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1. Introduction

Now a day’s all works related to banking, ATM card, credit card, mar-
keting, E-commerce, etc. are doing with the help of the internet. So
providing security is a necessity for the network. For secure communi-
cation, many cryptography techniques are presented [1].

Cryptography is a process that is associated with scrambling plaintext
(ordinary text, or clear text) into cipher text (a process called encryp-
tion), then back again to plain text (known as decryption) [2]. Cryp-
tosystems can be divided into two types, secret-key cryptosystem, and
public-key cryptosystem.

RSA algorithm is a cryptosystem, which is known as one of the first
practicable public-key cryptosystems and is widely used for secure data
transmission [3]. The important property of RSA algorithm is that the
encryption key is public and differs from the decryption key which is
kept secret. This property gives the RSA algorithm asymmetry property
which is based on the practical difficulty of factoring the product of two
large prime numbers which is known as the factoring problem. The main
procedure of the RSA algorithm is that allows the user to create and then
publish the product of two large prime numbers, along with an auxiliary
value, as their public key. For more security, the prime factors must
be kept secret. Any user can use the public key to encrypt a message
(M), but with currently published methods, if the public key is large
enough, only someone with knowledge of the prime factors can feasibly
decode the message [4]. Breaking RSA encryption is known as the RSA
problem. It is an open question whether it is as hard as the factoring
problem [5, 6, 7].

The efficient implementation of the long integer modular arithmetic pri-
marily determines the performance of RSA. Grobschadl [8] presented the
multiplier architecture of the RSA crypto chip for long integer modular
arithmetic which utilized Barret’s modular reduction method. Hasen-
plaugh et al. [9] proposed a modification to Barrett’s algorithm that
leads to a reduction in multiplications and additions. Cao et al. [10] put
forth a lookup-table-based modular reduction method which partitions
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the binary string of an integer to be reduced into blocks according to its
runs. Its complexity depends on the number of runs in the binary string.

Sharma et al. [11] proposed The Short Range Natural Number (SRNN)
algorithm which was similar to RSA algorithm with some modifica-
tion. In the algorithm, an extremely large number that has two prime
factors (similar to RSA) is used. In addition, two natural numbers in
pair of keys (public, private) are used. These natural numbers increase
the security of the cryptosystem.

Patidar et al. [1] suggested an algorithm concept to present the mod-
ified form of RSA algorithm to speed up the implementation of RSA
algorithm during data exchange across the network. This includes the
architectural design and enhanced form of RSA algorithm through the
use of the third prime number to make a modulus n which is not easily
decomposable by intruders. A database system is used to store the key
parameters of RSA cryptosystem before it starts the algorithm.

In this paper, we propose a new approach for the efficient implementa-
tion of RSA. A combination of Montgomery [12] and Barret [13] mod-
ular reduction techniques are used to get an efficient implementation of
modular multiplication. Also applying a variable key size space improves
security as well.

This paper is organized as follows. In Section 2, some of the elementary
theorems in number theory related to public-key algorithms are consid-
ered. In Section 3, RSA Public-Key cryptosystem is introduced. In Sec-
tion 4, we present an efficient implementation of RSA. Section 5 shows
test results and comparison. A brief conclusion is presented in Section
6.

2. SomeMathematical Theorems Used in Public-
Key Cryptosystem4 M. MOHAMMADI, A. ZOLGHADRASLI AND M. A. POURMINA

2.1 Fermat’s and Euler’s theorems

Two theorems that play important roles in public-key cryptosystems
are Fermat’s and Euler’s theorems. The proof of these theorems can be
found in any book in number theory [12].

(I) Fermat’s little theorem:
Let p be a prime and a be any integer. Then ap ≡ a (mod p), if
gcd(p, a) = 1 then ap−1 ≡ 1 (mod p).
Fermat’s theorem can be constructed as saying that the congruence
xp−1 ≡ 1 (mod p) has exactly p − 1 solutions (x = 1, 2, . . . , p −
1) which are distinct mod p. This theorem is mainly used as a
primality test in the prime generation which has a crucial part in
the cryptographic algorithm.

(II) Euler’s theorem:
One of the important quantities in number theory referred to as
Euler’s totient function ϕ(n), where ϕ(n) is the number of positive
integers less than n and relatively prime to n. Obviously for a prime
p, ϕ(p) = p− 1.

