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1. Weak and Semi Limit Summable Functions

In [2] we have introduced and studied limit summability of real and
complex functions. There are some relations between the topic and the
Gamma type functions ([1]). Here we state several tests for weak, semi,
absolutely and uniformly limit summability of functions.
In general, we assume f : Df → C, where Df ⊆ C. In the real case we
take the function f : Df → R, where Df ⊆ R. A positive real function
f is a real function such that Rf ⊆ R+. By N∗, N we denote the set of
positive and non-negative integer numbers, respectively.
For a function with domain Df , we put

Σf = {x|x + N∗ ⊆ Df}.
Let N∗ ⊆ Df and for any positive integer n and x ∈ Σf set

Rn(f, x) = Rn(x) = f(n)− f(x + n),
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fσn(x) = xf(n) +
n∑

k=1

Rk(x).

When x ∈ Df , we may use the notation σn(f(x)) instead of σn(f, x).
The function f is called limit summable at x0 ∈ Σf if the sequence
{fσn(x0)} is convergent. The function f is called limit summable on the
set S ⊆ Σf if it is limit summable at all points of S. Also, we put

Dfσ = {x ∈ Σf |f is summable at x},

and represent the limit function Rn(f, x) as R(f, x) or R(x).

It is easy to see that Σf ∩Df = Σf + 1 = {x + 1|x ∈ Σf} and

0 ∈ Σf ⇔ N∗ ⊆ Df ⇔ N ⊆ Σf .

Convention: For brevity we use the term summable for limit summable,
and restrict ourselves to the assumption N∗ ⊆ Df .

As we can see in [2], always fσ(0) = 0 and if 0 ∈ Df , then {−1, 0} ⊆ Dfσ

and fσ(−1) = −f(0). But 1 ∈ Dfσ if and only if Rn(1) is convergent
and fσ(1) = f(1)+R(1). A necessary condition for the summability of f

at x is limn→∞(Rn(x)− xRn−1(1)) = 0. Therefore, if 1 ∈ Dfσ , then the
functional sequence {Rn(x)} is convergent on Dfσ and R(x) = R(1)x
(for all x ∈ Dfσ), and

(∗1) fσ(x) = f(x) + fσ(x− 1) + R(1)x; ∀x ∈ Dfσ + 1.

So if R(1) = 0, then

fσ(m) = f(1) + · · ·+ f(m) =
m∑

j=1

f(j); ∀m ∈ N∗.

Definition 1.1. We call the function f weak (limit) summable if
Σf = Dfσ . Moreover, if R(1) = 0, then f is called semi (limit) summable
.
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By Lemma 2.1. in [2], f is summable if and only if it is semi summable
and Df ⊆ Df − 1. If f is weak summable, then 1 ∈ Dfσ and so Rn(1)
is convergent.

Example 1.2. If 0 < |a| < 1, then f(x) = ax + x is weak summable
but it is not semi summable. The function g(x) = 1

x is semi summable
but it is not summable.
Now we need a property about complex sequences introduced in the
following definition.

Definition 1.3. We call the complex sequence {an} weak convergent
(semi convergent) if an+1−an is convergent (an+1−an converges to 0).
The sequence an is called absolutely convergent if the series

∑+∞
n=1 |an+1−

an| is convergent. If an → a as n →∞ and an is absolutely convergent,
then we say an is absolutely convergent to a.
If an is absolutely convergent, then it is convergent (and so it is semi
convergent). A monotonic sequence is absolutely convergent if and only
if it is convergent. Also, if the series

∑
an is absolutely convergent, then

an is absolutely convergent to zero.
The sequence an =

√
n (bn = n) is semi convergent (weak convergent)

but not convergent (semi convergent). The sequence cn = (−1)n

n is con-
vergent but not absolutely convergent. The sequence dn = 1

n is abso-
lutely convergent but

∑
dn is not (absolutely) convergent.

