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1. Weak and Semi Limit Summable Functions

In [2] we have introduced and studied limit summability of real and
complex functions. There are some relations between the topic and the
Gamma type functions ([1]). Here we state several tests for weak, semi,
absolutely and uniformly limit summability of functions.

In general, we assume f : Dy — C, where Dy C C. In the real case we
take the function f : Dy — R, where Dy C R. A positive real function
f is a real function such that Ry C RT. By N*, N we denote the set of
positive and non-negative integer numbers, respectively.

For a function with domain Dy, we put

Y ={z|r+ N" C Dys}.
Let N* C Dy and for any positive integer n and x € Xy set
Ro(f,2) = Ro(x) = f(n) = f(z+n),
73
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fo(z) = xf(n) + > Ryl(x).
k=1

When z € Dy, we may use the notation o,(f(z)) instead of o,,(f, z).
The function f is called limit summable at zo € Xy if the sequence
{fs, (x0)} is convergent. The function f is called limit summable on the
set S C Xy if it is limit summable at all points of S. Also, we put

Dy, = {x € ¥¢|f is summable at z},

and represent the limit function R, (f,z) as R(f,x) or R(x).

It is easy to see that Xy N Dy =%+ 1= {zx+ 1|z € X;} and

OEEf@N*ngﬁNgEf.

Convention: For brevity we use the term summable for limit summable,
and restrict ourselves to the assumption N* C Dy.

As we can see in [2], always f;(0) = 0 and if 0 € Dy, then {—1,0} C Dy,
and fo(—1) = —f(0). But 1 € Dy, if and only if R,(1) is convergent
and fy(1) = f(1)+R(1). A necessary condition for the summability of f
at  is lim, oo (Rp(x) — xR,—1(1)) = 0. Therefore, if 1 € Dy_, then the
functional sequence {R,(z)} is convergent on Dy and R(xz) = R(1)x
(for all x € Dy, ), and

(x1) fo(z) = f(x)+ fo(r — 1)+ R(1)x; Vx € Dy, +1.
So if R(1) =0, then
fo(m) = f() 4o+ f(m) = 3 f(j); ¥m €N

Jj=1

Definition 1.1. We call the function f weak (limit) summable if
Xf = Dy, . Moreover, if R(1) = 0, then f is called semi (limit) summable
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By Lemma 2.1. in [2], f is summable if and only if it is semi summable
and Dy C Dy — 1. If f is weak summable, then 1 € Dy and so R, (1)
is convergent.

Example 1.2. If 0 < |a|] < 1, then f(z) = a” + x is weak summable
but it is not semi summable. The function g(z) = % is semi summable
but it is not summable.

Now we need a property about complex sequences introduced in the

following definition.

Definition 1.3. We call the complex sequence {a,} weak convergent
(semi convergent ) if an11 — ay, is convergent (an41 — a, converges to 0).
The sequence a,, is called absolutely convergent if the series Z:{g |an+1—
ap| is convergent. If ap, — a as n — oo and a, is absolutely convergent,
then we say ay s absolutely convergent to a.

If a, is absolutely convergent, then it is convergent (and so it is semi
convergent). A monotonic sequence is absolutely convergent if and only
if it is convergent. Also, if the series ) a,, is absolutely convergent, then
an is absolutely convergent to zero.

The sequence a, = \/n (b, = n) is semi convergent (weak convergent)
but not convergent (semi convergent). The sequence ¢, = % is con-

vergent but not absolutely convergent. The sequence d,, = % is abso-
lutely convergent but ) d,, is not (absolutely) convergent.

Note: It is interesting to see that a, is weak convergent (semi conver-
gent) if and only if a,, is weak summable (semi summable or equivalently
summable) as a function with domain N*. Also, for a function f the fol-
lowing are equivalent (see [2]):

The sequence f, = f(n) is weak convergent, R, (f,1) is convergent,
le Dy, N“CDy, Df, NDy =Dy +1, Ry(x)is convergent at some
zg € Dy, \ {0}, Ry(z) is convergent on Dy (in case Dy, \ {0} # 0),
xg, o — 1 € Dy, for some xg # 0.