Euler theorem states that for every a and n that are relatively prime
aϕ(n) ≡ 1 mod n. Euler’s totient function is used in RSA public-key
cryptosystem in the key generation phase to determine the public and
private exponent (see 3.1).

2.2 Chinese remainder theorem

Let n = n1 n2 . . . nk, where ni are pair-wise relatively prime. Consider
the correspondence

a↔ (a1 a2 . . . a2k),

where a ∈ Z∗n [10], ai ∈ Z∗ni , and

ai = a mod ni, for i = 1, 2, . . . , k.

Then the correspondence is a one-to-one mapping between Zn and the
Cartesian product: Zn1×Zn2× . . .×Znk. As a corollary of this theorem:
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If n1, n2, . . . , nk are pair-wise relatively prime and n = n1 n2 . . . nk, then
for all integers x and a,

x ≡ a (mod ni),

for i = 1, 2, . . . , k if and only if

x ≡ a (mod n).

3. RSA Public-Key Cryptosystem

RSA is the most widely used and currently most important public-key
algorithm. Its encryption procedure involves exponentiation which could
be a very time-consuming process.

3.1 RSA Key generation algorithm

In the RSA system for each entity, the key pair is generated as follows:

1. Two large primes p and q of the same length are selected randomly.

2. The modulus of the system n = p.q and ϕ(n) = (p− 1).(q− 1) are
calculated.

3. An arbitrary integer e is selected such that gcd(e, ϕ(n)) = 1 and
1 < e < ϕ(n). (e is usually small to produce a large size d for
better security) [12].

4. The integer d is calculated satisfying 1 < d < ϕ and e.d ≡ 1 (mod
ϕ(n)).

The public keys (e, n) are published and the private key d is kept secret.
The integers e and d in this algorithm are called the encryption exponent
and the decryption exponent, respectively, while n is called the modulus.

3.2 RSA Encryption/decryption scheme

(I) Encryption:
To encrypt a message M , the sender calculates C = M e (mod n)
using the public encryption key (e, n) of the receiver.
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(II) Decryption:
To decrypt the message C, the receiver calculates M = Cd (mod
n) using his/her own private decryption key.

The decryption is correct because:
e.d ≡ 1(modϕ), there exist an integer k such that e.d = 1 + k ϕ and
gcd(m, p) = 1 then by Fermat’s theorem: m(p−1) ≡ 1(mod p).

Raising both sides of the congruence to the power k (q − 1) and then
multiplying both sides by m yields :

mk (p−1) (q−1)+1 ≡ m(mod p).

On the other hand, if gcd(m, p) = p then this last congruence is valid. Hence
in all cases:

med ≡ m(mod p).

By the same argument:

med ≡ m(mod q).

Finally, since p and q are distinct primes, it follows that:

med ≡ m(modn),
cd ≡ med ≡ m(modn).

The system relies on the well-known number-theoretic identities such as
Euler’s, Fermat’s and Chinese remainder theorem.

4. Efficient Implementation of RSA

RSA cryptosystem is simply modular exponentiation. The modulus n is
the product of two large primes p and q. The security of the system is
based on the difficulty of factoring large integers in terms of its key size
and the length of the modulus n in bits which is said to be the key size.
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4.1 Modular reduction

The main operation of many public-key cryptosystems (PKC) such as
RSA is the use of the large integers modular exponentiation which is im-
plemented by repeating modular multiplication [14]. For this reason, the
efficiency of many PKCs is determined by the efficiency of the modular
multiplication algorithm [15, 16, 17, 18].

In this study, several suggested techniques have been considered to min-
imize the time for modular multiplication and division, either by reduc-
ing the number of multiplication or decreasing the time to multiply two
numbers and taking the modular reduction.

One method is to pre-compute a multiplication table for one of the
operands and use it to perform the multiplication with a series of ad-
ditions and table lookup steps. Another one is to perform the modular
reduction in parallel with each stage of the multiplication calculation
by removing the most significant digit and adding its reminder to the
partial sum. Alfred J. Menezes et.al [12] also have a huge discussion on
different exponentiation algorithms categorized in terms of having fixed
or arbitrary choices of the base or the exponent.

One of the efficient algorithms for modular multiplication is the Mont-
gomery modular multiplication algorithm because it avoids division by
the modulus [19, 20, 21, 22].