Note: It is interesting to see that an is weak convergent (semi conver-
gent) if and only if an is weak summable (semi summable or equivalently
summable) as a function with domain N∗. Also, for a function f the fol-
lowing are equivalent (see [2]):

The sequence fn = f(n) is weak convergent, Rn(f, 1) is convergent,
1 ∈ Dfσ , N∗ ⊆ Dfσ , Dfσ ∩Df = Dfσ + 1, Rn(x) is convergent at some
x0 ∈ Dfσ \ {0}, Rn(x) is convergent on Dfσ (in case Dfσ \ {0} 6= ∅),
x0, x0 − 1 ∈ Dfσ for some x0 6= 0.

Therefore, the minimum condition for a function f in the topic of limit
summability is limn→∞Rn(1) = R(1), and this is a necessary condi-



76 M. H. HOOSHMAND

tion for weak summability and important properties of fσ. For exam-
ple if f(x) = (2[x] − 1)x + [x] − [x]2, then Rn(1) is divergent and this
function in addition to the evident points 0,−1, is summable on (0, 1)
(Dfσ = {−1} ∪ [0, 1)). But fσ does not have the useful properties such
as (∗1), Df ∩Dfσ = Dfσ + 1, etc.

As it can be seen in [2], if f is summable then Dfσ = Σf = Df − 1
and

(∗2) fσ(x) = f(x) + fσ(x− 1); ∀x ∈ Df .

Now, if f is weak summable then we have

(∗3) fσ(x) = f(x) + fσ(x− 1) + R(1)x; ∀x ∈ Σf + 1,

and so

(∗4) fσ(x) = f(x) + fσ(x− 1); ∀x ∈ Σf + 1

, if f is semi summable.

For showing the weak summability of a function it is enough to show it
is summable on a certain subset of its domain.

Definition 1.4. Suppose A ⊆ C. The set S ⊆ A is called an integer-
trenchant subset of A (or simply trenchant of A) if for every a ∈ A there
exists an integer k such that a + k ∈ S.

Clearly A is an integer-trenchant of itself. It can be shown that (for any
f) if k is a natural number, then the set Σf +k is a trenchant of Σf . For
a real function f , the sets Σf ∩ [M, +∞), Σf ∩ (M, +∞) are trenchant
of Σf and Σf ∩ [M − 1,M) is a tranchant of Σf ∩ (−∞,M) , for all
real numbers M . Moreover, if Σf \Df is bounded above, then the set
Σf ∩ [σf , σf + 1) (center of Σf ) is a trenchant of Σf (with length less
than or equal 1).

Theorem 1.5. Let Rn(f, 1) be convergent. If f is summable on a
trenchant subset of Σf , then f is weak summable.
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Proof. Considering the relations

fσn(x) = fσn(x−m) +
m∑

j=1

(f(x−m + j) + Rn(x−m + j)),

Rn(x−m + j) = Rn(j) + Rn+j(x−m),

fσn(x) = fσn(x + m)−
m−1∑

j=0

(f(x + m− j) + Rn(x + m− j)),

(for all natural m and j = 1, · · · ,m), we can prove the claim (similar to
the proof of Theorem 2.11. in [2]).
In fact the above theorem is a generalization of Theorem 2.11. in [2].
This theorem also says that if {1, x} ⊆ Dfσ , then x + N ⊆ Dfσ and
(x + Z−) ∩ Σf ⊆ Dfσ . ¤

Lemma 1.6. Suppose that Rn(1) is convergent and f∗(x) = f(x) +
R(1)x. Then the following are equivalent
(a) f is weak summable,
(b) The function f∗ is semi summable,
(c) The function g = f∗|Σf+1 is summable,
(d) f satisfies the functional equation (∗3),
Also, if f is a real function, then the above properties are equivalent to
the following:
(e) f is limit summable on Σ+

f (the set of positive elements of Σf ).