Therefore, the minimum condition for a function f in the topic of limit
summability is lim, o Ry (1) = R(1), and this is a necessary condi-
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tion for weak summability and important properties of f,. For exam-
ple if f(z) = (2[x] — 1)x + [z] — []?, then R, (1) is divergent and this
function in addition to the evident points 0,—1, is summable on (0, 1)
(Dy, = {—=1}U[0,1)). But f, does not have the useful properties such
as (x1), DfN Dy, = Dy +1, etc.

As it can be seen in [2], if f is summable then Dy = ¥y = Dy — 1
and

(x2) fo(z) = f(z)+ fo(z —1); Vz € Dy.

Now, if f is weak summable then we have
(x3) folz) = f(x)+ fo(r — 1)+ R(1)z; VoreXs+1,

and so

(*4) fo(x):f(x)+fa(x_1>; Vererl

, if f is semi summable.

For showing the weak summability of a function it is enough to show it
is summable on a certain subset of its domain.

Definition 1.4. Suppose A C C. The set S C A is called an integer-
trenchant subset of A (or simply trenchant of A) if for every a € A there
erists an integer k such that a +k € S.

Clearly A is an integer-trenchant of itself. It can be shown that (for any
f) if k is a natural number, then the set ¥ +£ is a trenchant of ¥ ;. For
a real function f, the sets ¥y N [M, +00), Xt N (M, +00) are trenchant
of ¥y and ¥y N [M — 1,M) is a tranchant of ¥ N (—oo, M) , for all
real numbers M. Moreover, if ¥\ Dy is bounded above, then the set
YfNof,0r+ 1) (center of ) is a trenchant of ¥; (with length less
than or equal 1).

Theorem 1.5. Let R,(f,1) be convergent. If f is summable on a
trenchant subset of ¥y, then f is weak summable.
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Proof. Considering the relations
m
]:1
Rn(w —m +J) = Rn(]) + Rn-i—j(x - m),

m—1

fon(x) = fon(l' +m) —

%

F(@+m = §) + Rulz +m— ),
7=0

(for all natural m and j =1,--- ,m), we can prove the claim (similar to

the proof of Theorem 2.11. in [2]).

In fact the above theorem is a generalization of Theorem 2.11. in [2].

This theorem also says that if {1,2} C Dy, , then z + N C Dy and

(1‘+Z7) ﬂzf - Dfo" ]

Lemma 1.6. Suppose that R, (1) is convergent and f*(x) = f(x) +
R(1)x. Then the following are equivalent

(a) f is weak summable,

(b) The function f* is semi summable,

(c) The function g = f*|s, 41 is summable,

(d) f satisfies the functional equation (x3),

Also, if f is a real function, then the above properties are equivalent to
the following:

(e) f is limit summable on Z;{ (the set of positive elements of X¢).

Proof. By considering Theorem 1.5., (x1) and the relations f; (z) =

fU'n (gj)7 R(f*v 1) = Rn(fa 1)_R(f7 1)7 and the equality Ef* = Ef = Eg =
D, —1, it is clear. [

2. Absolutely and Uniformly Limit Summabil-
ity of Functions

Definition 2.1. We call the function f absolutely summable at v € Xy
L if fo,(x) is absolutely convergent. Also, we put

Dy, = {z € Zy|f is absolutely summable at x}.
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The function f is called uniformly (absolutely) summable on S C X if
fo, (x) is uniformly convergent on S (if f is absolutely summable at all
points of S).

The function f is called absolutely weak summable (absolutely semi summable,
absolutely summable) if it is weak summable (semi summable, summable)
and Dy, = Dy, .

Note: It is clear that f is absolutely weak (semi) summable if and only if
Dy, =X¢ (Ds, = &y and R(1) = 0). For absolutely summability there
are some interesting equivalence properties that will be introduced later.

