Another Look at the Limit Summability of Real Functions

M. H. Hooshmand
Islamic Azad University-Shiraz Branch

Abstract

This paper is a continuation of our recent paper entitled limit summability of real functions ([2]). In this work weak, semi, absolutely and uniformly limit summability will be given. Also, we generalize and extend some results of [2].

AMS Subject Classification: 40A30; 39A10.
Keywords and Phrases: Limit summable function, weak and semi limit summable function, concentrable set, convex function, Gamma type function.

1. Weak and Semi Limit Summable Functions

In [2] we have introduced and studied limit summability of real and complex functions. There are some relations between the topic and the Gamma type functions ([1]). Here we state several tests for weak, semi, absolutely and uniformly limit summability of functions.
In general, we assume $f: D_{f} \rightarrow \mathbb{C}$, where $D_{f} \subseteq \mathbb{C}$. In the real case we take the function $f: D_{f} \rightarrow \mathbb{R}$, where $D_{f} \subseteq \mathbb{R}$. A positive real function f is a real function such that $R_{f} \subseteq \mathbb{R}^{+}$. By $\mathbb{N}^{*}, \mathbb{N}$ we denote the set of positive and non-negative integer numbers, respectively.
For a function with domain D_{f}, we put

$$
\Sigma_{f}=\left\{x \mid x+\mathbb{N}^{*} \subseteq D_{f}\right\}
$$

Let $\mathbb{N}^{*} \subseteq D_{f}$ and for any positive integer n and $x \in \Sigma_{f}$ set

$$
R_{n}(f, x)=R_{n}(x)=f(n)-f(x+n)
$$

$$
f_{\sigma_{n}}(x)=x f(n)+\sum_{k=1}^{n} R_{k}(x)
$$

When $x \in D_{f}$, we may use the notation $\sigma_{n}(f(x))$ instead of $\sigma_{n}(f, x)$. The function f is called limit summable at $x_{0} \in \Sigma_{f}$ if the sequence $\left\{f_{\sigma_{n}}\left(x_{0}\right)\right\}$ is convergent. The function f is called limit summable on the set $S \subseteq \Sigma_{f}$ if it is limit summable at all points of S. Also, we put

$$
D_{f_{\sigma}}=\left\{x \in \Sigma_{f} \mid f \text { is summable at } x\right\},
$$

and represent the limit function $R_{n}(f, x)$ as $R(f, x)$ or $R(x)$.

It is easy to see that $\Sigma_{f} \cap D_{f}=\Sigma_{f}+1=\left\{x+1 \mid x \in \Sigma_{f}\right\}$ and

$$
0 \in \Sigma_{f} \Leftrightarrow \mathbb{N}^{*} \subseteq D_{f} \Leftrightarrow \mathbb{N} \subseteq \Sigma_{f}
$$

Convention: For brevity we use the term summable for limit summable, and restrict ourselves to the assumption $\mathbb{N}^{*} \subseteq D_{f}$.

As we can see in [2], always $f_{\sigma}(0)=0$ and if $0 \in D_{f}$, then $\{-1,0\} \subseteq D_{f_{\sigma}}$ and $f_{\sigma}(-1)=-f(0)$. But $1 \in D_{f_{\sigma}}$ if and only if $R_{n}(1)$ is convergent and $f_{\sigma}(1)=f(1)+R(1)$. A necessary condition for the summability of f at x is $\lim _{n \rightarrow \infty}\left(R_{n}(x)-x R_{n-1}(1)\right)=0$. Therefore, if $1 \in D_{f_{\sigma}}$, then the functional sequence $\left\{R_{n}(x)\right\}$ is convergent on $D_{f_{\sigma}}$ and $R(x)=R(1) x$ (for all $x \in D_{f_{\sigma}}$), and

$$
\left(*_{1}\right) \quad f_{\sigma}(x)=f(x)+f_{\sigma}(x-1)+R(1) x ; \quad \forall x \in D_{f_{\sigma}}+1 .
$$

So if $R(1)=0$, then

$$
f_{\sigma}(m)=f(1)+\cdots+f(m)=\sum_{j=1}^{m} f(j) ; \quad \forall m \in \mathbb{N}^{*}
$$

Definition 1.1. We call the function f weak (limit) summable if $\Sigma_{f}=D_{f_{\sigma}}$. Moreover, if $R(1)=0$, then f is called semi (limit) summable

By Lemma 2.1. in [2], f is summable if and only if it is semi summable and $D_{f} \subseteq D_{f}-1$. If f is weak summable, then $1 \in D_{f_{\sigma}}$ and so $R_{n}(1)$ is convergent.

