Hahn-Banach Theorem in Vector Spaces M. R. Haddadi* Yazd University H. Mazaheri Yazd University **Abstract.** In this paper we introduce a new extension to Hahn-Banach Theorem and consider its relation with the linear operatres. At the end we give some applications of this theorem. AMS Subject Classification: 41A65; 46B50; 46B20; 41A50. Keywords and Phrases: Normal cone, proximinal subspaces, Chebyshev subspaces, Hahn-Banach theorem. ## 1. Introduction Huang and Zhang [2] introduced the notion of cone metric spaces and some fixed point theorems for contractive mappings were proved in these spaces. The results in [2] were generalized by Sh.Rezapour and R. Hamlbarani in [6]. Suppose that \leq is a partial order on a set S and $A \subseteq S$. The greatest lower bound of A is unique, if it exists. It is denoted by $\inf(A)$. Similarly, the least upper bound of A is unique, if it exists, and is denoted by $\sup(A)$. Let E be a linear space and P a subset of E. P is called a cone if - (i) P is closed, non-empty and $P \neq \{0\}$. - (ii) $ax + by \in P$ for all $x, y \in P$ and non-negative real numbers a,b. - (iii) $P \cap -P = \{0\}.$ Received: November 2009; Final Revised February 2010 ^{*}Corresponding author For a given cone $P \subseteq E$, we can define a partial ordering \leq with respect to P by $x \leq y$ if and only if $y - x \in P$. Note that x < y will stand for $x \leq y$ and $x \neq y$, while $x \ll y$ will stand for $y - x \in intP$, where intP denotes the interior of P. P is called the normal cone of E, if there is a number M > 0 such that for all $x, y \in P$, $0 \le x \le y$ implies $||x|| \le M||y||$. The least positive number satisfying the above inequality is called the normal constant of P. ### 2. Main Results Hahn-Banach Theorem is one of the important theorems in analysis and many authors have investigated on this theorem and its applications ([2-6]). In the sequel we assume that $(E, \|.\|)$ is a Banach algebra that is ordered by a normal cone P with constant normal M=1, $intP \neq \emptyset$ and \leq is partial ordering with respect to P. We recall that a Banach algebra is a pair $(E, \|.\|)$, where E is an algebra and $\|.\|$ is a complete norm such that $\|xy\| \leq \|x\| \|y\|$. **Definition 2.1.** Let X be a vector space and p be a map from vector space X into E. We call that p is a sublinear map if p(tx)=tp(x) and $p(x+y) \leq p(x) + p(y)$ whenever t > 0 and $x, y \in X$. **Theorem 2.2.** [Hahn- Banach Theorem] Let Y be a subspace of a vector space X and $p: X \to E$ a sublinear map. If the linear map $T_0: Y \to E$ satisfies $T_0(y) \leq p(y)$ for every $y \in Y$, then there is a linear map $T: X \to E$ such that $T_{|_Y} = T_0$ and $T(x) \leq p(x)$ whenever $x \in X$. **Proof.** Let $x_1 \in X \setminus Y$ and $Y_1 = Y \bigoplus (\{x_1\})$. Note that each member of Y_1 can be expressed in the form $y + tx_1$, where $y \in Y$ and t is a scalar, in exactly one way. For $y_1, y_2 \in Y$, $$T_0(y_1) + T_0(y_2) = T_0(y_1 + y_2)$$ $\leq p(y_1 - x_1 + y_2 + x_1)$ $\leq p(y_1 - x_1) + p(y_2 + x_1).$ Then $$\sup\{T_0(y) - p(y - x_1) : y \in Y\} \leqslant \inf\{p(y + x_1) - T_0(y) : y \in Y\}$$ and so for some $t_1 \in E$ $$\sup\{T_0(y) - p(y - x_1) : y \in Y\} \leqslant t_1 \leqslant \inf\{p(y + x_1) - T_0(y) : y \in Y\}.$$ For any $y \in Y$ and scalar t, define $T_1(y + tx_1) = T_0(y) + t.t_1$. It is easy to check that T_1 is a linear map whose restriction to Y is T_0 . Therefore $$T_1(y + tx_1) = t(T_0(t^{-1}y) + t_1) \le tp(t^{-1}y + x_1) = p(y + tx_1)$$ and $$T_1(y - tx_1) = t(T_0(t^{-1}y) - t_1) \leqslant tp(t^{-1}y - x_1) = p(y - tx_1).