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Abstract. This paper is concerned with admissible and minimax
estimation of scale parameter θ of a gamma distribution under
the entropy loss function, when it is known that θ > a for some
known a > 0. An admissible minimax estimator of θ, which is the
pointwise limit of a sequence of Bayes estimators, is derived. Also,
the admissible estimators and the only minimax estimator of θ in
the class of truncated linear estimators are obtained. Finally, the
results are extended to a subclass of scale parameter exponential
family and the family of transformed chi-square distributions.
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1. Introduction

In some estimation problems, there exists definite prior information on
the values of parameter of interest in the form of a bound on it. For
example, the average per capita income in a certain country is at least a
known amount of money. The problem of estimation of bounded param-
eters for certain densities have considered by several researchers. These
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problems were first studied by Brunk ([3]) and van Eeden ([16]) and
then grew rapidly. For a classified and extensively reviewed work in this
area, as well as a list of references, (see van Eeden [19]).

About the problem of admissible and minimax estimation of a lower-
bounded parameter, under Squared Error Loss (SEL) function, Katz
([9]) gives an admissible minimax estimator of a normal mean µ ∈ [a,∞),
Berry ([1]) obtains admissible minimax estimators for the exponential
distribution with support θ ∈ [a,∞), θ ∈ (−∞, b] or θ ∈ [a, b], and
Shao and Strawderman ([14,15]) give the class of dominating estimator
of Maximum Likelihood Estimator (MLE) for lower bounded normal
mean and dominating estimator of truncated linear estimators for lower
bounded gamma scale parameter, respectively. Using Scale Invariant
Squared Error Loss (SISEL) function, Kaluszka ([7,8]) and van Eeden
([17]) obtain minimax and admissible estimators for lower bounded scale
parameter θ > a of gamma distribution and van Eeden and Zidek ([22])
obtained a mimimax estimator of a bounded scale parameter. Jafari
Jozani et al. ([6]) extend the results of van Eeden ([17]) to a subclass of
exponential family, and van Eeden and Zidek ([20,21]) and van Eeden
([18]) consider minimax estimation of a lower bounded scale parameter
of a F-distribution.

Let X have a gamma distribution with probability density function
(pdf)

fθ(x) =
1

θαΓ(α)
xα−1e−

x
θ , x > 0, (1)

where α > 0 is a known shape parameter and θ is an unknown scale
parameter. Suppose θ > a for some known a > 0. It is interesting to
note that in the literature, estimation of lower bounded parameters are
often considered under SEL and SISEL functions which are symmetric
about the parameter θ and convex in estimator δ. For example, Jafari
Jozani et al. ([6]) found an admissible minimax estimator for θ in a
general class of distributions (including gamma distribution) when θ is
restricted to θ ∈ [a,∞) under SISEL function.

In some estimation problems, over-estimation maybe more serious
than under-estimation. In such cases, the usual methods of estimation,
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which are based on symmetric loss function may be inappropriate. As an
alternative to SISEL, which is appropriate for estimating scale parameter
θ, consider the entropy loss function defined by

L(θ, δ) =
δ

θ
− ln

δ

θ
− 1, (2)

which is also known as Stein’s loss. This loss is convex in δ and is not
symmetric and it penalizes heavily under estimation. For a review of
the literature in using entropy loss, (see Parsian and Nematollahi [12])
and references cited therein. Under the loss (2), the best scale invariant
and admissible estimator of θ > 0 under the model (1) is δ0(X) = X

α

(See Dey et al., [4]).
Under the entropy loss function (2) and for a general scale family of

distributions, Kubokawa ([10]) showed that the unrestricted Minimun
Risk Equivariant (MRE) estimator δ0(X) of scale parameter θ is mini-
max when θ > a, and also the Generalized Bayes Estimator (GBE) of
θ with respect to (w.r.t.) improper prior π(θ) = 1

θ , θ > a, dominates
δ0(X) and hence is minimax. Also Marchand and Strawderman ([11])
extend the results of Kubokawa ([10]) to a general class of convex loss
functions and obtained class of dominating estimator of δ0(X).

