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Nonlinear Integro-Differential Equations
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Abstract. In this paper,the continuse Legendre wavelets constructed
on the interval [0, 1] are used to solve the nonlinear Fredholm integro-
differential equation. The nonlinear part of integro-differential is ap-
proximated by Legendre wavelets, and the nonlinear integro-differential
is reduced to a system of nonlinear equations. We give some numerical
examples to show applicability of the proposed method.
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1. Introduction

Many problems of theoretical physics and other disciplines lead to non-
linear Volterra equations or integro-differential equations. For solv-
ing these equations several numerical approaches have been proposed,
an overview can be found in ([1]). In the present article, the Legen-
dre wavelets are applied for solving of integro-differential equations.
Wavelets constitute a family of single function constructed from dilation
and translation of a single function called the mother wavelet. When the
dilation parameter a and the translation parameter b vary continuously,
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we have the following family of continuous wavelets ([2]):

ψa,b(t) = |a|− 1
2 ψ

(
t− b

a

)
, a, b ∈ R, a 6= 0, (1)

where ψ is a mother wavelet. Legendre wavelets ψa,b = ψ(k, n̂, m, t)
have four arguments; k = 2, 3, . . ., n̂ = 2n− 1, n = 1, 2, . . . , 2k−1 , m is
the order for Legendre polynomials and t is the normalized time. They
are defined on the interval [0, 1) by:

ψm,n(t) =





(m + 1/2)
1
2 2

k
2 Lm(2kt− n̂) n̂−1

2k 6 t < n̂
2k

0 otherwise.

(2)

Here, Lm(t) is the well-known Legendre polynomials of order m, which
are orthogonal with respect to the weight function w(t) = 1 and satisfy
the following recursive formula:

L0(t) = 1
L1(t) = t
Lm+1(t) = 2m+1

m+1 tLm(t)− m
m+1Lm−1(t) m = 1, 2, 3, . . .

(3)

The set of legendre wavelets are an orthonormal set([3,5,7]). Legen-
dre wavelets have been used to solve the linear Volterra and Fred-
holm integral equations, the nonlinear Volterra and Fredholm integral
equations([4-6]).
In the present paper, we introduce a new numerical method to solve the
following nonlinear Fredholm integro-differential equation:





y′(t) =
∫ 1

0
k(t, s)y(s)nds + f(t) + y(t) 0 6 t < 1

y(0) = y0

(4)

2. Function Approximation

A function f(t) ∈ L2[0, 1) may be expanded as:

f(t) =
∞∑

n=0

∞∑

m=0

cn,mψm,n(t), (5)
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where

cn,m = (f(t), ψn,m(t)). (6)

In (6), ( . , . ) denotes the inner product.
If the infinite series in (5) is truncated, then (5) can be written as:

f(t) ' fk(t) =
2k−1∑

n=1

M−1∑

m=0

cn,mψn,m(t) = C
T
Ψ(t), (7)

where Ψ(t) and C are 2k−1M × 1 matrices given by:
C = [c10, c11, . . . , c1,M−1, c20, . . . , c2,M−1, . . . , c2k−1,0, . . . , c2k−1,M−1]

T

= [c1, c2, . . . , c2k−1M ]
T

(8)
and

Ψ = [ψ10(t), ψ11(t), . . . , ψ1,M−1(t), ψ20(t), . . . , ψ2,M−1(t), . . . , ψ2k−1,0(t),

. . . , ψ2k−1,M−1(t)]
T

= [ψ1, ψ2, . . . , ψ2k−1M ]
T
.

(9)
Similarly, a function k(t, s) ∈ L2([0, 1)× [0, 1)) may be approximated as:

k(t, s) ' Ψ
T
(t)KΨ(s); (10)

where K is an 2k−1M × 2k−1M matrix such that:

Kij = (ψi(t), ((k(t, s), ψj(s))). (11)

3. The Operational Matrices

The integration of the vector Ψ(t) defined in (9) can be obtained as:

∫ t

0
Ψ(s)ds = PΨ(t), (12)



110 S. MAHDAVI AND M. TAVASSOLI KAJANI

where P is an 2k−1M × 2k−1M matrix, that is called the operational
matrix for integration and is given in ([7]) as:

P =




L H H . . . H H
0 L H . . . H H
0 0 L . . . H H
...

...
...

. . .
...

...
0 0 0 . . . L H
0 0 0 . . . L H




, (13)

where H and L are M ×M matrices given by:

H =
1
2k




2 0 . . . 0
0 0 . . . 0
...

...
. . .

...
0 0 . . . 0


 (14)

and

L =
1
2k




1 1√
3

0 0 · · · 0 0
−√3

3 0
√

3
3
√

5
0 · · · 0 0

0 −√5
5
√

3
0

√
5

5
√

7
· · · 0 0

0 0 −√7
7
√

5

√
5

5
√

7
· · · 0 0

...
...