4.1.1. Montgomery reduction technique
Montgomery reduction is a technique that allows efficient implementa-
tion of modular multiplication without explicitly performing the classical
modular reduction step. Let m > 0, R, T be integers such that: R > m,
R and m are relatively prime (gcd(m,R) = 1) and 0  T < mR, this
method computes TR−1 mod m (which is called a Montgomery reduc-
tion of T modulo m concerning to R) without using classical method.

It should be mentioned that
−1

(T + (−Tm modR)m) /R is an integer,
because:
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−1

(−Tm modR) =
−1

T (−m modR) +kR,
−1

m(−m modR) = −1 + jR,
−1

(T + (−Tm modR)m) /R =
−1

(T + (T (−m modR)+ k R)m)/R

= T ((1 +−1 + jR) + k Rm)/R
= (Tj + km)R/R = Tj + km

Also we can write:

−1

(T + (−Tm modR)m) /R = TR−1 mod m

This is correct, because:

−1

T + (−Tm modR)m = T modm,
−1

(T + (−Tm modR)m) /R mod m = TR−1modm

Besides:

T < mR,
−1

(−Tm modR)< R, then:

−1

(T + (−Tm modR)m) /R < (mR+mR)/R < 2m

U =
−1

(−Tm modR) (R = bn,modR = low order bits)

So, if all integers are represented in radix b with selecting R = bn (n− 1
is the length of m), TR−1modm can be computed with two multiple-
precision multiplications ( i.e., U = Tm where m is minus modular
inverse of m) and simple right shift of (T + Um) is required instead of
division by R.

4.1.2. Barret’s modular reduction method In modular arithmetic,
Barrett reduction is a reduction algorithm introduced in 1987 by P.D.
Barrett [13]. A naive way of computing Z mod N would be to use a
fast division algorithm. Barrett reduction is an algorithm designed to
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optimize this operation assuming N is constant and Z < N2, replacing
divisions by multiplications. Let 1/N be the inverse of N as a floating-
point number. Then Z mod N = Z− ZN N = Z−qN , q =  ZN . Where
x denotes the floor function. The result is exact, as long as 1/N is
computed with sufficient accuracy.

However, division by N can be expensive and, in cryptographic settings,
may not be a constant time instruction on some CPUs. Thus Barrett
reduction approximates 1/N with value /2k, because division by 2k is
just a right-shift and so is cheap [12]. To calculate the best value for m,
given 2k consider:

m

2k
=

1
N
⇔ m =

2k

N

For m to be an integer, we need to round 2k somehow. Rounding to the
nearest integer will give the best approximation but can result in m/2k

being larger than 1/N , which can cause underflows. Thus m = 2k/N
is generally used. m/2k is only an approximation, and the error of the
approximation of 1/N is: e = 1

N −
m
2k
.

Let k0 be the smallest integer such that 2k0 > N . Take k0 + 1 as a
reasonable value for k in the above equations. Let

q =

mZ

2k


and r = Z − qN

Because of the floor function, q is an integer and r ≡ Z(modN). Also,
if Z < 2k then r < 2N . In other words, we can write:

ZmodN =

r, if r¡N;
r −N, otherwise.

The proof that r < 2N follows:

If Z < 2k, then

Z

2k
.(2kmodN) < N
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Since N.mZ mod 2k

2k
< N regardless of Z, it follows that

Z.(2kmodN)
2k

+N.
mZmod2k

2k
< 2N

Z −

Z − Z.(2kmodN)

2k


+
N.(mZmod2k)

2k
< 2N

Z − Z

2k
.(2k − (2kmodN)) + N.(mZmod2k)

2k
< 2N

Z − NZ

2k
.2

k

N
+ N.(mZmod2k)

2k
< 2N

Z − NmZ

2k
+
N.(mZmod2k)

2k
< 2N

Z −

mZ − (mZmod2k)

2k


.N < 2N

Z −

mZ

2k


.N < 2N

Z − qN < 2N ⇒ r < 2N

As a summary, Barret’s basic idea was to replace the division with mul-
tiplication by a pre-computed constant which approximates the inverse
of the modulus [8]. Thus the calculation of the exact quotient q =  ZN 

is avoided by computing the quotient q̃ instead: q̃ =

 Z
2n−1 

22n

N


2n+1



Although the equation of q̃ may look complicated, it can be calculated
very efficiently, because the divisions by 2n−1 or 2n+1, respectively, are
simply performed by truncating the least significant n−1 or n+1 bits of
the operands. The expression 22nN  depends on the modulus N only and
is constant as long as the modulus does not change. This constant can
be pre-computed, whereby the modular reduction operation is reduced
to two simple multiplications and some operand truncations.

