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On the Stability of a Cubic Functional Equation
in Random Normed Spaces
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Abstract. The concept of Hyers-Ulam-Rassias stability has been
originated from a stability theorem due to Th. M. Rassias. Re-
cently, the Hyers-Ulam-Rassias stability of the functional equation

f(x + 2y) + f(x− 2y) = 2f(x)− f(2x) + 4
{

f(x + y) + f(x− y)
}

,

has been proved in the case of Banach spaces. In this paper, we
will find out the generalized Hyers-Ulam-Rassias stability problem
of the above functional equation in random normed spaces.
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1. Introduction

Under what condition is there a homomorphism near an approximately
homomorphism between a group and a metric group? This is called the
stability problem of functional equations which was first raised by S. M.
Ulam [26] in 1940. In next year, D. H. Hyers [8] answers the problem
of Ulam under the assumption that the groups are Banach spaces. A
generalized version of the theorem of Hyers for approximately linear
mappings was given by Th. M. Rassias [16]. The terminology Hyers-
Ulam-Rassias stability originates from this historical background. Since
then, a great deal of work has been done by a number of authors (for
instance, [2, 4, 5, 6, 7, 8, 9, 10, 12, 15, 17, 18, 19, 20, 21, 22, 23]).
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In particular, one of the important functional equations studied is the
following functional equation:

f(x + y) + f(x− y) = 2f(x) + 2f(y)

The quadratic mapping f(x) = cx2 is a solution of this functional equa-
tion, and so one is usually said the above functional equation should be
quadratic.
A Hyers-Ulam stability problem for the quadratic functional equation
was first proved by F. Skof [25] for mappings f : X → Y , where X is a
normed space and Y is a Banach space. S. Czerwik [3] generalized the
Hyers-Ulam stability of the quadratic functional equation.
The cubic mapping f(x) = cx3 satisfies the functional equation:

f(x + 2y) + f(x− 2y) = 2f(x)− f(2x) + 4
{

f(x + y) + f(x− y)
}

. (1)

In this note we promise that the equation (1) is called a cubic functional
equation and every solution of the cubic functional equation (1) is said
to be a cubic mapping.
Our main goal in this note is to investigate the stability problem for the
equation (1) in random normed spaces.
In the sequel, we shall adopt the usual terminology, notions and conven-
tions of the theory of random normed spaces as in [24]. Throughout this
paper, the spaces of all probability distribution functions is denoted by
Λ+. Elements of Λ+ are functions F : R∪ [−∞, +∞] → [0, 1], such that
F is left continuous and nondecreasing on R and F (0) = 0, F (+∞) = 1.
It’s clear that the subset

D+ = {F ∈ Λ+ : l−F (−∞) = 1},

where l−f(x) = limt→x− f(t), is a subset of Λ+. The space Λ+ is par-
tially ordered by the usual pointwise ordering of functions, that is for
all t ∈ R, F 6 G ⇔ F (t) 6 G(t). For every a > 0, Ha(t) is the element
of D+, which is defined by

Ha(t) =
{

0 if t 6 a
1 if t > a

.
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One can easily show that the maximal element for Λ+ in this order is
the distribution function H0(t).

Definition 1.1. (see [24]) A function T : [0, 1] × [0, 1] → [0, 1] is a
continuous triangular norm (briefly a t-norm)if T satisfies the following
conditions:
(i) T is commutative and associative;
(ii) T is continuous;
(iii) T (x, 1) = x for all x ∈ [0, 1];
(iv) T (x, y) 6 T (z, w) whenever x 6 z and y 6 w for all x, y, z, w ∈
[0, 1]. Three typical examples of continuous t−norms are T (x, y) =
xy, T (x, y) = max{a + b − 1, 0} and T (x, y) = min(a, b). Recall that,
if T is a t−norm and {xn} are given numbers in [0, 1], then Tn

i=1xi is
defined recursively by T 1

i=1x1 and Tn
i=1xi = T (Tn−1

i=1 xi, xn) for n > 2.