Proof. By considering Theorem 1.5., (∗1) and the relations f∗σn
(x) =

fσn(x), R(f∗, 1) = Rn(f, 1)−R(f, 1), and the equality Σf∗ = Σf = Σg =
Dg − 1, it is clear. ¤

2. Absolutely and Uniformly Limit Summabil-
ity of Functions

Definition 2.1. We call the function f absolutely summable at x ∈ Σf

, if fσn(x) is absolutely convergent. Also, we put

Dfσ = {x ∈ Σf |f is absolutely summable at x}.
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The function f is called uniformly (absolutely) summable on S ⊆ Σf if
fσn(x) is uniformly convergent on S (if f is absolutely summable at all
points of S).
The function f is called absolutely weak summable (absolutely semi summable,
absolutely summable) if it is weak summable (semi summable, summable)
and Dfσ = Dfσ .

Note: It is clear that f is absolutely weak (semi) summable if and only if
Dfσ = Σf (Dfσ = Σf and R(1) = 0). For absolutely summability there
are some interesting equivalence properties that will be introduced later.

Now put Rn(x) = Rn(x) − xRn−1(1), for n > 2 where x ∈ Σf . If
0 ∈ Df , then R1(x) = R1(x) − xR0(1) = R1(x) − x(f(0) − f(1)), so
Rn(x) is well defined for all n if 0 ∈ Df . A simple calculation shows,
that

(∗5) fσn(x) = (x + 1)f(1)− f(x + 1) +
n∑

k=2

(Rk(x)− xRk−1(1))

= fσ1(x) +
n∑

k=2

Rk(x); ∀n > 1.

Also, if 0 ∈ Df , then

fσn(x) = xf(0) +
n∑

k=1

Rk(x); ∀n .

Sometimes, we define R0(1) = −f(1), if 0 /∈ Df . Therefore, if 0 /∈ Df or
f(0) = 0, then R1(x) = fσ1(x) so fσn(x) =

∑n
k=1 Rk(x).

Remark 2.2. Considering Definition 2.1. and (∗5) we have:
a) f is absolutely summable at x if and only if the series

∑∞
n=2 Rn(x) is

absolutely convergent. In particular, 0 ∈ Dfσ and 1 ∈ Dfσ if and only
if the sequence Rn(1) is absolutely convergent. Also, if fn is absolutely
convergent , then x ∈ Dfσ if and only if the series

∑∞
n=1 Rn(x) is abso-

lutely convergent.
b) We put fσ(x) = |fσ1(x)|+ Σ∞n=2|Rn(x)| for all x ∈ Dfσ .
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Therefore, fσ is a non-negative valued function, Dfσ
= Dfσ and

(∗6) |fσ(x)| 6 fσ(x) : ∀x ∈ Dfσ .

c) The complex sequence an is absolutely convergent if and only if it is
absolutely summable, as a function with domain N∗.

Example 2.3. If 0 < |a| < 1, then the function f(x) = ax is absolutely
summable, but it is not uniformly summable, because

sup |fσn(x)− fσ(x)| = | an

1− a
| sup |ax+1 + (1− a)x− a| = ∞.

But it is uniformly summable on every bounded set.

As we know, if 1 ∈ Σf (1 ∈ Dfσ), then N∗ ⊆ Σf and Σf ∩Df = Σf + 1
(N∗ ⊆ Dfσ and Dfσ ∩Df = Dfσ + 1). It is interesting to see that this
property for Dfσ is held too.

Theorem 2.4. Let Rn(1) be absolutely convergent (equivalently 1 ∈
Dfσ) then:
a) Dfσ ∩Df = Dfσ + 1, N∗ ⊆ Dfσ

b) If x ∈ Dfσ , then (x + Z) ∩ Σf ⊆ Dfσ and (x + N) ⊆ Dfσ (and so
Z ∩ Σf ⊆ Dfσ).
c) If f is absolutely summable on a trenchant subset of Σf (Dfσ), then
f is absolutely weak summable (Dfσ = Dfσ).