4.1.3. An efficient algorithm for modular reduction
We combined Montgomery and Barret modular reduction techniques to
get an efficient implementation of modular multiplication. As an example
consider computing a5 mod m for an integer a, 1  a < m:

First, compute ã = a R mod m using Barret modular reduction method.
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Then compute the Montgomery reduction of ãã, which is A = ã2 R−1

mod m.

The Montgomery reduction of A2 is A2 R−1 mod m = ã4 R−3 mod m and
the Montgomery reduction of (A2 R−1mod m) ã is ã5 R−4mod m = a5 R

mod m, then multiplying this value by R−1mod m and reducing modulo
m gives a5 mod m.

So the division needed for computing anmodm (which is time consum-
ing) is replaced by multiplication and just right shift which can be very
fast.

In this way, the computation time is reduced and the speed of encryption
is enhanced.

4.2 Effective applying of Chinese remainder theorem

The Chinese remainder theorem (CRT) is used as an efficient technique
to speed-up the computation of modular exponentiation for the decryp-
tion operation of RSA public-key cryptosystems in which the private
exponent is very large.

Using the CRT for a special case of n = p.q (p, q are distinct primes)
and using the Garner algorithm [12], to compute x = Cdmodn, first
pre-compute:

p−1mod q,

and then:

u = ((xmod q − xmod p).p−1mod q)mod q

finally:

x = xmod p+ u.p (1)

According to Fermat’s Little Theorem, let p be a prime, any integer a
not divisible by p satisfies ap−1 ≡ 1mod p.

As a consequence of this theorem, if an integer a is not divisible by
p and if n ≡ mmod (p − 1), then an ≡ am mod p. So, xmod p =
(Cdmodn)mod p = Cdmod p (since n = p.q).
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Using the consequence of Fermat’s Little Theorem, x mod p can be
written as:

cdmod (p−1)mod p

Furthermore, it is easily observed that the cipher text c can be reduced
modulo p before computing x mod p, i.e.:

xmod p = (cmod p)dmod (p−1)mod p

Substituting the last equality into the equation 1 yields a formula for
computing x that speeds up the calculation by scaling down the length
of all operands by half. So, in this study, for computing x = Cdmodn,
where n = p.q and the primes p and q are known, first pre-compute:

p−1mod q,

dmod (p− 1),
dmod (q − 1)

and then:

t = (Cmod p)dmod (p−1)mod p,

u = ((Cmod q)d mod (q−1)mod q − t).(p− 1mod q)mod q

finally:

x = t+ u.p.

The classical algorithm for the CRT typically requires a modular reduc-
tion with modulus n, whereas this algorithm does not need this require-
ment. If p, q are approximately n

2 -bit integers, a modular reduction by n
in multiplication and exponentiation takes O(n2) bit operations, whereas
a modular reduction by p, q takes O((n2 )

2) bit operations. If hardware
can do n-bit operations, it can do two n

2 -bit operations in parallel and
so the speed of calculations with modulus p, q is approximately 4 times
faster than the calculations with modulus n, and so is more efficient.
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4.3 Testing for primality and prime generation

An efficient algorithm for the problem Primality (n), where n is a large
integer is essential for most of cryptosystems. There are no simple yet
efficient means of determining whether a large number is a prime how-
ever there are many different stochastic and probabilistic primality test
algorithms.

The probabilistic algorithm works as follows:

Given m, choose a random w with 1  w < m. The greatest com-
mon divisor (w,m), gcd(w,m), is found by Euclid’s algorithm (see e.g.
[23]). If gcd(w,m) > 1, concludes that m is composite, otherwise com-
pute u = (wm−1modm) by repeated squaring. If u = 1 it means that m
is composite. If u = 1, w is a witness for the primality of m, and there
is evidence that m could be prime.

The more witnesses we find, the stronger the evidence will be. When
we have found k witnesses, the probability of m being composite is at
most 2−k, except in the unfortunate cases, that all numbers w with
gcd(w,m) = 1 and w < m are witnesses. Such numbers are called
Carmichael numbers but they are very rare (for more information see
[23, 24]).