Definition 1.2. A random normed space(briefly RN -space) is a triple
(X, Ψ, T ), where X is a vector space, T is a continuous t-norm and
Ψ : X → D+ is a mapping such that the following conditions hold:
(i) Ψx(t) = H0(t) for all t > 0 if and only if x = 0;
(ii) Ψαx(t) = Ψx( t

|α|) for all α ∈ R, α 6= 0, x ∈ X and t > 0.
(iii) Ψx+y(t+ s) > T (Ψx(t), Ψy(s)), for all x, y ∈ X and t, s > 0. Every
normed space (X, ||.||) defines a random normed space (X,Ψ, TM ) where
for every t > 0,

Ψu(t) =
t

t + ||u||
and TM is the minimum t-norm. This space is called the induced random
normed space.
If the t-norm T be sup

0<a<1
T (a, a) = 1, then every RN -space (X, Ψ, T )

be a metrizable linear topological space with the topology τ (called the
Ψ-topology or the (ε, δ)-topology) induced by the base of neighborhoods
of θ, {U(ε, λ)|ε > 0, λ ∈ (0, 1)}, where

U(ε, λ) = {x ∈ X|Ψx(ε) > 1− λ}.
Definition 1.3. Let (X, Ψ, T ) be an RN-space.
(i) A sequence {xn} in X is said to be convergent to x ∈ X if for all
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t > 0, limn→∞Ψxn−x(t) = 1.
(ii) A sequence {xn} in X is said to be Cauchy sequence in X if for all
t > 0,

limn→∞Ψxn−xm(t) = 1.

The RN -space (X,Ψ, T ) is said to be complete if every Cauchy sequence
in X is convergent.

Theorem 1.1. (see [24]) If (X, Ψ, T ) is RN-space and {xn} is a sequence
such that xn → x, then limn→∞Ψxn(t) = Ψx(t).

2. Stability of Equation (1) in Random Normed
Spaces

Remark 2.1. In the rest of the paper let Mf (x, y) = f(x + 2y) + f(x−
2y)− 2f(x) + f(2x)− 4f(x + y)− 4f(x− y).

Theorem 2.1. Let X be a real linear space,(Z, Ψ,min) be a random
space, and ψ : X2 → Z be a function such that for some 0 < α < 8,

Ψψ(2x,0)(t) > Ψαψ(x,0)(t) ∀x ∈ X, t > 0 (2)

and for all x ∈ X and t > 0

lim
n→∞Ψ(2nx,2ny)(8

nt) = 1.

If (Y, µ,min) be a complete random space and f : X → Y is a mapping
such that for all x, y ∈ X and t > 0

µMf (x,y) > Ψψ(x,y)(t), (3)

then there is a unique mapping C : X → Y such that

µf(x)−C(x)(t) > Ψψ(x,0)((8−α)t). (4)

Proof. Existence: Putting y = 0 in (3) we see that for all x ∈ X,

µ f(2x)
8

−f(x)
(t) > Ψψ(x,0)(8t), (5)
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Replacing x by 8nx in (5), we obtain

µ f(2n+1x)

8n+1 − f(2nx)
8n

(t) > Ψψ(2nx,0)(8
n+1t) > Ψψ(x,0)

(8n+1t

αn

)
. (6)

Since

f(2nx)
8n

−f(x) =
n−1∑

k=0

{f(2k+1x)
8k+1

− f(2kx)
8k

}
, (7)

so by (7) we obtain

µ f(2nx)
8n −f(x)

( n−1∑

k=0

tαk

8k+1

)
> Tn−1

k=0 (Ψψ(x,0)(t)) = Ψψ(x,0)(t). (8)

This implies that

µ f(2nx)
8n −f(x)

(t) > Ψψ(x,0)

( t∑n−1
k=0

αk

8k+1

)
. (9)

Replacing x by 2px in (9), we obtain

µ f(2n+px)

8(n+p)
− f(2px)

8p
(t) > Ψψ(2px,0)

( t∑n−1
k=0

αk

8(k+p)+1

)

> Ψψ(x,x)

( t∑n−1
k=0

αk+p

8(k+p)+1

)

= Ψψ(x,0)

( t∑n+p−1
k=p

αk

8k+1

)
. (10)

As
lim

p,n→∞Ψψ(x,0)

( t∑n+p−1
k=p

αk

8k+1

)
= 1,

then {f(2nx)
8n } is a Cauchy sequence in complete RN-space (Y, µ,min),

so there is some point C(x) ∈ Y such that limn→∞
f(2nx)

8n = C(x). Fix
x ∈ X and put p = 0 in (10). Then we obtain

µ f(2nx)
8n −f(x)