Proof. (a): If x − 1 ∈ Dfσ , then x ∈ Df and x − 1, x ∈ Σf . A simple
calculation shows that

(∗7) Rk(x) = Rk+1(x− 1) + Rk(1)(x + 1); k > 2,

so
n∑

k=2

|Rk(x)| 6
n∑

k=2

|Rk+1(x− 1)|+ |x + 1|
n∑

k=2

|Rk(1)|; n > 2.

By virtue of the relation (∗5) and Remark 2.2. we get x ∈ Dfσ .
Now if x ∈ Dfσ ∩Df , then x− 1, x ∈ Σf and applying (∗7) we conclude
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that x− 1 ∈ Dfσ (similar to the above case).
(b), (c): The part (a) ( with Σf ∩Df = Σf + 1) implies that

(∗8) Dfσ ∩ (Σf + m) ⊆ Dfσ + m ⊆ Dfσ ,

for all positive integers m. This relation proves (b) and (c). ¤

Lemma 2.5. The following are equivalent:
a) f is absolutely summable,
b) Df ⊆ Dfσ , R(1) = 0,
c) Dfσ = Σf , Df ⊆ Df − 1, R(1) = 0.

Proof. By Lemma 2.1. in [2], the items (a) ⇒ (b) and (c) ⇒ (a) are
clear.
(b) ⇒ (c): Since 1 ∈ Df ⊆ Dfσ , Theorem 2.4 implies that

Df = Df ∩Dfσ = Dfσ + 1,

so Dfσ = Df − 1 = Σf .

Therefore, if f is absolutely summable, then Dfσ = Dfσ = Σf = Df − 1. ¤

Theorem 2.6. Let f be a real function that fn is weak convergent
(Rn(1) is convergent), then
(a) If f is uniformly summable on Σf ∩ [M, M +1) (for a real M), then
f is uniformly summable on every bounded subset of Σf ∩ (−∞,M +1).
(b) If f is uniformly summable on every bounded subset of Σf∩(N, +∞),
for some real N , then f is uniformly summable on every bounded subset
of Σf .
(c) If Σf is concentrable and f is uniformly summable on center of Σf ,
then f is uniformly summable on every bounded subset of Σf .

Proof. (a) For all x ∈ Σf ∩ [M − 1,M), we have x + 1 ∈ (Σf + 1) ∩
[M,M + 1) ⊆ Σf ∩ [M, M + 1) and

fσn(x) = fσn(x + 1)−Rn(x + 1)− f(x) : ∀x ∈ Σf ∩ [M − 1,M).

Therefore, for these x-s, fσn(x + 1) is uniformly convergent. On the
other hand, the relation fσn(x + 1)− fσn−1(x + 1) = Rn(x + 1) implies
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that Rn(x+1) and Rn(x+1) = Rn(x+1)+(x+1)Rn−1(1) is uniformly
convergent on Σf ∩ [M−1,M) (because Rn−1(1) is convergent and these
x-s are bounded).
Therefore, f is uniformly summable on Σf ∩ [M − 1,M). Similarly,
f is uniformly summable on Si = Σf ∩ [M − i,M + 1 − i) for all pos-
itive integers i and on every finite union of Si-s. Therefore, (a) is proved.

(b): the part (a) implies (b) clearly.

(c): Let Σf be concentrable. Then for all positive integers m we have

{Σf∩[σf+m−1, σf+m)}+1 = Σf∩[σf+m,σf+m+1) = {Σf∩[σf , σf+1)}+m,

since x− [x− σf ] ∈ [σf , σf + 1), for all x ∈ Σf . Put Sm = Σf ∩ [σf +
m,σf + m + 1). Therefore, if x ∈ S1, then x− 1 ∈ Σf ∩ [σf , σf + 1) (the
center of Σf ) and

fσn(x) = fσn(x− 1) + Rn(x) + f(x); ∀x ∈ S1,

Similar to the part (a), f is uniformly summable on S1 and so on Sm

for all positive integers m (considering the above relation for Sm). Now
with due attention to (a) the proof is complete. ¤

