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Abstract. In this paper we introduce a new extension to Hahn-Banach
Theorem and consider its relation with the linear operatres. At the end
we give some applications of this theorem.
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1. Introduction

Huang and Zhang [2] introduced the notion of cone metric spaces and
some fixed point theorems for contractive mappings were proved in these
spaces. The results in [2] were generalized by Sh.Rezapour and R. Haml-
barani in [6]. Suppose that ¹ is a partial order on a set S and A ⊆ S.

The greatest lower bound of A is unique, if it exists. It is denoted by
inf(A). Similarly, the least upper bound of A is unique, if it exists, and
is denoted by sup(A).
Let E be a linear space and P a subset of E. P is called a cone if

(i) P is closed, non-empty and P 6= {0}.
(ii) ax + by ∈ P for all x, y ∈ P and non-negative real numbers a,b.
(iii) P ∩ −P = {0}.
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For a given cone P ⊆ E, we can define a partial ordering 6 with respect
to P by x 6 y if and only if y − x ∈ P . Note that x < y will stand for
x 6 y and x 6= y, while x ¿ y will stand for y − x ∈ intP , where intP

denotes the interior of P.
P is called the normal cone of E, if there is a number M > 0 such that
for all x, y ∈ P , 0 6 x 6 y implies ‖x‖ 6 M‖y‖.
The least positive number satisfying the above inequality is called the
normal constant of P.

2. Main Results

Hahn-Banach Theorem is one of the important theorems in analysis and
many authors have investigated on this theorem and its applications ([2-
6]).
In the sequel we assume that (E, ‖.‖) is a Banach algebra that is ordered
by a normal cone P with constant normal M=1, intP 6= ∅ and 6 is
partial ordering with respect to P. We recall that a Banach algebra is
a pair (E, ‖.‖), where E is an algebra and ‖.‖ is a complete norm such
that ‖xy‖ 6 ‖x‖ ‖y‖.

Definition 2.1. Let X be a vector space and p be a map from vector
space X into E. We call that p is a sublinear map if p(tx)=tp(x) and
p(x + y) 6 p(x) + p(y) whenever t > 0 and x, y ∈ X.

Theorem 2.2. [Hahn- Banach Theorem] Let Y be a subspace of
a vector space X and p : X → E a sublinear map. If the linear map
T0 : Y → E satisfies T0(y) 6 p(y) for every y ∈ Y , then there is a linear
map T : X → E such that T|Y = T0 and T (x) 6 p(x) whenever x ∈ X.

Proof. Let x1 ∈ X \ Y and Y1 = Y
⊕〈{x1}〉. Note that each member

of Y1 can be expressed in the form y+ tx1, where y ∈ Y and t is a scalar,
in exactly one way. For y1, y2 ∈ Y ,

T0(y1) + T0(y2) = T0(y1 + y2)

6 p(y1 − x1 + y2 + x1)

6 p(y1 − x1) + p(y2 + x1).
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Then

sup{T0(y)− p(y − x1) : y ∈ Y } 6 inf{p(y + x1)− T0(y) : y ∈ Y }
and so for some t1 ∈ E

sup{T0(y)− p(y − x1) : y ∈ Y } 6 t1 6 inf{p(y + x1)− T0(y) : y ∈ Y }.
For any y ∈ Y and scalar t, define T1(y + tx1) = T0(y) + t.t1. It is easy
to check that T1 is a linear map whose restriction to Y is T0. Therefore

T1(y + tx1) = t(T0(t−1y) + t1) 6 tp(t−1y + x1) = p(y + tx1)

and

T1(y − tx1) = t(T0(t−1y)− t1) 6 tp(t−1y − x1) = p(y − tx1).

So T1(x) 6 p(x) whenever x ∈ Y1.
The second step of the proof is to show that the first step can be repeated
until a linear map is obtained. It is dominated by p and its restriction
to Y is T0. Let U be the collection of all linear maps G such that the
domain of G is a subspace of X that includes Y , the restriction of G to
Y is T0, and G dominated by p. Define a preorder ¹ on U by declaring
that G1 ¹ G2 whenever G1 is the restriction of G2 to a subspace of the
domain of G2. It is easy to see that each nonempty chain C in U has an
upper bound in U . Consider the linear map whose domain is the union
Z of the domains of the members of C and which agrees at each point
z of Z with every member of C that is defined at z. By Zorn’s lemma,
the preorder set U has a maximal element T . The domain of T is all of
X. On the other hand with by applying the first step there is a T1 in U
such that T ¹ T1, but T1 � T . This T satisfies all that is required. ¤

Proposition 2.3.Let Y be a closed subspace of a linear normed space X
and T0 : Y → E be an injective bounded linear map. Then there exists
a bounded linear map T : X → E such that ‖T‖ = ‖T0‖ and T |Y = T0.

Proof. For every nonzero element x ∈ X define p(x) = ‖T0‖ ‖x‖ T0(x)
‖T0(x)‖

and p(0) = 0. Since for every nonzero element x ∈ X, we have

‖T0(x)‖ T0(x) 6 ‖T0‖ ‖x‖ T0(x).