There are several probabilistic primality test algorithms [24], that test
whether a number is prime with a given degree of confidence, including:

Lucas Test;

Solovay-Strassen Test;

Lehmer Test;

Rabin-Miller Test;

Fermat’s Test;

The combination of two types of primality tests has been used in this
study to determine whether a very large random number is a prime in
a fast way and with a large degree of confidence. These tests are based
on Fermat’s theorem and Miller-Rabin method for primality.
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The following algorithm is the method used in implementation to gen-
erate a prime number of the required length.

Prime generation algorithm:

Input: a positive integer p of length n (as required) as the start
point.

Output: prime number p which is the next first prime after start
point integer.

1 Check to make sure p is not divisible by any small primes: 3, 5, 7, . . ..
The most efficient way is to test for divisibility by all primes less
than 2000 (using the pre-computed Eratosthenes sieve [8]).

2 Perform the Miller-Rabin test with some random number a. If p
passes, generate another random number a and go through the test
again (choose a small value of a to make calculation quicker. If p
fails increment p and go to step 1.

3 Return (p).

Another option is to generate a random p each time, instead of incre-
menting p and search until finding a prime.

5. Experimental Results

5.1 Key generation time

Figure 1 shows the experimental timing function for RSA key generation
phase. The results are averaged over 20 different (random) data. As it
is shown, it’s considerably fast due to the efficient implementation of
prime generation.

Figure 1. Timing curve for key generation
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As it is seen from figure 1, key generation time grows exponentially in
RSA system with key size.

5.2 Encryption/Decryption

Figures 2 and 3 show the experimental time for encryption and decryp-
tion operation of a file of 2000 bytes. As it is seen from the figures, the
encryption and decryption time is decreased using an efficient algorithm
for modular reduction introduced in this research (see section 4.1.3). Be-
sides, the speed of decryption is enhanced by applying the optimization
method for decryption operation using the Chinese remainder theorem.

Figure 2. Timing curve for RSA-encryption

Figure 3. Timing curve for RSA-decryption
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Table 1: execution time for modular reduction for the Classical, Bar-
rett, and Montgomery methods (m sec.)

Length of m in bits Classical Barrett Montgomery

128 5.12 2.13 61.05

256 34.85 3.43 62.94

512 49.34 12.37 63.75

1024 79.05 41.32 64.61

2048 131.65 137.26 65.45

As is seen in the above table, the Montgomery method is independent
of the length of the argument. For the size of more than 1024 bits, that
is usually used today, Montgomery is faster than the others. For the
size of less than 1024 bits, Barrett is the best. This means that applying
properly Barrett and Montgomery methods can yield a fast method that
is used in the current research.
Table 2 shows a comparison of the results of the proposed algorithm
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5.3 Comparison of the results

Table 1 shows a comparison of the execution time for the reduction of a
2k-digit number modulo a k-digit modulus m for the Classical, Barrett,
and Montgomery methods.

Table 1: execution time for modular reduction for the Classical,
Barrett, and Montgomery methods (m sec.)

As is seen in the above table, the Montgomery method is independent
of the length of the argument. For the size of more than 1024 bits, that
is usually used today, Montgomery is faster than the others. For the
size of less than 1024 bits, Barrett is the best. This means that applying
properly Barrett and Montgomery methods can yield a fast method that
is used in the current research.
Table 2 shows a comparison of the results of the proposed algorithm
implementation with the one presented by Zhou et al. in [22]. The key
size for the key generation is 1024 bits. For encryption and decryption,
a file of 1000 bytes is considered.

Table 2: comparison with the others
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implementation with the one presented by Zhou et al. in [22]. The key
size for the key generation is 1024 bits. For encryption and decryption,
a file of 1000 bytes is considered.

Table 2: comparison with the others

Technique Generation Encryption Decryption
Key Time(ms) Time(ms) Time(ms)

Zhou et al. [22] 1312.7 166.9 157.3

Implemented 1116.3 142.8 152.9
RSA

6 Conclusion

In this paper, an efficient implementation of RSA that enhances the
speed and security of the system is applied. It has the following three
advantages.

First, speeding-up the encryption and decryption operation using the
efficient implementation of modular exponentiation (combined Mont-
gomery and Barret modular exponentiation) and optimization method
for decryption operation using the Chinese remainder theorem.