Note: In general, {Σf ∩ [M + 1,M + 2)} − 1 " Σf ∩ [M, M + 1), for
this reason the part (a) in the above theorem can not be stated for
Σf ∩ [M + 1,M + 2) and for the bounded subsets of Σf ∩ [M + 1, +∞).
But in part (c) (when Σf is concentrable and M = σf ) this problem is
removed. Also, note that if in this theorem Σf be replaced by Dfσ (in
the hypothesis and (a), (b), (c)), then the theorem is valid (for if Rn(1)
is convergent, then Df ∩ Dfσ = Dfσ + 1, i.e., there exist similarities
between the properties of Dfσ and those of Σf ).

In the following we introduce a test for (absolutely) summability of the
composition of functions.

Theorem 2.7. Suppose f is a function for which
∑∞

n=1 Rn(x) is abso-
lutely convergent on Σf and let g be a function that f(N∗) ⊆ Dg, and

|g(s)− g(t)| 6 M |s− t| ∀s, t ∈ Dg.
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Then gof is absolutely semi summable, moreover

|(gof)σ(x)| 6 (gof)σ(x) 6 c|x|+ M

∞∑

n=1

|Rn(x)|,

where c = M
∑∞

n=1 |Rn(1)|+ |g(f(1))|.
Proof. First note that (N∗ ⊆ Dgof and) Σgof ⊆ Σf . Now if x ∈ Σgof ,
then one can write

|Rn(gof, x)| 6 M |Rn(f, x)|+ M |x||Rn−1(f, 1)| : ∀n > 1.

Since the series
∑ |Rn(x)| and

∑ |Rn(1)| are convergent so gof is abso-
lutely summable at x. Also, we have

|Rn(gof, 1)| 6 M |Rn(f, 1)|,

so R(f, 1) = 0 implies that R(gof, 1) = 0. Therefore, f is absolutely
semi summable. Now considering the above inequalities and

|(gof)σ1(x)| 6 |g(f(1))||x|+ M |R1(x)|

with relations (∗5), (∗6), the last part is proved. ¤

Example 2.8. If |a| < 1, then the functions sin(ax) and cos(ax) are
absolutely summable and sin( 1

x), cos( 1
x) are absolutely semi summable.

3. Monotonic, Concave and Convex Limit Sum-
mable Functions

Let E be a subset of R (not necessarily an interval) and suppose E ⊆ Df

(f is a real function defined on E). A function f is called convex on E if
for every three elements x1, x2, x3 of E with x1 < x2 < x3 the following
inequalities hold

f(x2)− f(x1)
x2 − x1

6 f(x3)− f(x1)
x3 − x1

6 f(x3)− f(x2)
x3 − x2

.



ANOTHER LOOK AT THE LIMIT SUMMABILITY OF ... 83

If the above inequalities are reversed, then f is called concave. Therefore,
a function f is concave if and only if the function −f is convex. If f

is convex on E, then it is so on each subset of E. For example if f ′ is
increasing on (a, b), then f is convex on each subset of (a, b).
The function f is called monotonic (convex or concave) on E from a
number on if there exists a real M such that f is non decreasing or non
increasing (convex or concave) on E ∩ (M, +∞)

Theorem 3.1. Let f be a real function that the sequence fn is bounded.
(a) For a x0 ∈ Σf , if f is monotonic on N∗ ∪ (N∗ + x0) from a number
on, then f is absolutely summable at x0.
(b) If f is monotonic on Σf + 1 from a number on, then
i: f is absolutely semi summable.
ii: f is uniformly summable on every bounded subset of Σf and the series∑∞

n=1 Rn(x) is uniformly convergent on it.
(c) If f is non-increasing on Σf + 1, then sgn(x)fσ(x) > f(∞)|x| (i.e.
fσ(x) > f(∞)x if x > 0 and fσ(x) 6 f(∞)x if x 6 0), where, f(∞) =
limn→∞ fn.
Moreover, if f(∞) > 0 then fσ is non-decreasing (on its domain Dfσ =
Σf ) and

fσ(y)− fσ(x)
y − x

> f(∞),

for all x, y ∈ Σf that x < y.
(If f is non-decreasing, then the function −f satisfies the condition (c)
and by considering (−f)σ = −fσ one can write similar properties for f ,
in this case).