In this paper we obtain admissible and minimax estimators of θ

when θ > a in the model (1) under the entropy loss function (2). To
this end, in Section 2, an admissible minimax estimator of θ, which is the
pointwise limit of a sequence of Bayes estimators, is derived. In Section
3, the admissible estimators and the only minimax estimator in the class
of truncated linear estimators are obtained. The results are extended to
a subclass of the scale parameter exponential family and the family of
transformed chi-square distributions introduced by (Rahman and Gupta
[13]).

2. An Admissible Minimax Estimator

Let X have pdf (1) with known α > 0 and unknown θ > a. In this
section, we find an admissible minimax estimator of θ, under the entropy
loss function (2).



94 M. NASR ESFAHANI AND N. NEMATOLLAHI

Following van Eeden ([17]), consider the sequence of proper prior

πm(θ) =
a

1
m

mθ1+ 1
m

, θ > a, a > 0, m = 1, 2, ... . (3)

For β > 0 and x > 0, define

gβ(x) = xβ−1e−x and Gβ(x) =
∫ x

0
tβ−1e−tdt. (4)

Then from (1) and (3), the posterior distribution of θ given X = x is
given by

πm(θ|x) =
xαme−

x
θ

θαm+1Gαm(x
a )

, θ > a, a > 0, m = 1, 2, ..., (5)

where αm = α + 1
m . The Bayes estimator of θ under the loss (2) is

δπm(x) = {E(1
θ |x)}−1, and from (5) we have

E(
1
θ
|x) =

1
xGαm(x

a )

∫ ∞

a

xαm+1e−
x
θ

θαm+1
=

Gαm+1(x
a )

xGαm(x
a
)

.

It is easy to verify that

Gαm(y) =
1

αm
[gαm+1(y) + Gαm+1(y)],

so,

δπm(x) =
x

αm

{
gαm+1(x

a )
Gαm+1(x

a )
+ 1

}
. (6)

From (6) we have

lim
m→∞ δπm(x) =

x

α

{
gα+1(x

a )
Gα+1(x

a )
+ 1

}

= δπ(x) (say). (7)

Notice that δπ(X) is the generalized Bayes (and limiting Bayes) estima-
tor of θ(> a) w.r.t. improper prior

π(θ) =
1
θ
, θ > a (8)
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under the loss (2). In the following theorem we show that δπ(X) is an
admissible estimator of θ(> a) under the loss (2). Our proof is based on
Blyth’s ([2]) method.

Theorem 2.1. Let X have pdf (1) with θ > a and α > 1. Then under
the loss (2), the estimator (7) is an admissible estimator of θ.

Proof. Under entropy loss (2), L(θ, δ) = L( θ
a , δ

a). So, without loss of
generality we take a = 1. Since the risk function of an estimator δ under
the loss (2) is continuous in θ, we can use Blyth’s ([2]) method. That is,
we must show that for all η > 0 such that θ − η > a,

lim
m→∞

m{Πm(θ + η)−Πm(θ − η)}
m{r(πm, δπ)− r(πm, δπm)} = +∞, (9)

where Πm is the distribution function of θ with pdf (3), δπm is Bayes
estimator of θ w.r.t. prior (3) and r(πm, δπ), r(πm, δπm) are the Bayes
risks of δπ and δπm w.r.t to the prior πm, respectively. From (3) and
using L’Hospital’s rule, we have

lim
m→∞m{Πm(θ + η)−Πm(θ − η)} = lim

m→∞

∫ θ+η

θ−η

1

t1+ 1
m

dt

= lim
m→∞

(θ − η)−
1
m − (θ + η)−

1
m

1
m

= lim
m→∞

e−
1
m

ln(θ−η) − e−
1
m

ln(θ+η)

1
m

= ln
θ + η

θ − η
> 0. (10)

Also from (6) and (7) with a = 1, we have
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m{r(πm, δπ) − r(πm, δπm)} =
∫ ∞

1

∫ ∞

0

(
x

αθ
− x

αmθ
)