Now put R,(z) = R,(z) — 2R,—1(1), for n > 2 where z € ;. If
0 € Dy, then Ry(z) = Ri(z) — zRo(1) = Ri(z) — z(f(0) — f(1)), so
R, () is well defined for all n if 0 € D;. A simple calculation shows,
that

(#5) fou(2) = (@ + 1) f(1) = flz + 1) + Y (Ri() — 2R (1))

k=2

= fo,(x) + Zﬁk(w); Vn > 1.
k=2

Also, if 0 € Dy, then

n

fou(z) = 2f(0) + > Ri(x); Vn.
k=1
Sometimes, we define Ro(1) = —f(1), if 0 ¢ Dy. Therefore, if 0 ¢ Dy or
£(0) = 0, then By (x) = for (@) 50 for, (2) = Yy Ri().

Remark 2.2. Considering Definition 2.1. and (*x5) we have:

a) f is absolutely summable at x if and only if the series Y oo o Ry (z) is
absolutely convergent. In particular, 0 € 5f0 and 1 € ﬁfg if and only
if the sequence Ry (1) is absolutely convergent. Also, if fy, is absolutely
convergent , then x € Dy, if and only if the series > oo | Ry(z) is abso-
lutely convergent.

b) We put fz(x) = |fo, (z)| + 2225 |Rn ()| for all z € Dy, .



ANOTHER LOOK AT THE LIMIT SUMMABILITY OF ... 79

Therefore, fz is a non-negative valued function, Dy = Efo and
(#6) |fo(2)| < folx) : Vz €Dy,

¢) The complex sequence a, is absolutely convergent if and only if it is
absolutely summable, as a function with domain N*.

Example 2.3. If 0 < |a| < 1, then the function f(z) = a” is absolutely

summable, but it is not uniformly summable, because

an
|sup [a*™ + (1 — a)z — a|] = .

sup | fo, (2) = fo(2)| = |

1—a

But it is uniformly summable on every bounded set.

As we know, if 1 € ¥¢ (1 € Dy, ), then N*C ¥y and Xy N Dy =%¢ +1

- an N = + 1). It 1s interesting to see that this
N* Dfo deo Df Dfa 1). It is i i g h hi
property for ﬁfg is held too.

Theorem 2.4. Let R,(1) be absolutely convergent (equivalently 1 €
Dy, ) then:

a) Efg ﬂDf :Ef(, +1, N* C Efg

b) If x € Dy, then (x +Z)NXf C Dy, and (x + N) C Dy, (and so
Z.N Ef - Efo‘)'

c) If f is absolutely summable on a trenchant subset of Xt (Dy, ), then
f is absolutely weak summable (Dy, = Dy, ).

Proof. (a): If 1 —1 € Dy, , then € Dy and z — 1,z € £y. A simple
calculation shows that

(*7) Rk(az) = Ekﬂ(x — 1) +Ek(1)(37 + 1); k> 2,

Ri@) <3 Rei(e - D]+ 2+ 1 3[R n>2.
k=2 k=2 k=2

By virtue of the relation (x5) and Remark 2.2. we get € Dy, .
Now if z € Efv N Dy, then x — 1,2 € ¥y and applying (*7) we conclude
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that  — 1 € Dy (similar to the above case).
(b), (c): The part (a) ( with ¥y N Dy = X + 1) implies that

(x8) Dy, N (3f+m)C Dy, +mC Dy,
for all positive integers m. This relation proves (b) and (c). O

Lemma 2.5. The following are equivalent:
a) f is absolutely summable,

b) Dy € Dy,, R(1) =0,

¢) Dy, =%¢, Df C Dy —1, R(1) =0.