(t) > Ψψ(x,0)

( t∑n−1
k=0

αk

8k+1

)
. (11)
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and so, for every ε > 0, we have

µC(x)−f(x)(t + ε) > T
(
µ

C(x)− f(2nx)
8n

(ε), µ f(2nx)
8n −f(x)

(t)
)

> T
(
µ

C(x)− f(2nx)
8n

(ε), Ψψ(x,0)

( t∑n−1
k=0

αk

8k+1

))
. (12)

Getting the limit as n →∞ in (12), we get

µC(x)−f(x)(t+ε) > Ψψ(x,0)((8−α)t). (13)

Since ε was arbitrary, by getting ε → 0 in (13), we get

µC(x)−f(x)(t) > Ψψ(x,0)((8−α)t). (14)

Replacing x and y by 2nx and 2ny in (3), respectively, we get for all
x, y ∈ X and for all t > 0,

µMf (2nx,2ny)

8n

(t) > Ψψ(2nx,2ny)(8
nt). (15)

Getting the limit as n →∞ in (15) and using this fact that

lim
n→∞Ψψ(2nx,2ny)(8

nt) = 1,

we conclude that

C(x + 2y) + C(x− 2y) = 2C(x)− C(2x) + 4
{

C(x + y) + C(x− y)
}

.

Uniqueness: To prove the uniqueness of the mapping C, assume that
there is another mapping D : X → Y which satisfies (4). Since f

is a cubic mapping, C and D are too. Therefore, for all n ∈ N and
every x ∈ X, we can write C(2nx) = 8nC(x) and D(2nx) = 8nD(x).
Therefore, we have

µC(x)−D(x)(t) = lim
n→∞µC(2nx)

8n −D(2nx)
8n

(t),

so

µC(2nx)
8n −D(2nx)

8n
(t) > min

{
µC(2nx)

8n − f(2nx)
8n

( t

2

)
, µD(2nx)

8n − f(2nx)
8n

( t

2

)}

> Ψψ(2nx,0)

(8n(8− α)t
2

)

> Ψψ(x,0)

(8n(8− α)t
2αn

)
.
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Since limn→∞
8n(8−α)t

2αn = ∞, then limn→∞Ψψ(x,0)

(
8n(8−α)t

2αn

)
= 1. There-

fore, it follows that , µC(x)−D(x)(t) = 1 and so C(x) = D(x) for all x ∈ X

and t > 0. Which completes the proof. ¤

Corollary 2.1. Let X be a real linear space, (Z, Ψ,min) be a random
normed space, and (Y, µ,min) a complete random normed space. Let
p ∈ (0, 1) and z0 ∈ Z. If f : X → Y is a mapping and for all x, y ∈ X

and t > 0
µMf (x,y)(t) > Ψ||x||pz0

(t),

then there is a unique cubic mapping C : X → Z such that

µf(x)−C(x)(t) > Ψ||x||pz0
((8− 8p)t),

Proof. Let α = 8p and ψ : X2 → Z be defined by ψ(x, y) = ||x||pz0 or

ψ(x, y) = (||x||p + ||y||p)z0. ¤

Corollary 2.2. Let X be a real linear space, (Z, Ψ,min) be a random
normed space, and (Y, µ,min) a complete random normed space. Let
p ∈ (0, 1) and z0 ∈ Z. If f : X → Z is a mapping and for all x, y ∈ X

and t > 0
µMf (x,y)(t) > Ψ(||x||p+||y||p+||x||p.||y||p)z0

(t),

then there is a unique mapping C : X → Z such that

µf(x)−C(x)(t) > Ψ||x||pz0
((8− 8p)t).

Proof. Let α = 8p and ψ : X2 → Z be defined by ψ(x, y, z) =

(||x||p + ||y||p + ||x||p.||y||p)z0. ¤

Corollary 2.3. Let X be a real linear space, (Z, Ψ,min) be a RN-
space, and (Y, µ,min) a complete RN-spaces. Let z0 ∈ Z, f : X → Y be
a mapping, and for all x, y ∈ X and t > 0

µMf (x,y)(t) > Ψδz0(t).

Then there is a unique mapping C : X → Y such that

µf(x)−C(x)(t) > Ψδz0(7t).
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Proof. Let α = 1 and ψ : X2 → Z be defined by ψ(x, y) = δz0. ¤
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