R = 10Ω, C = 0.1F , V (t) = v = 20V and
X(0) = 0. The results of the deterministic and stochastic solutions of
the RC circuit with both stochastic resistance and stochastic potential
source (α = 1, β = 1) is shown in Table 1.

Table 1: Approximate values for the deterministic and stochastic models

Case t deterministic case stochastic case
1 0 1 0.9856
2 0.0625 1.4647 1.4406
3 o.125 1.7134 1.7588
4 0.25 1.9179 1.3566
5 0.5 1.9932 1.8619
6 1 1.9999 1.6253

Figure 2, illustrates the average of the approximate solution with 256
independent trials using of the EM method.

5. Autoregressive Model

In statistics, an autoregressive (AR) model is a type of random process
which is often used to model and predict various types of natural phe-
nomena. The notation AR(p) refers to the autoregressive model of order
p. The AR(p) model is defined as

Xt = µ +
p∑

i=1

ϕiXt−i + ξt,
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where ϕ1, ϕ2, · · · , ϕp are the parameters of the model, and ξt, is white
noise process with mean zero and Variance σ2. Then, AR(1) process is
given by:

Xt = µ + ϕXt−1 + ξt. (12)

The model AR(1) is wide sense stationary if |ϕ| < 1 ([1]). In the AR(1)
model:

E(Xt) = µ,

V ar(Xt) = E(X2
t )−E2(Xt) =

σ2

1− ϕ2
.

The autocovariance function is given by:

γn = E(XtXt+n)− E(Xt)E(Xt+n) =
σ2

1− ϕ2
ϕ|n|.

In AR(1) model, ρk = ϕk for k = 0, 1, 2, · · · and φ11 = 1 and φkk = 0
for k > 2 (φkk is partial autocorrelation function ([1])).

Now, we will explore the relationship between the continue-time SDE
and AR(1) model(discreet-time SDE) for stochastic RC circuit model[7].
We convert continuous-time differential dQ(t) in (10) to discreet-time
difference Q(tk+1)−Q(tk),

Q(tk+1)−Q(tk) = − Q(t)
C(R + αw(t))

dt +
V (t)

(R + αW (t))
dt +

βdN2(t)
(R + αW (t))

,

Then, we replacing Q(t) with the arithmetic average Q(tk+1)+Q(tk)
2 .

Q(tk+1) =
Q(tk+1) + Q(tk)

2
−

Q(tk+1)+Q(tk)
2

C(R + αW (t))
dt+

V (t)
(R + αW (t))

dt+
βdN2(t)

(R + αW (t))
,

Let us consider discreet-time sampling times t0, t1, ..., tk, · · · , where
tk+1 − tk = ∆t. With replacing the Wiener process dN2(t) with a
complex discrete Gaussian process

√
∆t Ñ(k), where Ñ(k) is a stan-

dard complex Gaussian process with zero mean and unit variance [7].

Q(tk+1) = Q(tk+1)+Q(tk)
2 −

Q(tk+1)+Q(tk)

2
C(R+αW (t)) ∆t+ V (t)

(R+αW (t))∆t+ β
√

∆t
(R+αW (t))Ñ(k).

Then

Q(tk+1) =
2C V (t)∆t

Ch(t) + ∆t
+

Ch(t)−∆t

Ch(t) + ∆t
Q(tk) +

2βC
√

∆t

Ch(t) + ∆t
Ñ(k), (13)
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where h(t) = R + αW (t). Equation (13) is a first-order AR process
for the RC circuit. The AR coefficients are function of constant values
C, V (t) = V , α, β and R, the sampling time interval ∆t, and with
µ = 2CV ∆t

Ch(t)+∆t . Now, we define a difference process as [7].

∆γQ(tk) = Q(tk+1)− γQ(tk), (14)

Then

∆γQ(tk) = µ +
2βC

√
∆t

Ch(t) + ∆t
Ñ(k) (15)

where
γ =

Ch(t)−∆t

Ch(t) + ∆t
.

Model (15), is a complex Gaussian process with µ mean and variance
( 2βC

√
∆t

Ch(t)+∆t)
2. Table 2, gives numerical results equation (10) using AR(1)

model. The data is obtained for different some time. In this simulation,
we suppose Q(0) = Q(t0) = 0, t0 = 0, t1 = 0.0625, t2 = 0.125, t3 = 0.25,
t4 = 0.5 and t5 = 1. However, supposed ∆tk = tk − tk−1, (1 6 k 6 5).
W (tk) is obtained of Fig 1.

Table 2: Numerical results of discrete-time approximation

Case ∆(tk) W (tk) h(tk) Ñ(k) Exact value Q(tk+1)
1 0.0625 -0.0794 0.9206 0.32 1.4647 1.7209
2 0.0625 -0.4656 0.5344 0.3187 1.7134 2.1592
3 o.125 -0.6911 0.3089 0.3187 1.9179 2.0484
4 0.25 -0.5621 0.4379 0.3150 1.9932 2.0732
5 0.5 -0.5828 0.4172 0.3006 1.9999 2.0165

6. Conclusion

We obtained stochastic model by adding noise in both the potential
source and the resistance in the form deterministic model related to the
Kirchhoff circuit second law. This paper shows an application of the Ito
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stochastic calculus in the RC modeling, including both analytical and
numerical solutions.
We have presented a first-order stochastic AR model for a RC circuit,
which is based on SDE modeling. Moreover, we explored the close rela-
tionship between the SDE and AR(1) model for electrical circuits. We
have the intention to extend numerical solution the SDE with white
noise. Euler-Maruyama method and AR(1) model are used for compar-
ison in numerically solution of the stochastic model (10). By comparing
tables 1 and 2, we conclude that discreet-time numerically approxima-
tion ( AR(1) method ) is more accurate than continuous-time approxi-
mation (EM method ).
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Figure 1: approximation solution
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