4 M. R. HADDADI AND H. MAZAHERI

and so T0(x) 6 p(x). Now by Theorem 2.2., there exists a linear map
T : X → E such that T |Y = T0 and T (x) 6 p(x) whenever x ∈ X.
Since P is a normal cone with constant normal 1, ‖T (x)‖ 6 ‖T0‖ ‖x‖
and ‖T (x)‖ 6 ‖T0‖. Therefore ‖T‖ = ‖T0‖. ¤

Theorem 2.4. Let X be a linear normed space and 0 6= x ∈ X. Then
for every e ∈ SE there is a linear map Te : X → E such that ‖Te‖ =
1, Te(x) = ‖x‖e, where SE = {x ∈ E : ‖x‖ = 1}.

Proof. Define Ge : 〈x〉 → E by Ge(αx) = α‖x‖e for every scalar α.
Clearly Ge is injective, linear and Ge(x) = ‖x‖e. Also for α 6= 0,

‖Ge(αx)‖ = |α|‖x‖ = ‖αx‖.

Since E is ordered by a normal cone P with constant normal M = 1,
then ‖Ge‖ 6 1. Also since,

‖Ge‖ ‖x‖ > ‖Ge(x)‖ = ‖x‖,

so ‖Ge‖ > 1. Hence ‖Ge‖ = 1. Let Te be then Hahn-Banach extension
of Ge from proposition 2.3, so the proof is complete. ¤
In the following we introduce immediate consequence of the above the-
orem.

Corollary 2.5. Let X be a linear normed space and x 6= y ∈ X. Then
there is a linear map T : X → E such that Tx 6= Ty.

Corollary 2.6. Let X be a linear normed space and x ∈ X. Then

‖x‖ = sup
T∈B

‖Tx‖,

where B = {T : X → E : T is a linear map and ‖T‖ = 1}.

Proof. By Theorem 2.4., there is a linear map T : X → E such that
‖T‖ = 1, ‖T (x)‖ = ‖x‖. Then ‖x‖ = ‖T (x)‖ 6 supT∈B ‖Tx‖. On the
other hand since ‖T (x)‖ 6 ‖T‖ ‖x‖, and so supT∈B ‖Tx‖ 6 ‖x‖. ¤
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We recall that a point g0 ∈ Y is said to be a best approximation for
x ∈ X if and only if ‖x− g0‖ = ‖x + Y ‖ = d(x, Y ). The set of all best
approximations of x ∈ X in Y is shown by PY (x). In the other words,

PY (x) = {g0 ∈ Y : ‖x− g0‖ = d(x, Y )},

If PY (x) is non-empty for every x ∈ X, then Y is called a Proximinal
set. The set Y is Chebyshev if PY (x) is a singleton set for every x ∈ X

(see [2-6]).
Now we want to present some applications of new extension Hahn-
Banach theorem in approximation theory.

Proposition 2.7. Let Y be a closed subspace of a linear normed space
X, and x ∈ X\Y . Then for every e ∈ SE there is a linear map Te :
Y

⊕〈x〉 → E such that ‖Te‖ = 1, Tex = d(x, Y )e, Te|Y = 0.

Proof. Define Te : Y
⊕〈x〉 → E by Te(y + αx) = αd(x, Y )e for every

y ∈ Y and scalar α. It is clear that Te is linear, Tex = d(x, Y )e and
Te|Y = 0. For any y ∈ Y and scalar α 6= 0,

‖Te(y + αx)‖ = |α|d(x, Y ) 6 ‖y + αx‖,

so ‖Te‖ 6 1. Also since,

‖Te‖ ‖x− y‖ > ‖Te(x− y)‖ = d(x, Y ) y ∈ Y,

so ‖Te‖ > 1. Hence ‖Te‖ = 1. ¤

Theorem 2.8. Let Y be a closed subspace of a cone norm space X.
Suppose that x ∈ X\Y and g0 ∈ Y . Then g0 ∈ PY (x) iff for every
e ∈ SE there is a linear map Te : Y

⊕〈x〉 → E such that

‖Te‖ = 1, Te(x− g0) = ‖x− g0‖e, Te|Y = 0.

Proof. Assume g0 ∈ PY (x). Since x ∈ X\Y , ‖x− g0‖ = d(x, Y ) and so
by Proposition 2.7., there is a linear map Te : Y

⊕〈x〉 → E such that

‖Te‖ = 1, Te(x− g0) = ‖x− g0‖e, Te|Y = 0.
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Conversely suppose there is a linear map Te : Y
⊕〈x〉 → E such that

‖Te‖ = 1, Te(x− g0) = ‖x− g0‖e, Te|Y = 0. Then

‖x− g0‖ = ‖Te(x− g0)‖ = ‖Te(x− g)‖ 6 ‖Te‖ ‖x− g‖ = ‖x− g‖

and so g0 ∈ PY (x). ¤

Corollary 2.9. Suppose X is a normed linear spaces and x, y ∈ X.
Then x⊥y iff for every e ∈ SE there is a linear map Te : 〈y〉⊕〈x〉 → E

such that ‖Te‖ = 1, Te(x) = ‖x‖e, Te(y) = 0.
It is clear that `∞ is a Banach algebra and P = {{xn} ∈ `∞ : xn >
0, for all n} is a normal cone with constant normal M = 1. Also in
[1] proved that for every linear map T0 : Y → `∞ there is a linear map
T : X → `∞ such that ‖T‖ = ‖T0‖ and T |Y = T0. Consequently we
have following result.

Corollary 2.10. Let Y be a closed subspace of a linear normed space
X, and x ∈ X\Y . Then M ⊆ PY (x) iff for every e ∈ S`∞, there is a
linear map T : X → `∞ such that for every g ∈ M

‖Te‖ = 1, Tex = ‖x− g‖e, Te|Y = 0.
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