Proof. By Lemma 2.1. in [2], the items (a) = (b) and (¢) = (a) are
clear.
(b) = (c): Since 1 € Dy C Dy, Theorem 2.4 implies that

Df :Df ﬂbfa :Efo' +1,

SOEfU :Df—I:Ef.
Therefore, if f is absolutely summable, then Dy, = Dy, =X =Dy —1. O

Theorem 2.6. Let f be a real function that f, is weak convergent
(R (1) is convergent), then

(a) If f is uniformly summable on Xy N [M, M +1) (for a real M), then
[ is uniformly summable on every bounded subset of ¥ ¢ N (—oo, M +1).
(b) If f is uniformly summable on every bounded subset of ¥ N (N, +00),
for some real N, then f is uniformly summable on every bounded subset
of Xf.

(c) If ¢ is concentrable and f is uniformly summable on center of ¥,
then f is uniformly summable on every bounded subset of Xy.

Proof. (a) For all x € ¥y N[M —1,M), we have x +1 € (X5 +1)N
[M,M+1) CXyN[M,M+1) and

fou(@) = fo,(x+1) —Rp(x+1)— f(z) :YeeXsn[M—-1,M).

Therefore, for these z-s, f,, (x + 1) is uniformly convergent. On the

other hand, the relation f,, (z+1) — f5, ,(z+ 1) = Ry(z + 1) implies
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that R,,(z+1) and R, (z+1) = Ry (z+1)+ (z+1)R,_1(1) is uniformly
convergent on Xy N[M —1, M) (because R,,—1(1) is convergent and these
x-s are bounded).

Therefore, f is uniformly summable on ¥y N [M — 1,M). Similarly,
f is uniformly summable on S; = Xy N [M — i, M + 1 — i) for all pos-
itive integers ¢ and on every finite union of S;-s. Therefore, (a) is proved.

(b): the part (a) implies (b) clearly.

(c): Let ¥ be concentrable. Then for all positive integers m we have
{Epnlop+m=1,0p+m)}+1 = SyN[op+m, op+m+1) = {EsN[og, 0p+1) }+m,

since x — [x — of] € [of,07+ 1), for all x € ¥y, Put S, =X N[0y +
m,of+m+1). Therefore, if z € S1, thenx —1 € XN o, 07+ 1) (the
center of ¥ ) and

fcfn(m) = fan(x - 1) + Rn(x) + f(x); Va € S,

Similar to the part (a), f is uniformly summable on S; and so on Sy,
for all positive integers m (considering the above relation for S,,). Now
with due attention to (a) the proof is complete. [

Note: In general, {$;N[M +1,M +2)} =1 £ Sy N [M,M + 1), for
this reason the part (a) in the above theorem can not be stated for
YrN[M+1,M +2) and for the bounded subsets of ¥y N [M + 1, 400).
But in part (c) (when Xy is concentrable and M = o) this problem is
removed. Also, note that if in this theorem ¥ be replaced by Dy, (in
the hypothesis and (a), (b), (c)), then the theorem is valid (for if R, (1)
is convergent, then Dy N Dy = Dy + 1, ie., there exist similarities
between the properties of Dy and those of ¥y).

In the following we introduce a test for (absolutely) summability of the

composition of functions.

Theorem 2.7. Suppose f is a function for which Y > Ry(x) is abso-
lutely convergent on ¥ and let g be a function that f(N*) C Dy, and

lg(s) —g(t)| < M|s—t| Vs,teD,.
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Then gof is absolutely semi summable, moreover

(gof)o(@)] < (9of)a(z) < cla| + MY [Ru(a)],

n=1

where ¢ = MY > | |Rn(1)] + |g(f(1))].

Proof. First note that (N* C Dg,r and) ¥,0r € X¢. Now if 2 € g0,
then one can write

[Bn(gof, x)] < M|Ry(f, )| + Mlz||[Rya(f, 1] = Vn>1.

Since the series Y |R,,(z)| and ) |R,(1)| are convergent so gof is abso-
lutely summable at z. Also, we have

so R(f,1) = 0 implies that R(gof,1) = 0. Therefore, f is absolutely
semi summable. Now considering the above inequalities and

[(gof)er ()] < lg(F(D)]x] + MRy ()]

with relations (x5), (*¢), the last part is proved. O

Example 2.8. If |a| < 1, then the functions sin(a”) and cos(a®) are

absolutely summable and sin(2), cos(1) are absolutely semi summable.