1
θ

1
m +1

fθ(x)dxdθ

+
∫ ∞

1

∫ ∞

0

(
x

αθ

gα+1(x)
Gα+1(x)

− x

αmθ

gαm+1(x)
Gαm+1(x)

)
1

θ
1
m +1

fθ(x)dxdθ

+
∫ ∞

1

∫ ∞

0

(
ln

x

αmθ
− ln

x

αθ

)
1

θ
1
m +1

fθ(x)dxdθ

+
∫ ∞

1

∫ ∞

0

[
ln

(
gαm+1(x)
Gαm+1(x)

+ 1
)
− ln

(
gα+1(x)
Gα+1(x)

+ 1
)]

× 1
θ

1
m +1

fθ(x)dxdθ

= J1m + J2m + J3m + J4m. (11)

Note that

J1m = (1− α

αm
)
∫ ∞

1

1

θ1+ 1
m

dθ =
1

αm
,

J3m = ln
α

αm

∫ ∞

1

1

θ1+ 1
m

dθ = m ln
α

αm
,

so, lim
m→∞J1m = 1

α and using L’Hospital’s rule

lim
m→∞J3m = lim

m→∞
ln α− ln(α + 1/m)

1/m
= − 1

α
.

Hence lim
m→∞

(J1m +J3m) = 1
α− 1

α = 0. Since gβ(x)
Gβ(x) = xβ−1e−x∫ x

0 tβ−1e−tdt
6 xβ−1∫ x

0 tβ−1dt
=

β
x and ln(x + 1) 6 x, x > 0, for α > 1 we have

∣∣∣
{

x

αθ

gα+1(x)
Gα+1(x)

− x

αmθ

gαm+1(x)
Gαm+1(x)

}
1

θ
1
m +1

∣∣∣ 6
(

α + 1
α

+
αm + 1

αm

)
1
θ2

6 4
θ2

and

∣∣∣
{

ln
(

gαm+1(x)
Gαm+1(x)

+ 1
)
− ln

(
gα+1(x)
Gα+1(x)

+ 1
)}

1
θ

1
m +1

∣∣∣ 6
(

αm + 1
x

+
α + 1

x

)
1
θ

6 (2(α + 1) + 1)
1
θx

.
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Since
∫∞
1

∫∞
0

4
θ2 fθ(x)dxdθ = 4 < ∞ and for α > 1,

∫∞
1

∫∞
0 (2(α +

1) + 1) 1
θxfθ(x)dxdθ = (2(α+1)+1

α−1 < ∞, so from Lebesgue dominated
convergence theorem, lim

m→∞J2m = lim
m→∞J4m = 0, and hence from (11)

lim
m→∞m{r(πm, δπ)− r(πm, δπm)} = 0. (12)

From (10) and (12), we conclude (9), which completes the proof. ¤

Remark 2.1. From Theorem 2.4. of Kubokawa ([10]) and Corollary 4
of Marchand and Strawderman ([11]), we can conclude that the GBE
δπ(x) in (7) is a minimax estimator of θ when θ > a, and hence δπ(x)
is an admissible minimax estimator of θ. Note that Kubokawa ([10])
and Marchand and Strawderman (11) showed that the GBE of θ w.r.t.
improper prior (8) is minimax and dominate the unrestricted MRE es-
timator of θ under entropy loss function (2) and under a general class
of convex loss functions, respectively. But their results do not address
the general and interesting question of admissibility of GBE of θ(> a),
see section 5 of Marchand and Strawderman ([11]). The admissibility
of GBE of θ(> a) has been established in some special distributions and
under SEL and SISEL function (see for example [5, 6, 17]). We proved
in Theorem 2.1. the admissibility of GBE of lower bounded gamma scale
parameter under entropy loss function (2).