Second, efficient implementation of the prime generation that leads
to a considerably fast key generation phase.

Third, applying a variable key-size space on RSA which improves its
security.

It should be noted that using a variable key-size space is equivalent
to finding a prime number in all prime number space. Breaking such a
system is impractical.

Using these issues makes a great difference in the implementation of
RSA.

References

[1] R. Patidar and R. Bhartiya, Modified RSA cryptosystem based on
offline storage and prime number, IEEE International Conference



A FAST AND SECURE RSA PUBLIC ... 17

6. Conclusion

In this paper, an efficient implementation of RSA that enhances the
speed and security of the system is applied. It has the following three
advantages.

First, speeding-up the encryption and decryption operation using the
efficient implementation of modular exponentiation (combined Mont-
gomery and Barret modular exponentiation) and optimization method
for decryption operation using the Chinese remainder theorem.

Second, efficient implementation of the prime generation that leads to a
considerably fast key generation phase.

Third, applying a variable key-size space on RSA which improves its
security.

It should be noted that using a variable key-size space is equivalent to
finding a prime number in all prime number space. Breaking such a
system is impractical.

Using these issues makes a great difference in the implementation of
RSA.

18 M. MOHAMMADI, A. ZOLGHADRASLI AND M. A. POURMINA

References

[1] R. Patidar and R. Bhartiya, Modified RSA cryptosystem based on offline
storage and prime number, IEEE International Conference on Computa-
tional Intelligence and Computing Research (ICCIC), (2013).

[2] J. Abudin, S. K. Keot, G. Malakar, N. M. Borah, and M. Rahman, Mod-
ified RSA Public Key Cryptosystem Using Two Key Pairs, International
Journal of Computer Science and Information Technologies, 5 (3) (2014),
3548–3550.

[3] R. Stinson, Cryptography: Theory and Practice, CRC Press, USA, 2005.

[4] R. L. Rivest, A. Shamir, and L. Adleman, A method for obtaining digital
signatures and public-key cryptosystems, Communications of the ACM,
21 (1978), 120–126.

[5] N. Gura, A. Patel, A. Wander, H. Eberle, and Sh. C. Shantz, Compar-
ing Elliptic Curve Cryptography and RSA on 8- Bit CPUs, CHES 2004,
(2004).

[6] H. Jeffrey, P. Jill, and H. Joseph, An Introduction to Mathematical Cryp-
tography, Springer Science+Business Media, New York, 2008.

[7] D. R. L. Brown, Breaking RSA May Be As Difficult As Factoring, Journal
of Cryptology, 29 (1) (2016), 220–241.

[8] J. Grobschadl, The Chinese remainder theorem and its application in
a high-speed RSA crypto chip, Proceedings of 16th Computer Security
Applications Conference, (2000), 384–393.

[9] W. Hasenplaugh, G. Gaubatz, and V. Gopal, Fast modular reduction, 18th
IEEE Symposium on Computer Arithmetic (ARITH ’07), (2007).

[10] Zh. Cao, R. Wei, and X. Lin, A Fast Modular Reduction Method, Com-
puter Science IACR Cryptology ePrint Archive, (2014)

[11] S. Sharma, J. S. Yadav, and P. Sharma, Modified RSA Public Key Cryp-
tosystem Using Short Range Natural Number Algorithm, International
Journal of Advanced Research in Computer Science and Software Engi-
neering, 2 (8) (2012), 134–138.

[12] A. J. Menezes, P. van Oorschot, and S. A. Vanstone, Handbook of Applied
Cryptography, CRC Press, USA, 2003.



18 M. MOHAMMADI, A. ZOLGHADRASLI AND M. A. POURMINA

References

[1] R. Patidar and R. Bhartiya, Modified RSA cryptosystem based on offline
storage and prime number, IEEE International Conference on Computa-
tional Intelligence and Computing Research (ICCIC), (2013).

[2] J. Abudin, S. K. Keot, G. Malakar, N. M. Borah, and M. Rahman, Mod-
ified RSA Public Key Cryptosystem Using Two Key Pairs, International
Journal of Computer Science and Information Technologies, 5 (3) (2014),
3548–3550.

[3] R. Stinson, Cryptography: Theory and Practice, CRC Press, USA, 2005.