3. Monotonic, Concave and Convex Limit Sum-
mable Functions

Let E be a subset of R (not necessarily an interval) and suppose E2 C Dy
(f is a real function defined on F). A function f is called convex on E if
for every three elements x1, x2, x3 of E with 1 < x2 < x3 the following
inequalities hold

fxo) = fz1) _ flxs) = f(z1) _ flas) = f(a2)

~ N
T2 — I r3 — 1 xr3 — T2
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If the above inequalities are reversed, then f is called concave. Therefore,
a function f is concave if and only if the function —f is convex. If f
is convex on F, then it is so on each subset of E. For example if f’ is
increasing on (a, b), then f is convex on each subset of (a, b).

The function f is called monotonic (convex or concave) on F from a
number on if there exists a real M such that f is non decreasing or non
increasing (convex or concave) on E N (M, +0o0)

Theorem 3.1. Let f be a real function that the sequence f, is bounded.
(a) For a xg € Xy, if f is monotonic on N* U (N* + xg) from a number
on, then f is absolutely summable at xg.

(b) If f is monotonic on ¢ + 1 from a number on, then

1. f is absolutely semi summable.

it: f is uniformly summable on every bounded subset of Xy and the series
>0 | Rn(x) is uniformly convergent on it.

(¢) If f is non-increasing on Xy + 1, then sgn(z) fs(x) = f(oo)|x| (i.e.
folx) = f(oo)x if x =2 0 and fy(x) < f(oo)x if © < 0), where, f(c0) =
limy, 00 frn-

Moreover, if f(co) > 0 then f, is non-decreasing (on its domain Dy, =
¥r) and

foy) — fo(x)

for all x,y € Xy that x < y.

(If f is non-decreasing, then the function —f satisfies the condition (c)
and by considering (—f), = — f, one can write similar properties for f,
in this case).

Proof. (a): Put E = N*U (N* 4 ) (clearly E C Xy +1C Dy). Let f
be non-increasing on E N (M, +00), for a positive number M (without
loss of generality). Since f, is non-increasing (from a number on) and
convergent, then f,, and so R, (1) are absolutely convergent. Therefore,
N* C Eﬂ,. Now let m be a positive integer such that zog+m > 0. Clearly
there exists a N such that

(*9) Ong((Eo—i—m) ng([xO]—i—m—i—l) : Vk > N.
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Since the series Y o | Ri([xo] +m + 1) is absolutely convergent, by Re-
mark 2.2. > 72, Ri([zo] +m) is absolutely convergent, so xg+m € Dy,
and xg € Dy, , by Theorem 2.4.
(b): The part (i) of (b) is a direct result of (a). Suppose f be non-
increasing on ¥y 4 1 from a number on. Similar to (*g), for all positive
integers m and each € ¥yN[0,m], there exists a positive integer N such
that if £ > N, then 0 < Ryi(z) < Ri(m). So the series > 7o, Ri(x) is
uniformly convergent on 3 ¢N[0,m]. Therefore, f is uniformly summable
on every bounded subset of E;{ so f is uniformly summable on every
bounded subset of X, by Theorem 2.6.
(If f is non decreasing, then we can proof the parts (a), (b) similarly.)
(c): Ifx,y € ¥y and x < y, then Ry(x) < Ry (y) for all positive integers k
(because f is non increasing on all ¥y+1) so > p_; Ri(z) < > p_; Ri(y)
and so

fou(y) = fo.(2)

y—z

> f(n),

for all n. Applying the above inequality for x = 0 and y = 0 and putting
f(o0) = limy, 00 fr, with due attention to (a) we get the results. O

Example 3.2. The function f(z) = /z — v/x +1 is absolutely
summable and Dy, = Dy, = Dy — 1 = [—1,+o0).