Proof. (a): Put E = N∗ ∪ (N∗ + x0) (clearly E ⊆ Σf + 1 ⊆ Df ). Let f

be non-increasing on E ∩ (M, +∞), for a positive number M (without
loss of generality). Since fn is non-increasing (from a number on) and
convergent, then fn and so Rn(1) are absolutely convergent. Therefore,
N∗ ⊆ Dfσ . Now let m be a positive integer such that x0+m > 0. Clearly
there exists a N such that

(∗9) 0 6 Rk(x0 + m) 6 Rk([x0] + m + 1) : ∀k > N.
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Since the series
∑∞

k=1 Rk([x0] + m + 1) is absolutely convergent, by Re-
mark 2.2.

∑∞
k=1 Rk([x0] +m) is absolutely convergent, so x0 +m ∈ Dfσ

and x0 ∈ Dfσ , by Theorem 2.4.
(b): The part (i) of (b) is a direct result of (a). Suppose f be non-
increasing on Σf + 1 from a number on. Similar to (∗9), for all positive
integers m and each x ∈ Σf∩[0,m], there exists a positive integer N such
that if k > N , then 0 6 Rk(x) 6 Rk(m). So the series

∑∞
k=1 Rk(x) is

uniformly convergent on Σf∩[0,m]. Therefore, f is uniformly summable
on every bounded subset of Σ+

f so f is uniformly summable on every
bounded subset of Σf , by Theorem 2.6.
(If f is non decreasing, then we can proof the parts (a), (b) similarly.)
(c): If x, y ∈ Σf and x < y, then Rk(x) 6 Rk(y) for all positive integers k

(because f is non increasing on all Σf +1) so
∑n

k=1 Rk(x) 6
∑n

k=1 Rk(y)
and so

fσn(y)− fσn(x)
y − x

> f(n),

for all n. Applying the above inequality for x = 0 and y = 0 and putting
f(∞) = limn→∞ fn with due attention to (a) we get the results. ¤

Example 3.2. The function f(x) =
√

x − √
x + 1 is absolutely

summable and Dfσ = Dfσ = Df − 1 = [−1, +∞).

In ([2]), we prove a main (uniqueness) Theorem. Since it is very im-
portant and we use it repeatedly in the sequel, it is introduced here:

Theorem A. Let f be a real function for which Rn(f, 1) is convergent.
Suppose there exists a function λ such that

λ(x) = f(x) + λ(x− 1) : for all x ∈ Σf + 1.

(a) If R(1) > 0 and λ is convex on Σf + 1 from a number on, then
f is weak summable.

(b) If R(1) 6 0 and λ is concave on Σf + 1 from a number on, then
f is weak summable.
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In each of the above cases we have

fσ(x) = λ(x) + R(1)
x2 + x

2
− λ(0) : for all x ∈ Σf .

Proof. See Theorem 3.1. in [2]. ¤

Theorem 3.3. Suppose f is a real function for which Rn(1) is bounded.
(a): If f is concave or convex on N∗∪ (N∗+x0) from a number on, then
f is absolutely summable at x0.
(b) If f is convex or concave on Σf + 1 from a number on, then
i: f is absolutely weak summable.
ii: f is uniformly summable on every bounded subset of Σf .
(c) If f is concave on Σ+

f + 1, then

fσ(x) > (x + 1)f(1)− f(x + 1) : ∀x ∈ Σ+
f ∪ {0}.