...
...

. . .
...

...
0 0 0 0 · · · 0

√
2M−3

(2M−3)
√

2M−1

0 0 0 0 · · · −√2M−1
(2m−1)

√
2M−3

0




(15)
The integration of the product of two Legendre wavelets vector functions
is obtained as: ∫ 1

0
Ψ(t)ΨT (t)dt = I, (16)

where I is an identity matrix.
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4. Quadrature Formulae

General Idea
We often want to calculate the inner products of functions and Leg-
endre wavelets when we use Galerkin methods for nonlinear integro-
differential equation. Sweldens et al. ([8]) obtained a quadrature for-
mulae for wavelet. We give a method of construction of quadrature
formulae for the calculation of inner products of smooth functions and
Legendre wavelets. The idea of quadrature formulae is to find weights
ωk,m and abscissae tk,m such that:

∫ 1
0 f(t)Ψn,m(t)dt = 2

k
2
√

2m + 1
∫ n+1

2k
n

2k
f(t)Lm(2k+1t−2n−1)dt

= 2
−k
2−1
√

2m + 1
∫ 1
−1 f

(
t+2n+1

2k+1

)
Lm(t)dt

' Qr,m[f(t)] :=
r−1∑

k=0

ωk,mf(tk,m).

(17)
Set

Mp,m = 2
−k
2−1
√

2m + 1
∫ 1

−1
tpLm(t)dt p > 0. (18)

Then, we have
∫ 1
0 tpψn,m(t)dt =

∫ (n+1)

2k
n

2k
tp(2

k
2 Lm(2k+1t− 2n− 1))dt

= 2
k
2
√

2m+1
2k+1

∫ 1
−1

(
t+2n+1

2k+1

)p
Lm(t)dt

' 1
2.2(k+1)(p+1)

p∑

i=0

(
p

i

)
(2n+1)p−iMp,i.

(19)

Let {tk,m}r−1
k=0 be such that −1 6 t0,m < t1,m < . . . < tr−1,m 6 1 for

m = 0, 1, ..., M − 1. Now, by (17) and (19), we can solve the following
linear equations:

∑r−1
k=0 ωk,m(tk,m)p = 1

2.2(k+1)(p+1)

∑p
i=0

(
p
i

)
(2n + 1)p−iMp,i ;



112 S. MAHDAVI AND M. TAVASSOLI KAJANI

p = 0, 1, . . . , r − 1, to find ωk,m. So, we can get M quadrature formulae
whose degree of accuracy is r − 1 .

Calculation of M(n,m)
p

We know that the Legendre polynomials satisfy the following conditions:
Lm(±1) = (±1)m m > 0





L0(t) = 1
L1(t) = t
Lm(t) = 2m−1

m tLm−1(t)− m−1
m Lm−2(t) m > 2

and
{

L0(t) = L′1(t)
Lm(t) =

L′m+1(t)−L′m−1(t)

2m+1 m > 1
.

So we have:
Mp,m = 2

−k
2−1
√

2m + 1
∫ 1

−1
tpLm(t)dt

= 2
−k
2−1
√

2m + 1
∫ 1

−1
tp

(
L′m+1(t)−Lm−1(t)

2m+1

)
dt

=
p2

−k
2−1√

2m + 1

(∫ 1

−1

tp−1Lm−1(t)dt−
∫ 1

−1

tp−1Lm+1(t)dt

)
. (20)

Therefore,

Mp,m =
p

2m + 1
(Mp−1,m−1 − Mp−1,m+1) m > 1. (21)

Also

Mp,0 = 2
−k
2−1

∫ 1

−1
tpL0(t)dt =

2
−k
2−1 (1 + (−1)p)

p + 1
,

Mp,1 = 2
−k
2−1

√
3

∫ 1

−1
tpL1(t)dt =

2
−k
2−1
√

3(1− (−1)p)
p + 2

. (22)

When m > 2, we have:
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Mp,m = 2
−k
2−1
√

2m + 1
∫ 1
−1 tpLm(t)dt

= 2
−k
2−1
√

2m + 1
∫ 1
−1 tp

(
2m−1

m tLm−1(t)− m−1
m Lm−2(t)

)
dt

=
2m− 1

m
Mp+1,m−1 − m− 1

m
Mp,m−2. (23)

5. Solution the Nonlinear Fredholm Integro-
Differential Equations

Consider the following nonlinear integro-differential equations:




y′(t) =
∫ 1

0
k(t, s)y(s)nds + f(t) + y(t) 0 6 t < 1

y(0) = y0

(25)

where f(t) ∈ L2[0, 1), k(t, s) ∈ L2([0, 1) × [0, 1)) and y is an unknown
function. If we approximate y(t), f(t) and k(t, s) by the way mentioned
before:

y′(t) ' Y ′T Ψ(t), y(0) = Y T
0 Ψ(t), f(t) ' F T Ψ(t), k(t, s) ' ΨT (t)KΨ(s),

we have

y(t) =
∫ t

0
y′(s)ds + y(0) '