In (]2]), we prove a main (uniqueness) Theorem. Since it is very im-
portant and we use it repeatedly in the sequel, it is introduced here:

Theorem A. Let f be a real function for which Ry, (f,1) is convergent.
Suppose there exists a function A such that

AMz)=fx)+Ma—1) : forallz € Xy +1.

(a) If R(1) > 0 and X is convex on X5 + 1 from a number on, then
f is weak summable.

(b) If R(1) < 0 and X is concave on Xy + 1 from a number on, then
f is weak summable.
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In each of the above cases we have

:B2+x
2

fo(x) = XMz) + R(1) —X0) : forallx € Xy.

Proof. See Theorem 3.1. in [2]. O

Theorem 3.3. Suppose f is a real function for which Ry (1) is bounded.
(a): If f is concave or convex on N*U (N*+x0) from a number on, then
f is absolutely summable at .

(b) If f is convex or concave on Xy + 1 from a number on, then

1. f is absolutely weak summable.

ii: f is uniformly summable on every bounded subset of Xy .

(c) If f is concave on E;f + 1, then

fo@) > @+ 1)f(1) — fla+1) : VoeStu{o)

Moreover, if f5,(y) = fo,(z) for all x,y € E? with v <y, or 0 € Dy
and f(0) > 0, then f, is non-decreasing and non negative on E;{ U {0}.
d) If the concavity of f holds on ¥y + 1, then the summand function of
[ (fs) is convex (on its domain X5) and f, is the only function (with
domain ¥Xy) that is convexr on Xy + 1 (from a number on), f-(0) = 0
and satisfies the functional equation (x3):

fo(@) = f(x) + folex — 1)+ R(1)x; Vo eXp+1.

Proof. Put E = N* U (N* + zp). There exists a positive integer N
such that f is concave on E N[N, +o00). First let o > N. Applying the
concavity of f for k < k+1 < k+2and k—1 < k < k+zo < k+1+[x0],
where k > N is an integer, we infer that

1
(*10) Rp(1) < §Rk(2) < Rpy1(1); VE> N,

(1) 0 < Re(wo) < Relmo] +1); Yk > N,

Considering (x19) the sequence Ry (1) is absolutely convergent so [xo] +
1 € Dy, thus (*5) implies that the series > 725 Ry ([zo]+1) is (absolutely)



86 M. H. HOOSHMAND

convergent and so xg € ﬁfa- . If zg < N, then there exists a positive
integer m such that g + m € E N [N,+o00) and we get the result by
Theorem 2.4.

(b): The part (i) of (b) is a direct result of (a). Similar to (*;1), for
all positive integers m and each x € ¥y N [0,m], there exists a positive
integer N such that if £ > N, then 0 < Ry(z) < Rx(m). So the series
> he Ri(z) is uniformly convergent on X N [0, N]. Therefore, f is
uniformly summable on every bounded subset of Z;{ so f is uniformly
summable on every bounded subset of X ¢, by Theorem 2.6.

(c): If z,y € E;{ and z < y, then similar to (*11) we have 0 < Ry () <
Ry (y) for all positive integers k > 2 so, 0 < > p_y Ri(x) < Dy Ri(y)
and so (*5) implies that

(*12) 0< fo, (@) = fou (2) < [0, (¥) — for (y) + V.

If 0 € Dy then the first inequality (in this part) holds for all positive
integers k£ and so

(*13) 0 < fo,(x) —2f(0) < fo, (y) — yf(0).

Now we get the results by (x12) and (x;3).
(d): Let x1,29 € g, pr1,pp2 20, py +po = 1 and pyzy + pows € Xy + 1.
Concavity of f on Xy + 1 implies that

fk+ pixy + poxe) = f(pi(k + 1) + po(k + x2)) >
prf(k+x1) + paf(k +x2); VEk € N7,

therefore,

ZRk(HlfUl + poz2) < Z(Mle(xl) + paRi(z2)); Vn €N,
k=1 k=1

So fg, () is convex on Xy for all n, hence f,(x) is convex on Xt = Dy, .