Remark 2.2. Note that van Eeden ([17]) and Jafari Josani et al. ([6])
showed that the estimator

δ(x) =
x

α + 1

{
gα+2(x

a )
Gα+2(x

a )
+ 1

}

is admissible for θ when θ ∈ [a,∞) under SISEL function. Our estima-
tor δπ(x) in (7), which is admissible under entropy loss (2), is similar
to their estimator with replacing α by α + 1.
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3. Admissible and Minimax Truncated Estima-
tors

Let X be a random variable with pdf (1) where θ > 0. Then δ0(X) = X
α

is best scale invariant and admissible estimator of θ when θ is unre-
stricted, i.e., θ > 0. Kubokawa ([10]), Marchand and Strawderman ([11])
showed that δ0(X) is minimax in restricted parameter space θ > a and
any minimax estimator of θ has minimax risk equal to constant risk of
δ0. Since

Minimax V alue = R(θ, δ0(X)) = Eθ

[
X

αθ
− ln

X

αθ
− 1

]

= −E

[
ln

X

αθ

]
= lnα−Ψ(α), (13)

so, it is easy to see that a (necessary and) sufficient condition for an
estimator δM to be minimax estimator of θ > a under the entropy loss
function is given by

R(θ, δM ) 6 sup
θ>a

R(θ, δM ) 6 lnα−Ψ(α). (14)

From (14), or equivalently from Theorem 2.4. of Kubokawa ([10])
and Remark 5 of Marchand and Strawderman ([11]), the truncated ver-
sion of δ0(X) = X

α , i.e., δ 1
α
(X) = max(a, X

α ), is minimax estimator of
θ(> a) under the entropy loss function (2). Note that δ 1

α
(X) belongs to

the class of truncated linear estimators of θ(> a) which is given by

C = {δc|δc(X) = max(a, cX), c > 0, a > 0}. (15)

This class was studied by van Eeden and Zidek ([20, 21]) and van Ee-
den ([17]) for the estimation of lower bounded scale parameter of F and
gamma distributions, respectively, under SISEL function. In this sec-
tion, we characterize the admissible and minimax estimators of θ(> a)
in the class C of truncated linear estimators.

Using the idea of van Eeden ([17]), in the following theorem we show
that for the pdf (1) and under the loss (2), exactly one estimator in the
class C is minimax estimator.
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Theorem 3.1. Let X be a random variable with pdf (1) where θ >
a. Then under the loss (2), the estimator δ 1

α
(X) = max(a, X

α ) in the
class C is minimax estimator of θ(> a), and no other estimator in C is
minimax.

Proof. From (14), it suffices to show that

sup
θ>a

R(θ, δ 1
α
) = lnα− ψ(α)

sup
θ>a

R(θ, δc) > ln α− ψ(α) for c 6= 1
α . (16)

The risk function of δc under the loss (2) is

R(θ, δc) =
a

θ
− ln

a

θ
− 1 +

∫ ∞

a
c

{
(
cx

θ
− ln

cx

θ
)− (

a

θ
− ln

a

θ
)
}

1
θαΓ(α)

xα−1e−
x
θ dx

=
a

θ
− ln

a

θ
− 1 +

∫ ∞

a
cθ

{
(cy − ln cy)− (

a

θ
− ln

a

θ
)
}

yα−1e−y

Γ(α)
dy. (17)

Hence for all c > 0 we have

∂

∂θ
R(θ, δc) =

θ − a

θ2

{
1− 1

Γ(α)

∫ ∞

a
cθ

yα−1e−ydy

}
> 0,

therefore R(θ, δc) is a strictly increasing function of θ. So,

sup
θ>a

R(θ, δc) = lim
θ→∞

R(θ, δc)

= − ln a− 1 +
∫ ∞

0
(cy − ln cy + ln a)

yα−1e−y

Γ(α)
dy

+ lim
θ→∞

ln θ

{
1−

∫ ∞

a
cθ

yα−1e−y

Γ(α)
dy

}

= −1 + cα− ln c− ψ(α)

= uα(c), (say).
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Note that uα(c) is a strictly convex function of c and takes its minimum
at c = 1

α . Therefore, (16) holds true, which completes the proof. ¤

Remark 3.1. From Remark 5. of Marchand and Strawderman ([11]), if
an estimator δ′ satisfy δ′ > δπ, where δπ is GBE given by (7), then δ′ is
not minimax. But we cannot use this result in our problem, because the
estimator δc, c 6= 1

α in the class C does not satisfy the inequality δc > δπ

in general.