∫ t

0
Y ′T Ψ(s)ds + Y T

0 Ψ(t)

= Y ′T PΨ(t)+Y T
0 Ψ(t) = (Y ′T P+Y T

0 )Ψ(t). (26)

By substituting in (25), we have

ΨT (t)Y ′ = ΨT (t)F + ΨT (t)(P T Y ′ + Y0) +

∫ 1

0

ΨT (t)KΨ(s)[ΨT (s)(P T Y ′ + Y0)]
nds,

(27)

where
[y(t)]n = [ΨT (s)(P T Y ′ + Y0)]

n ' ΨT (s)Y ∗
n , (28)

and Y ∗
n is a column vector, whose elements are nonlinear combinations

of the elements of the vector Y ′.
By (27) we have

ΨT (t)Y ′ = ΨT (t)F + ΨT (t)(P T Y ′ + Y0) + ΨT (t)KY ∗
n ,
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or
Y ′ = F + P T Y ′ + Y0 + KY ∗

n ,

which implies that

(I − P T )Y ′ = F + Y0 + KY ∗
n .

And solving this nonlinear system we can get the vector Y ′. Thus,

y(t) = (Y ′T P + Y T
0 )Ψ(t).

6. Numerical Examples

Example 1. Consider the following integro-differential equation:




y′(t) = 1− x +
∫ 1

0
4xty(t)2dt

y(0) = 0
(29)

The exact solution for this problem is y(x) = x. We solve (29) by using
our method with k = 2 and M = 3 . Table 1 shows the numerical results
of this example, where y and ỹ in Table 1 denote the exact solution and
the numerical solution, respectively.

Example 2. Consider the following integro-differential equation:




y′(t) = ex − (
e2

2
− 1

2
)x +

∫ 1

0
xy(t)2dt

y(0) = 1
(30)

The exact solution for this problem is y(x) = ex. We solve (30) by using
our method with k = 3 and M = 3 . Table 2 shows the numerical results
of this example, where y and ỹ in the Table 2 denote the exact solution
and the numerical solution, respectively.

Example 3. Consider the following integro-differential equation:




y′(t) = ex − e3

3
+

1
3

+
∫ 1

0
y(t)3dt

y(0) = 1
(31)
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The exact solution for this problem is y(x) = ex. We solve (31) by
using our method with k = 2 and M = 3 . Table 3 shows the numerical
results of this example, where y and ỹ in the Table 3 denote the exact
solution and the numerical solution, respectively.

Table 1: Numerical results of Example 1.

Legendre wavelet method ỹ(xr)
xr Exact solution y(xr) M = 3, k = 2 M = 3, k = 3
0.1 0.1 0.09999999981 0.100000000
0.2 0.2 0.19999999998 0.200000000
0.3 0.3 0.29999999998 0.300000000
0.4 0.4 0.39999999998 0.400000000
0.5 0.5 0.49999999997 0.500000000
0.6 0.6 0.59999999995 0.600000000
0.7 0.7 0.69999999995 0.700000000
0.8 0.8 0.79999999996 0.800000000
0.9 0.9 8.99999999995 0.900000000

Table 2: Numerical results of Example 2.

Legendre wavelet method ỹ(xr)
xr Exact solution y(xr) M = 3, k = 3
0.1 1.105170918 1.105127778
0.2 1.221402758 1.221456925
0.3 1.349858808 1.349791734
0.4 1.491824698 1.491874845
0.5 1.648721271 1.648963774
0.6 1.822118800 1.822046275
0.7 2.013752707 2.073840362
0.8 2.225540928 2.225428245
0.9 2.459603111 2.4596833641

Table 3: Numerical results of Example 3.

Legendre wavelet method ỹ(xr)
xr Exact solution y(xr) M = 3, k = 2 M = 3, k = 3
0.1 1.105170918 1.084128529 1.105129326
0.2 1.221402758 1.179834234 1.221460101
0.3 1.349858808 1.288460624 1.349796619
0.4 1.491824698 1.410007699 1.491881519
0.5 1.648721271 1.548034050 1.648972315
0.6 1.822118800 1.697874449 1.822056762
0.7 2.013752707 1.869017459 2.073852878
0.8 2.225540928 2.061463077 2.225442868
0.9 2.459603111 2.275211305 2.459700452
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7. Conclusion

Nonlinear integro-differential equations are usually difficult to solve an-
alytically. In many cases, it is required to obtain the approximate so-
lutions. For this purpose the presented method can be proposed. Leg-
endre wavelets are well behaved basic functions that are orthonormal
on [0, 1]. In the presented method we approximate the nonlinear part
of the integro-differential equation with the Legendre wavelets. This
method can be extended and applied to the system of nonlinear integral
equations, linear integro-differential equations, but some modifications
are required.
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