[4] R. L. Rivest, A. Shamir, and L. Adleman, A method for obtaining digital
signatures and public-key cryptosystems, Communications of the ACM,
21 (1978), 120–126.

[5] N. Gura, A. Patel, A. Wander, H. Eberle, and Sh. C. Shantz, Compar-
ing Elliptic Curve Cryptography and RSA on 8- Bit CPUs, CHES 2004,
(2004).

[6] H. Jeffrey, P. Jill, and H. Joseph, An Introduction to Mathematical Cryp-
tography, Springer Science+Business Media, New York, 2008.

[7] D. R. L. Brown, Breaking RSA May Be As Difficult As Factoring, Journal
of Cryptology, 29 (1) (2016), 220–241.

[8] J. Grobschadl, The Chinese remainder theorem and its application in
a high-speed RSA crypto chip, Proceedings of 16th Computer Security
Applications Conference, (2000), 384–393.

[9] W. Hasenplaugh, G. Gaubatz, and V. Gopal, Fast modular reduction, 18th
IEEE Symposium on Computer Arithmetic (ARITH ’07), (2007).

[10] Zh. Cao, R. Wei, and X. Lin, A Fast Modular Reduction Method, Com-
puter Science IACR Cryptology ePrint Archive, (2014)

[11] S. Sharma, J. S. Yadav, and P. Sharma, Modified RSA Public Key Cryp-
tosystem Using Short Range Natural Number Algorithm, International
Journal of Advanced Research in Computer Science and Software Engi-
neering, 2 (8) (2012), 134–138.

[12] A. J. Menezes, P. van Oorschot, and S. A. Vanstone, Handbook of Applied
Cryptography, CRC Press, USA, 2003.

18 M. MOHAMMADI, A. ZOLGHADRASLI AND M. A. POURMINA

References

[1] R. Patidar and R. Bhartiya, Modified RSA cryptosystem based on offline
storage and prime number, IEEE International Conference on Computa-
tional Intelligence and Computing Research (ICCIC), (2013).

[2] J. Abudin, S. K. Keot, G. Malakar, N. M. Borah, and M. Rahman, Mod-
ified RSA Public Key Cryptosystem Using Two Key Pairs, International
Journal of Computer Science and Information Technologies, 5 (3) (2014),
3548–3550.

[3] R. Stinson, Cryptography: Theory and Practice, CRC Press, USA, 2005.

[4] R. L. Rivest, A. Shamir, and L. Adleman, A method for obtaining digital
signatures and public-key cryptosystems, Communications of the ACM,
21 (1978), 120–126.

[5] N. Gura, A. Patel, A. Wander, H. Eberle, and Sh. C. Shantz, Compar-
ing Elliptic Curve Cryptography and RSA on 8- Bit CPUs, CHES 2004,
(2004).

[6] H. Jeffrey, P. Jill, and H. Joseph, An Introduction to Mathematical Cryp-
tography, Springer Science+Business Media, New York, 2008.

[7] D. R. L. Brown, Breaking RSA May Be As Difficult As Factoring, Journal
of Cryptology, 29 (1) (2016), 220–241.

[8] J. Grobschadl, The Chinese remainder theorem and its application in
a high-speed RSA crypto chip, Proceedings of 16th Computer Security
Applications Conference, (2000), 384–393.

[9] W. Hasenplaugh, G. Gaubatz, and V. Gopal, Fast modular reduction, 18th
IEEE Symposium on Computer Arithmetic (ARITH ’07), (2007).

[10] Zh. Cao, R. Wei, and X. Lin, A Fast Modular Reduction Method, Com-
puter Science IACR Cryptology ePrint Archive, (2014)

[11] S. Sharma, J. S. Yadav, and P. Sharma, Modified RSA Public Key Cryp-
tosystem Using Short Range Natural Number Algorithm, International
Journal of Advanced Research in Computer Science and Software Engi-
neering, 2 (8) (2012), 134–138.

[12] A. J. Menezes, P. van Oorschot, and S. A. Vanstone, Handbook of Applied
Cryptography, CRC Press, USA, 2003.

A FAST AND SECURE RSA PUBLIC ... 19

[13] P. Barrett, Implementing the Rivest, Shamir and Adleman public-key
encryption algorithm on a standard digital signal processor. Advances in
cryptology:CRYPTO, 86 (263) (1987), 311–323.