Example 1.2. If $0<|a|<1$, then $f(x)=a^{x}+x$ is weak summable but it is not semi summable. The function $g(x)=\frac{1}{x}$ is semi summable but it is not summable.
Now we need a property about complex sequences introduced in the following definition.

Definition 1.3. We call the complex sequence $\left\{a_{n}\right\}$ weak convergent (semi convergent) if $a_{n+1}-a_{n}$ is convergent ($a_{n+1}-a_{n}$ converges to 0). The sequence a_{n} is called absolutely convergent if the series $\sum_{n=1}^{+\infty} \mid a_{n+1}-$ $a_{n} \mid$ is convergent. If $a_{n} \rightarrow a$ as $n \rightarrow \infty$ and a_{n} is absolutely convergent, then we say a_{n} is absolutely convergent to a.
If a_{n} is absolutely convergent, then it is convergent (and so it is semi convergent). A monotonic sequence is absolutely convergent if and only if it is convergent. Also, if the series $\sum a_{n}$ is absolutely convergent, then a_{n} is absolutely convergent to zero.
The sequence $a_{n}=\sqrt{n}\left(b_{n}=n\right)$ is semi convergent (weak convergent) but not convergent (semi convergent). The sequence $c_{n}=\frac{(-1)^{n}}{n}$ is convergent but not absolutely convergent. The sequence $d_{n}=\frac{1}{n}$ is absolutely convergent but $\sum d_{n}$ is not (absolutely) convergent.

Note: It is interesting to see that a_{n} is weak convergent (semi convergent) if and only if a_{n} is weak summable (semi summable or equivalently summable) as a function with domain \mathbb{N}^{*}. Also, for a function f the following are equivalent (see [2]):
The sequence $f_{n}=f(n)$ is weak convergent, $R_{n}(f, 1)$ is convergent, $1 \in D_{f_{\sigma}}, \mathbb{N}^{*} \subseteq D_{f_{\sigma}}, D_{f_{\sigma}} \cap D_{f}=D_{f_{\sigma}}+1, R_{n}(x)$ is convergent at some $x_{0} \in D_{f_{\sigma}} \backslash\{0\}, \quad R_{n}(x)$ is convergent on $D_{f_{\sigma}}\left(\right.$ in case $\left.D_{f_{\sigma}} \backslash\{0\} \neq \emptyset\right)$, $x_{0}, x_{0}-1 \in D_{f_{\sigma}}$ for some $x_{0} \neq 0$.

Therefore, the minimum condition for a function f in the topic of limit summability is $\lim _{n \rightarrow \infty} R_{n}(1)=R(1)$, and this is a necessary condi-
tion for weak summability and important properties of f_{σ}. For example if $f(x)=(2[x]-1) x+[x]-[x]^{2}$, then $R_{n}(1)$ is divergent and this function in addition to the evident points $0,-1$, is summable on $(0,1)$ $\left(D_{f_{\sigma}}=\{-1\} \cup[0,1)\right)$. But f_{σ} does not have the useful properties such as $\left(*_{1}\right), D_{f} \cap D_{f_{\sigma}}=D_{f_{\sigma}}+1$, etc.

As it can be seen in [2], if f is summable then $D_{f_{\sigma}}=\Sigma_{f}=D_{f}-1$ and

$$
\left(*_{2}\right) \quad f_{\sigma}(x)=f(x)+f_{\sigma}(x-1) ; \quad \forall x \in D_{f} .
$$

Now, if f is weak summable then we have

$$
\left(*_{3}\right) \quad f_{\sigma}(x)=f(x)+f_{\sigma}(x-1)+R(1) x ; \quad \forall x \in \Sigma_{f}+1,
$$

and so

$$
\left(*_{4}\right) \quad f_{\sigma}(x)=f(x)+f_{\sigma}(x-1) ; \quad \forall x \in \Sigma_{f}+1
$$

, if f is semi summable.
For showing the weak summability of a function it is enough to show it is summable on a certain subset of its domain.