Moreover, if fσ1(y) > fσ1(x) for all x, y ∈ Σ+
f with x < y, or 0 ∈ Df

and f(0) > 0, then fσ is non-decreasing and non negative on Σ+
f ∪ {0}.

d) If the concavity of f holds on Σf + 1, then the summand function of
f (fσ) is convex (on its domain Σf ) and fσ is the only function (with
domain Σf ) that is convex on Σf + 1 (from a number on), fσ(0) = 0
and satisfies the functional equation (∗3):

fσ(x) = f(x) + fσ(x− 1) + R(1)x; ∀x ∈ Σf + 1.

Proof. Put E = N∗ ∪ (N∗ + x0). There exists a positive integer N

such that f is concave on E ∩ [N,+∞). First let x0 > N . Applying the
concavity of f for k < k+1 < k+2 and k−1 < k < k+x0 < k+1+[x0],
where k > N is an integer, we infer that

(∗10) Rk(1) 6 1
2
Rk(2) 6 Rk+1(1); ∀k > N,

(∗11) 0 6 Rk(x0) 6 Rk([x0] + 1); ∀k > N,

Considering (∗10) the sequence Rk(1) is absolutely convergent so [x0] +
1 ∈ Dfσ thus (∗5) implies that the series

∑+∞
k=2 Rk([x0]+1) is (absolutely)
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convergent and so x0 ∈ Dfσ . . If x0 < N , then there exists a positive
integer m such that x0 + m ∈ E ∩ [N,+∞) and we get the result by
Theorem 2.4.
(b): The part (i) of (b) is a direct result of (a). Similar to (∗11), for
all positive integers m and each x ∈ Σf ∩ [0,m], there exists a positive
integer N such that if k > N , then 0 6 Rk(x) 6 Rk(m). So the series∑∞

k=2 Rk(x) is uniformly convergent on Σf ∩ [0, N ]. Therefore, f is
uniformly summable on every bounded subset of Σ+

f so f is uniformly
summable on every bounded subset of Σf , by Theorem 2.6.
(c): If x, y ∈ Σ+

f and x < y, then similar to (∗11) we have 0 6 Rk(x) 6
Rk(y) for all positive integers k > 2 so, 0 6

∑n
k=2 Rk(x) 6

∑n
k=2 Rk(y)

and so (∗5) implies that

(∗12) 0 6 fσn(x)− fσ1(x) 6 fσn(y)− fσ1(y) : ∀n.

If 0 ∈ Df then the first inequality (in this part) holds for all positive
integers k and so

(∗13) 0 6 fσn(x)− xf(0) 6 fσn(y)− yf(0).

Now we get the results by (∗12) and (∗13).
(d): Let x1, x2 ∈ Σf , µ1, µ2 > 0 , µ1 +µ2 = 1 and µ1x1 +µ2x2 ∈ Σf +1.
Concavity of f on Σf + 1 implies that

f(k + µ1x1 + µ2x2) = f(µ1(k + x1) + µ2(k + x2)) >

µ1f(k + x1) + µ2f(k + x2); ∀k ∈ N∗,
therefore,

n∑

k=1

Rk(µ1x1 + µ2x2) 6
n∑

k=1

(µ1Rk(x1) + µ2Rk(x2)); ∀n ∈ N,

So fσn(x) is convex on Σf for all n, hence fσ(x) is convex on Σf = Dfσ .
Now if λ is a function that satisfies these conditions, then putting
f∗(x) = f(x) + R(1)x, f∗ (instead of f), λ satisfies the conditions of
Theorem A. On the other hand R(f∗, 1) = 0 and f∗σn

(x) = fσn(x) for all
positive integers n and x ∈ Σf = Σf∗ so,

fσ(x) = f∗σ(x) = λ(x); ∀x ∈ Σf . ¤
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Corollary 3.4. Let f be a real function that is concave (convex) on
Σf + 1 and R(1) = 0. Then the general form of all convex (concave)
solutions of the functional equation

λ(x) = f(x) + λ(x− 1) for all x ∈ Σf + 1,

is λ = fσ + c, for all c ∈ R.
Moreover, if Df ⊆ Df − 1 then the functional equation

λ(x) = f(x) + λ(x− 1) for all x ∈ Df ,

has a unique convex (concave) solution with λ(0) = 0.