In the following theorem we characterize the admissible estimators
in the class C, which is a result of Lemma 3.2. Theorem 3.1. and 3.2.
of van Eeden ([17]) by replacing α + 1 with α(> 1) but under the loss
(2).

Theorem 3.2. Let X have pdf (1) with θ > a and α > 1. Then under
the entropy loss (2), the estimators δc(X) in the class C are admissible
if and only if c ∈ (0, 1

α ].

Proof. From (17) we have

∂

∂c
R(θ, δc) S 0 ⇐⇒ c

∫ ∞

a
cθ

gα+1(y)dy S
∫ ∞

a
cθ

gα(y)dy.

Let Hα(k) = {∫∞k gα(y)dy}{∫∞k gα+1(y)dy}−1, then from Lemma 3.2.
and Theorem 3.1. of van Eeden ([17]), we conclude that there exist a
function c(θ) such that

∂

∂c
R(θ, δc) S 0 ⇐⇒ c S c(θ),

where c(θ) satisfies: (i) 0 < c(θ) < 1
α ; (ii) c(θ) is strictly increasing

in θ; (iii) lim
θ→a

c(θ) = 0; and (iv) lim
θ→∞

c(θ) = 1
α . Further R(a, δc) is

strictly increasing in c and for c ∈ (0, 1
α) there exists θ(c) > a such that

R(θ(c), δ 1
α
) < R(θ(c), δc).

From the above results and by a similar argument given in Theorem
3.2. of van Eeden ([17]), we conclude that for 1

α < c < c′, the estimator
δc(X) dominates δc′(X) and δc(X) is admissible in class C if 0 < c 6 1

α .
So, the estimators δc(X) in class C are admissible if and only if 0 < c 6
1
α . ¤
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Remark 3.2. From Theorems 3.1. and 3.2. the only admissible mini-
max estimator of θ > a in the class of truncated linear estimators C is
δ 1

α
(X) = max(a, X

α ).

Remark 3.3. Let X1, ..., Xn be a random sample of size n from Gamma(α, θ)-
distribution with pdf (1). Then T (X) =

∑n
i=1 Xi with X = (X1, . . . , Xn), is a

complete sufficient statistics for θ and T (X) has Gamma(αn, θ)-distribution.
Therefore, the results of Sections 2 and 3 holds for this case with replacing α

by nα and X by T (X).

Remark 3.4. The results of Sections 2 and 3 can be extended to a
subclass of exponential family as follow. Let X = (X1, . . . , Xn) have the
joint pdf

f(x, θ) = c(x, n)θ−νe−
T (x)

θ , (18)

where x = (x1, . . . , xn), c(x, n) is a function of x and n, ν is a function
of n and T (X) is a complete sufficient statistics for θ with Gamma(ν, θ)-
distribution. An admissible linear estimator of θ(> 0) under entropy
loss function can be found in Parsian and Nematollahi ([12]) and an
admissible minimax estimator of θ(> a) under SISEL function can be
found in Jafari Jozani et al. ([6]). Since T = T (X) has a Gamma(ν, θ)-
distribution, therefore from Remark 3.3. we can extend the results of
Sections 2 and 3 to the subclass of exponential family (18) by replacing
α by ν and X by T (X).

Remark 3.5. The results of Sections 2 and 3 can also be extended to
the family of transformed chi-square distributions introduced by Rahman
and Gupta ([13]) which includes Pareto and beta distributions as a special
case. For details see Jafari Jozani et al. ([6]).

References

[1] J. C. Berry, Minimax estimation of a restricted exponential location pa-
rameter, Statist. Decisions, 11 (1993), 307-316.

[2] C. R. Blyth, On minimax statistical procedures and their admissibility,
Ann. Math. Statist., 22 (1951), 22-42.



102 M. NASR ESFAHANI AND N. NEMATOLLAHI

[3] H. D. Brunk, Maximum likelihood estimates of monotone parameters,
Ann. Math. Statist., 26 (1955), 607-616.