[14] N. Nedjah and L. M. Mouller, High-performance hardware of the sliding-
window method for parallel computation of modular exponentitions, In-
ternational Journal of Parallel Programming, 37 (2009), 537–555.

[15] A. K. Hussain, A Modified RSA Algorithm for Security Enhancement
and Redundant Messages Elimination Using K-Nearest Neighbor Algo-
rithm, International Journal of Innovative Science, Engineering and Tech-
nology, 2 (1) (2015), 159–163.

[16] K. Sakiyama, L. Batina, B. Preneel, and I. Verbauwhede, High perfor-
mance public-key cryptoprocessor for wireless mobile applications, Mobile
Networks and Applications, 99 (2007), 245–258.

[17] A. Escala, G. Herold, E. Kiltz, and et al., An Algebraic Framework for
Diffie-Hellman Assumptions, Journal of Cryptology, 30 (1) (2017), 242–
288.

[18] J. S. Coron, T. Holenstein, R. Kunzler, and et al., How to Build an Ideal
Cipher: The Indifferentiability of the Feistel Construction, Journal of
Cryptology, 29 (1) (2016), 61–114.

[19] J. H. Seo, Short Signatures from DiffieHellman: Realizing Almost Com-
pact Public Key, Journal of Cryptology, 30 (3) (2017), 735–759.

[20] A. F. Tenca and C. K. Koc, A scalable architecture for modular multipli-
cation based on Montgomery’s algorithm, IEEE Trans. On computer, 52
(9) (2003), 1215–1221.

[21] N. Pinckney, P. Amberg, and D. Harris, Parallelized Booth-encoded radix-
4 Montgomery multipliers, Proceeding of 16th IFIP/IEEE International
Conferene on Very Large Scale Integration, (2008).

[22] X. Zhou and X. Tang, Research and implementation of RSA algorithm for
encryption and decryption, 6th International Forum on Strategic Technol-
ogy (IFOST), (2015).

[23] T. H. Cormen, C. E. Lieserson, and R. L. Rivest, Introduction to Algo-
rithms, The MIT Press, London, 2009.



A FAST AND SECURE RSA PUBLIC ... 19

[17] A. Escala, G. Herold, E. Kiltz, and et al., An Algebraic Framework for
Diffie-Hellman Assumptions, Journal of Cryptology, 30 (1) (2017), 242–
288.

[18] J. S. Coron, T. Holenstein, R. Kunzler, and et al., How to Build an Ideal
Cipher: The Indifferentiability of the Feistel Construction, Journal of
Cryptology, 29 (1) (2016), 61–114.

[19] J. H. Seo, Short Signatures from DiffieHellman: Realizing Almost Com-
pact Public Key, Journal of Cryptology, 30 (3) (2017), 735–759.

[20] A. F. Tenca and C. K. Koc, A scalable architecture for modular multipli-
cation based on Montgomery’s algorithm, IEEE Trans. On computer, 52
(9) (2003), 1215–1221.

[21] N. Pinckney, P. Amberg, and D. Harris, Parallelized Booth-encoded radix-
4 Montgomery multipliers, Proceeding of 16th IFIP/IEEE International
Conferene on Very Large Scale Integration, (2008).

[22] X. Zhou and X. Tang, Research and implementation of RSA algorithm for
encryption and decryption, 6th International Forum on Strategic Technol-
ogy (IFOST), (2015).

[23] T. H. Cormen, C. E. Lieserson, and R. L. Rivest, Introduction to Algo-
rithms, The MIT Press, London, 2009.

[24] S. William, Cryptography and Network Security: Principles and Practice,
Prentice Hall, USA, 2017.

Mahnaz Mohammadi
Ph.D of Electrical Engineering
Department of Electrical Engineering
Science and Research Branch, Islamic Azad University
Tehran, Iran
E-mail: mahnazlm@yahoo.com



20 M. MOHAMMADI, A. ZOLGHADRASLI AND M. A. POURMINA

Alireza Zolghadrasli
Associate Professor of Electrical Engineering
Department of Communication and Electronics
Faculty of Computer and Electrical Engineering
Shiraz University
Shiraz, Iran
E-mail: zolghadr@shirazu.ac.ir

Mohammad Ali Pourmina
Associate Professor of Electrical Engineering
Department of Electrical Engineering
Science and Research Branch, Islamic Azad University
Tehran, Iran
E-mail: pourmina@srbiau.ac.ir