Now if X is a function that satisfies these conditions, then putting

f*(x) = f(x) + R(1)z, f* (instead of f), A satisfies the conditions of

Theorem A. On the other hand R(f*,1) =0 and f; (z) = f,,(x) for all

positive integers n and x € Xy = X+ so,

fo(x) = fi(z) = ANzx); VeeXy 0O
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Corollary 3.4. Let f be a real function that is concave (convex) on
Yf+1 and R(1) = 0. Then the general form of all convex (concave)
solutions of the functional equation

MNx) = f(x) + ANz —1) forallx € ¥y +1,

is A= fs+c, for allc e R.
Moreover, if Dy C Dy — 1 then the functional equation

Mz) = f(z) + ANz —1) forallz € Dy,

has a unique convex (concave) solution with A(0) = 0.

Remark 3.5. Comparing the above corollary and Corollary 3.4. in ([2])
shows that if Dy € Dy —1, R(1) =0 and f is concave (convex) on Dy,
then the conditions of Corollary 3.4. (in[2]) are held.

Corollary 3.6. Consider the real rational function f(x) = #(f)) where

p(®) = ama™ + - + ag, qr(x) = bpa® + --- + by and qi(x) has no
any positive inreger roots. Clearly, Dy = R\ {z1,---, 21}, ¥ = R\
{z1, -} + 2,2 +1 =R\ ({z1,- , 21} + Zy, where x1,--- , 2y
are the real roots of qr(x), and if qx(x) has no any real roots, then
Df:Zf:Ef-f—l:R.

Since every real rational function is monotonic and convex or concave
from a number on, then considering Theorem 3.1, 3.3. we have:

Case 1) m < k: If gix(z) has no any real roots, then f is absolutely
summable and if g(z) has some real roots then f is absolutely semi
summable.

Case 2) m > k: (In this case considering R, (f,1)) if

deg(pm()qr(x + 1) — pm(x + 1)gr(x)) < deg(qr(z)gr(z + 1)),

then f is absolutely semi summable (if g;(z) has no any real roots, then
f is absolutely summable) and if

deg(pm(z)qr(z + 1) — pm(x + 1)gr(x)) = deg(qr(z)gr(z + 1)),
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then f is absolutely weak summable. Also, if

deg(pm(z)qr(z + 1) — pm(x + 1)gr(x)) > deg(qr(z)gr(z + 1)),

then 1 ¢ Dy and so f is not weak summable.
Moreover, in all of the above cases if f is concave on E]T+1, then we have:

(x+1D)(ap+ -+ am)gr(z+1) — (bo+ -+ bg)pm(z + 1)
(b() + -+ bk)qk(x + 1)

fa(x) =

)

for all z € E;{ (if f is convex, then the above inequality is reversed).

Example 3.7. For any real number r put p(x) = 2" where D, =
[0, +00) if > 0, and D, = (0,400) if r < 0. If » > 1, then R, (p,1) is
not convergent, so p is not weak summable (if 7 > 2, then R, (z) is not
convergent for all x # 0 so p is not summable at any = # 0) . Now if
r < 1, then R,(p,1) — 0 as n — oo and p(z) is concave, if 0 < r < 1
or convex, if r < 0. So if r < 1, then 2" with the above cited domain is
summable (by Theorem 2.3) and Dp, = [—1,+00) or (—1,+00). Also,

po(z) = lim [zn" + Z (k+z)")]
k=1
+oo
=S [( +2)" — (n+2)" — x(n— 1),
n=1

for all x € Dp, and
po(x) =214+2x—(1+4+2)"; Vz=D0.

If r < 0, then
+oo

po(a) =) [n" —(n+z)'].

n=1

In case r = 1/2, we have

Z ]
\F+\/nf Vintynta
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Finally, p, is the only concave (if » < 0) or convex (if 0 < r < 1) function
on its domain that p,(1) = p(1) =1 and

Po(z) =2" + po(x —1); V€ D,.
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