$$ So $T_1(x) \leq p(x)$ whenever $x \in Y_1$. The second step of the proof is to show that the first step can be repeated until a linear map is obtained. It is dominated by p and its restriction to Y is T_0 . Let \mathcal{U} be the collection of all linear maps G such that the domain of G is a subspace of X that includes Y, the restriction of G to Y is T_0 , and G dominated by p. Define a preorder \preceq on \mathcal{U} by declaring that $G_1 \preceq G_2$ whenever G_1 is the restriction of G_2 to a subspace of the domain of G_2 . It is easy to see that each nonempty chain \mathcal{C} in \mathcal{U} has an upper bound in \mathcal{U} . Consider the linear map whose domain is the union Z of the domains of the members of \mathcal{C} and which agrees at each point z of Z with every member of \mathcal{C} that is defined at z. By Zorn's lemma, the preorder set \mathcal{U} has a maximal element T. The domain of T is all of X. On the other hand with by applying the first step there is a T_1 in \mathcal{U} such that $T \preceq T_1$, but $T_1 \npreceq T$. This T satisfies all that is required. \square **Proposition 2.3.**Let Y be a closed subspace of a linear normed space X and $T_0: Y \to E$ be an injective bounded linear map. Then there exists a bounded linear map $T: X \to E$ such that $||T|| = ||T_0||$ and $T|_Y = T_0$. **Proof.** For every nonzero element $x \in X$ define $p(x) = ||T_0|| ||x|| \frac{T_0(x)}{||T_0(x)||}$ and p(0) = 0. Since for every nonzero element $x \in X$, we have $$||T_0(x)|| T_0(x) \le ||T_0|| ||x|| T_0(x).$$ and so $T_0(x) \leq p(x)$. Now by Theorem 2.2., there exists a linear map $T: X \to E$ such that $T|_Y = T_0$ and $T(x) \leq p(x)$ whenever $x \in X$. Since P is a normal cone with constant normal 1, $||T(x)|| \leq ||T_0|| ||x||$ and $||T(x)|| \leq ||T_0||$. Therefore $||T|| = ||T_0||$. \square **Theorem 2.4.** Let X be a linear normed space and $0 \neq x \in X$. Then for every $e \in S_E$ there is a linear map $T_e : X \to E$ such that $||T_e|| = 1$, $T_e(x) = ||x||e$, where $S_E = \{x \in E : ||x|| = 1\}$. **Proof.** Define $G_e: \langle x \rangle \to E$ by $G_e(\alpha x) = \alpha ||x||e$ for every scalar α . Clearly G_e is injective, linear and $G_e(x) = ||x||e$. Also for $\alpha \neq 0$, $$||G_e(\alpha x)|| = |\alpha|||x|| = ||\alpha x||.$$ Since E is ordered by a normal cone P with constant normal M=1, then $||G_e|| \leq 1$. Also since, $$||G_e|| ||x|| \ge ||G_e(x)|| = ||x||,$$ so $||G_e|| \ge 1$. Hence $||G_e|| = 1$. Let T_e be then Hahn-Banach extension of G_e from proposition 2.3, so the proof is complete. \Box In the following we introduce immediate consequence of the above theorem. **Corollary 2.5.** Let X be a linear normed space and $x \neq y \in X$. Then there is a linear map $T: X \to E$ such that $Tx \neq Ty$. Corollary 2.6. Let X be a linear normed space and $x \in X$. Then $$||x|| = \sup_{T \in \mathcal{B}} ||Tx||,$$ where $\mathcal{B} = \{T : X \to E : T \text{ is a linear map and } ||T|| = 1\}.$ **Proof.** By Theorem 2.4., there is a linear map $T: X \to E$ such that ||T|| = 1, ||T(x)|| = ||x||. Then $||x|| = ||T(x)|| \leqslant \sup_{T \in \mathcal{B}} ||Tx||$. On the other hand since $||T(x)|| \leqslant ||T|| ||x||$, and so $\sup_{T \in \mathcal{B}} ||Tx|| \leqslant ||x||$. We recall that a point $g_0 \in Y$ is said to be a best approximation for $x \in X$ if and only if $||x - g_0|| = ||x + Y|| = d(x, Y)$. The set of all best approximations of $x \in X$ in Y is shown by $P_Y(x)$. In the other words, $$P_Y(x) = \{g_0 \in Y : ||x - g_0|| = d(x, Y)\},\$$ If $P_Y(x)$ is non-empty for every $x \in X$, then Y is called a Proximinal set. The set Y is Chebyshev if $P_Y(x)$ is a singleton set for every $x \in X$ (see [2-6]). Now we want to present some applications of new extension Hahn-Banach theorem in approximation theory. **Proposition 2.7.