[4] K. D. Dey, M. Ghosh, and C. Srinivasan, Simultaneous estimation of
parameters under entropy loss, J. Statist, Plann. Infer., 15 (1987), 347-
363.

[5] R. H. Farrell, Estimation of a location parameter in the absolutely con-
tinuous case, Ann. Math. Statist., 35 (1964), 949-998.

[6] M. Jafari Jozani, N. Nematollahi, and K. Shafie, An admissible minimax
estimator of a bounded scale-parameter in a subclass of the exponential
family under scale-invariant squared-error loss, Statist, Probab. Lett., 60
(2002), 437-444.

[7] M. Kaluszka, Admissible and minimax estimators of λr in the gamma
distribution with truncated parameter space, Metrika, 33 (1986), 363-375.

[8] M. Kaluszka, Minimax estimation of a class of functions of the scale pa-
rameter in the gamma and other distributions in the case of truncated
parameter space, Zastos. Mat., 20 (1988), 26-46.

[9] M. W. Katz, Admissible and minimax estimates of parameter in truncated
spaces, Ann. Math. Statist., 32 (1961), 136-142.

[10] T. Kubokawa, Minimaxity in estimation of restricted parameters, J. Japan
Statist. Soc., 34 (2) (2004), 1-19.

[11] E. Marchand and W. E. Strawderman, On improving on the minimum
risk equivariant estimator of scale parameter under a lower-bounded con-
straint, J. Statist. Plann. Infer., 134 (2005), 90-101.

[12] A. Parsian and N. Nematollahi, Estimation of scale parameter under en-
tropy loss function, J. Statist. Plann. Infer., 52 (1996), 77-91.

[13] M. S. Rahmann and R. P. Gupta, Family of transformed chi-square dis-
tributions, Commun. Statist. Theory Methods, 22 (1) (1993), 135-146.

[14] P. Y-S. Shao and W. E. Strawderman, Improving on truncated linear
estimates of exponential and gamma scale parameters, Canad. J. Statist.,
24 (1996 a), 105-114.

[15] P. Y-S. Shao and W. E. Strawderman, Improving on the MLE of a positive
normal mean, Statist. Sinica, 6 (1996 b), 259-274.



ADMISSIBLE AND MINIMAX ESTIMATORS OF A LOWER ... 103

[16] C. van Eeden, Maximum likelihood estimation of partially or completely
ordered parameters, Proc. Kon. Ned. Akad. V. Wet. 60 A (1957), 128-136,
201-211.

[17] C. van Eeden, Minimax estimation of a lower bounded scale-parameter
of a gamma distribution for scale-invariant squared error loss, Canad. J.
Statist., 23 (3) (1995), 245-256.

[18] C. van Eeden, Minimax estimation of a lower-bounded scale-parameter of
an F-distribution, Statist. Probab. Lett. 46 (2000), 283-286.

[19] C. van Eeden, Restricted parameter space estimation problems, admissi-
bility and minimaxity properties, Springer, Lecture notes in statistics, 188
(2006).

[20] C. van Eeden and J. V. Zidek, Group Bayes estimation of the exponential
mean: A retrospective of the Wald theory, In Statistical Decision Theory
and Related Topics V (S.S., Gupta and J.O. Berger, eds.), (1994 a), 35-49,
Springer-verlag.

[21] C. van Eeden and J. V. Zidek, Group Bayes estimation of the exponential
mean: A preposterior analysis, Test 3 (1994 b), 125-143; corrections p.
247.

[22] C. van Eeden and J. V. Zidek, Minimax estimation of a bounded scale
parameter for scale-invariant squared-error loss, Statist. Decisions, 17
(1999), 1-30.

Mehrnaz Nasr Esfahani
Department of Statistics
Science and Research Branch
Islamic Azad University
Tehran-Iran
E-mail: nasresfahani@iaun.ac.ir

Nader Nematollahi
Department of Statistics
Allameh Tabataba’i University
Tehran, Iran
E-mail: nematollahi@atu.ac.ir