Definition 1.4. Suppose $A \subseteq \mathbb{C}$. The set $S \subseteq A$ is called an integertrenchant subset of A (or simply trenchant of A) if for every $a \in A$ there exists an integer k such that $a+k \in S$.

Clearly A is an integer-trenchant of itself. It can be shown that (for any $f)$ if k is a natural number, then the set $\Sigma_{f}+k$ is a trenchant of Σ_{f}. For a real function f, the sets $\Sigma_{f} \cap[M,+\infty), \Sigma_{f} \cap(M,+\infty)$ are trenchant of Σ_{f} and $\Sigma_{f} \cap[M-1, M)$ is a tranchant of $\Sigma_{f} \cap(-\infty, M)$, for all real numbers M. Moreover, if $\Sigma_{f} \backslash D_{f}$ is bounded above, then the set $\Sigma_{f} \cap\left[\sigma_{f}, \sigma_{f}+1\right)$ (center of Σ_{f}) is a trenchant of Σ_{f} (with length less than or equal 1).

Theorem 1.5. Let $R_{n}(f, 1)$ be convergent. If f is summable on a trenchant subset of Σ_{f}, then f is weak summable.

Proof. Considering the relations

$$
\begin{aligned}
f_{\sigma_{n}}(x)= & f_{\sigma_{n}}(x-m)+\sum_{j=1}^{m}\left(f(x-m+j)+R_{n}(x-m+j)\right), \\
& R_{n}(x-m+j)=R_{n}(j)+R_{n+j}(x-m), \\
f_{\sigma_{n}}(x)= & f_{\sigma_{n}}(x+m)-\sum_{j=0}^{m-1}\left(f(x+m-j)+R_{n}(x+m-j)\right),
\end{aligned}
$$

(for all natural m and $j=1, \cdots, m$), we can prove the claim (similar to the proof of Theorem 2.11. in [2]).
In fact the above theorem is a generalization of Theorem 2.11. in [2]. This theorem also says that if $\{1, x\} \subseteq D_{f_{\sigma}}$, then $x+\mathbb{N} \subseteq D_{f_{\sigma}}$ and $\left(x+\mathbb{Z}^{-}\right) \cap \Sigma_{f} \subseteq D_{f_{\sigma}}$.

Lemma 1.6. Suppose that $R_{n}(1)$ is convergent and $f^{*}(x)=f(x)+$ $R(1) x$. Then the following are equivalent
(a) f is weak summable,
(b) The function f^{*} is semi summable,
(c) The function $g=f^{*} \mid \Sigma_{f+1}$ is summable,
(d) f satisfies the functional equation $\left(*_{3}\right)$,

Also, if f is a real function, then the above properties are equivalent to the following:
(e) f is limit summable on Σ_{f}^{+}(the set of positive elements of Σ_{f}).

Proof. By considering Theorem 1.5., $\left(*_{1}\right)$ and the relations $f_{\sigma_{n}}^{*}(x)=$ $f_{\sigma_{n}}(x), R\left(f^{*}, 1\right)=R_{n}(f, 1)-R(f, 1)$, and the equality $\Sigma_{f^{*}}=\Sigma_{f}=\Sigma_{g}=$ $D_{g}-1$, it is clear.

2. Absolutely and Uniformly Limit Summability of Functions

Definition 2.1. We call the function f absolutely summable at $x \in \Sigma_{f}$, if $f_{\sigma_{n}}(x)$ is absolutely convergent. Also, we put

$$
\bar{D}_{f_{\sigma}}=\left\{x \in \Sigma_{f} \mid f \text { is absolutely summable at } x\right\} .
$$

The function f is called uniformly (absolutely) summable on $S \subseteq \Sigma_{f}$ if $f_{\sigma_{n}}(x)$ is uniformly convergent on S (if f is absolutely summable at all points of S).
The function f is called absolutely weak summable (absolutely semi summable, absolutely summable) if it is weak summable (semi summable, summable) and $\bar{D}_{f_{\sigma}}=D_{f_{\sigma}}$.

Note: It is clear that f is absolutely weak (semi) summable if and only if $\bar{D}_{f_{\sigma}}=\Sigma_{f}\left(\bar{D}_{f_{\sigma}}=\Sigma_{f}\right.$ and $\left.R(1)=0\right)$. For absolutely summability there are some interesting equivalence properties that will be introduced later.