** Let Y be a closed subspace of a linear normed space X, and $x \in X \setminus Y$. Then for every $e \in S_E$ there is a linear map $T_e : Y \bigoplus \langle x \rangle \to E$ such that $||T_e|| = 1$, $T_e x = d(x, Y)e$, $T_e|_Y = 0$. **Proof.** Define $T_e: Y \bigoplus \langle x \rangle \to E$ by $T_e(y + \alpha x) = \alpha d(x, Y)e$ for every $y \in Y$ and scalar α . It is clear that T_e is linear, $T_e x = d(x, Y)e$ and $T_e|_Y = 0$. For any $y \in Y$ and scalar $\alpha \neq 0$, $$||T_e(y + \alpha x)|| = |\alpha|d(x, Y) \leqslant ||y + \alpha x||,$$ so $||T_e|| \leq 1$. Also since, $$||T_e|| ||x - y|| \ge ||T_e(x - y)|| = d(x, Y) \quad y \in Y,$$ so $||T_e|| \geqslant 1$. Hence $||T_e|| = 1$. \square **Theorem 2.8.** Let Y be a closed subspace of a cone norm space X. Suppose that $x \in X \setminus Y$ and $g_0 \in Y$. Then $g_0 \in P_Y(x)$ iff for every $e \in S_E$ there is a linear map $T_e : Y \bigoplus \langle x \rangle \to E$ such that $$||T_e|| = 1$$, $T_e(x - q_0) = ||x - q_0||e$, $T_e|_V = 0$. **Proof.** Assume $g_0 \in P_Y(x)$. Since $x \in X \setminus Y$, $||x - g_0|| = d(x, Y)$ and so by Proposition 2.7., there is a linear map $T_e: Y \bigoplus \langle x \rangle \to E$ such that $$||T_e|| = 1$$, $T_e(x - g_0) = ||x - g_0||e$, $T_e|_Y = 0$. Conversely suppose there is a linear map $T_e: Y \bigoplus \langle x \rangle \to E$ such that $||T_e|| = 1$, $T_e(x - g_0) = ||x - g_0||e$, $T_e|_Y = 0$. Then $$||x - g_0|| = ||T_e(x - g_0)|| = ||T_e(x - g)|| \le ||T_e|| ||x - g|| = ||x - g||$$ and so $g_0 \in P_Y(x)$. \square **Corollary 2.9.** Suppose X is a normed linear spaces and $x, y \in X$. Then $x \perp y$ iff for every $e \in S_E$ there is a linear map $T_e : \langle y \rangle \bigoplus \langle x \rangle \to E$ such that $||T_e|| = 1$, $T_e(x) = ||x||e$, $T_e(y) = 0$. It is clear that ℓ_{∞} is a Banach algebra and $P = \{\{x_n\} \in \ell_{\infty} : x_n \geq 0, \text{ for all } n\}$ is a normal cone with constant normal M = 1. Also in [1] proved that for every linear map $T_0: Y \to \ell_{\infty}$ there is a linear map $T: X \to \ell_{\infty}$ such that $||T|| = ||T_0||$ and $T|_Y = T_0$. Consequently we have following result. **Corollary 2.10.** Let Y be a closed subspace of a linear normed space X, and $x \in X \setminus Y$. Then $M \subseteq P_Y(x)$ iff for every $e \in S_{\ell_\infty}$, there is a linear map $T: X \to \ell_\infty$ such that for every $g \in M$ $$||T_e|| = 1, T_e x = ||x - g|| e, T_e|_Y = 0.$$ # References - [1] J. Diestel, Sequence and Series in Banach spaces, Springer, 1984. - [2] H. Long-Guang and Z. Xian, Cone metric spaces and fixed point theorems of contractive mappings, J. Math. Anal. Appl., 332 (2007), 1468-1476. - [3] H. Mazaheri and F. M. Maalek Ghaini, Quasi-orthogonality of the best approximant sets, *Nonlinear Analysis*, 65 (2006) 534-537. - [4] H. Mazaheri and S. M. Vaezpour, orthogonality and ϵ -Orthogonality in Banach spaces, Aust. J. Math. and Appl., 2 (2005), 1-5. - [5] P. L. Papini and I. Singer, Best coapproximation in normed linear spaces, *Mh. Math.*, 88 (1979), 27-44. - [6] Sh. Rezapour and R. Hamlbarani, Some notes on the paper Cone metric spaces and fixed point theorems of contractive mappings, J. Math. Anal. Appl., 345 (2008), 719-724. - [7] W. Rudin, Functional Analysis, 2nd edition, Mc Graw-Hill, 1991. - [8] I. Singer, Best approximation in normal linear spaces by elements of linear subspaces, Springer Verlag, New York, 1970. ### Mohammad Reza Haddadi Department of Mathematics Assistant Professor of Mathematics Yazd University Yazd, Iran E-mail: haddadi83@math.iut.ac.ir #### Hamid Mazaheri Department of Mathematics Associated Professor of Mathematics Yazd University Yazd, Iran E-mail: hmazaheri@yazduni.ac.ir