Remark 3.5. Comparing the above corollary and Corollary 3.4. in ([2])
shows that if Df ⊆ Df − 1, R(1) = 0 and f is concave (convex) on Df ,
then the conditions of Corollary 3.4. (in[2]) are held.

Corollary 3.6. Consider the real rational function f(x) = pm(x)
qk(x) where

pm(x) = amxm + · · · + a0, qk(x) = bkx
k + · · · + b0 and qk(x) has no

any positive inreger roots. Clearly, Df = R \ {x1, · · · , xl}, Σf = R \
({x1, · · · , xl} + Z−, Σf + 1 = R \ ({x1, · · · , xl} + Z−0 , where x1, · · · , xl

are the real roots of qk(x), and if qk(x) has no any real roots, then
Df = Σf = Σf + 1 = R.

Since every real rational function is monotonic and convex or concave
from a number on, then considering Theorem 3.1, 3.3. we have:
Case 1) m 6 k: If qk(x) has no any real roots, then f is absolutely
summable and if qk(x) has some real roots then f is absolutely semi
summable.
Case 2) m > k: (In this case considering Rn(f, 1)) if

deg(pm(x)qk(x + 1)− pm(x + 1)qk(x)) < deg(qk(x)qk(x + 1)),

then f is absolutely semi summable (if qk(x) has no any real roots, then
f is absolutely summable) and if

deg(pm(x)qk(x + 1)− pm(x + 1)qk(x)) = deg(qk(x)qk(x + 1)),
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then f is absolutely weak summable. Also, if

deg(pm(x)qk(x + 1)− pm(x + 1)qk(x)) > deg(qk(x)qk(x + 1)),

then 1 /∈ Dfσ and so f is not weak summable.
Moreover, in all of the above cases if f is concave on Σ+

f +1, then we have:

fσ(x) > (x + 1)(a0 + · · ·+ am)qk(x + 1)− (b0 + · · ·+ bk)pm(x + 1)
(b0 + · · ·+ bk)qk(x + 1)

,

for all x ∈ Σ+
f (if f is convex, then the above inequality is reversed).

Example 3.7. For any real number r put p(x) = xr where Dp =
[0, +∞) if r > 0, and Dp = (0, +∞) if r < 0. If r > 1, then Rn(p, 1) is
not convergent, so p is not weak summable (if r > 2, then Rn(x) is not
convergent for all x 6= 0 so p is not summable at any x 6= 0) . Now if
r < 1, then Rn(p, 1) → 0 as n → ∞ and p(x) is concave, if 0 < r < 1
or convex, if r < 0. So if r < 1, then xr with the above cited domain is
summable (by Theorem 2.3) and Dpσ = [−1, +∞) or (−1, +∞). Also,

pσ(x) = lim
n→∞[xnr +

n∑

k=1

(kr − (k + x)r)]

=
+∞∑

n=1

[(1 + x)nr − (n + x)r − x(n− 1)r],

for all x ∈ Dpσ and

pσ(x) > 1 + x− (1 + x)r; ∀x > 0.

If r < 0, then

pσ(x) =
+∞∑

n=1

[nr − (n + x)r].

In case r = 1/2, we have

pσ(x) = x
+∞∑

n=1

[
1√

n +
√

n− 1
− 1√

n +
√

n + x
].
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Finally, pσ is the only concave (if r < 0) or convex (if 0 < r < 1) function
on its domain that pσ(1) = p(1) = 1 and

pσ(x) = xr + pσ(x− 1); ∀x ∈ Dp.
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