Now put $\bar{R}_{n}(x)=R_{n}(x)-x R_{n-1}(1)$, for $n \geqslant 2$ where $x \in \Sigma_{f}$. If $0 \in D_{f}$, then $\bar{R}_{1}(x)=R_{1}(x)-x R_{0}(1)=R_{1}(x)-x(f(0)-f(1))$, so $\bar{R}_{n}(x)$ is well defined for all n if $0 \in D_{f}$. A simple calculation shows, that

$$
\begin{gathered}
\left(*_{5}\right) \quad f_{\sigma_{n}}(x)=(x+1) f(1)-f(x+1)+\sum_{k=2}^{n}\left(R_{k}(x)-x R_{k-1}(1)\right) \\
=f_{\sigma_{1}}(x)+\sum_{k=2}^{n} \bar{R}_{k}(x) ; \quad \forall n>1
\end{gathered}
$$

Also, if $0 \in D_{f}$, then

$$
f_{\sigma_{n}}(x)=x f(0)+\sum_{k=1}^{n} \bar{R}_{k}(x) ; \quad \forall n
$$

Sometimes, we define $R_{0}(1)=-f(1)$, if $0 \notin D_{f}$. Therefore, if $0 \notin D_{f}$ or $f(0)=0$, then $\bar{R}_{1}(x)=f_{\sigma_{1}}(x)$ so $f_{\sigma_{n}}(x)=\sum_{k=1}^{n} \bar{R}_{k}(x)$.

Remark 2.2. Considering Definition 2.1. and $\left(*_{5}\right)$ we have:
a) f is absolutely summable at x if and only if the series $\sum_{n=2}^{\infty} \bar{R}_{n}(x)$ is absolutely convergent. In particular, $0 \in \bar{D}_{f_{\sigma}}$ and $1 \in \bar{D}_{f_{\sigma}}$ if and only if the sequence $R_{n}(1)$ is absolutely convergent. Also, if f_{n} is absolutely convergent, then $x \in \bar{D}_{f_{\sigma}}$ if and only if the series $\sum_{n=1}^{\infty} R_{n}(x)$ is absolutely convergent.
b) We put $f_{\bar{\sigma}}(x)=\left|f_{\sigma_{1}}(x)\right|+\Sigma_{n=2}^{\infty}\left|\bar{R}_{n}(x)\right|$ for all $x \in \bar{D}_{f_{\sigma}}$.

Therefore, $f_{\bar{\sigma}}$ is a non-negative valued function, $D_{f_{\bar{\sigma}}}=\bar{D}_{f_{\sigma}}$ and

$$
\left(*_{6}\right) \quad\left|f_{\sigma}(x)\right| \leqslant f_{\bar{\sigma}}(x): \forall x \in \bar{D}_{f_{\sigma}} .
$$

c) The complex sequence a_{n} is absolutely convergent if and only if it is absolutely summable, as a function with domain \mathbb{N}^{*}.

Example 2.3. If $0<|a|<1$, then the function $f(x)=a^{x}$ is absolutely summable, but it is not uniformly summable, because

$$
\sup \left|f_{\sigma_{n}}(x)-f_{\sigma}(x)\right|=\left|\frac{a^{n}}{1-a}\right| \sup \left|a^{x+1}+(1-a) x-a\right|=\infty
$$

But it is uniformly summable on every bounded set.
As we know, if $1 \in \Sigma_{f}\left(1 \in D_{f_{\sigma}}\right)$, then $\mathbb{N}^{*} \subseteq \Sigma_{f}$ and $\Sigma_{f} \cap D_{f}=\Sigma_{f}+1$ ($\mathbb{N}^{*} \subseteq D_{f_{\sigma}}$ and $D_{f_{\sigma}} \cap D_{f}=D_{f_{\sigma}}+1$). It is interesting to see that this property for $\bar{D}_{f_{\sigma}}$ is held too.

Theorem 2.4. Let $R_{n}(1)$ be absolutely convergent (equivalently $1 \in$ $\bar{D}_{f_{\sigma}}$) then:
a) $\bar{D}_{f_{\sigma}} \cap D_{f}=\bar{D}_{f_{\sigma}}+1, \mathbb{N}^{*} \subseteq \bar{D}_{f_{\sigma}}$
b) If $x \in \bar{D}_{f_{\sigma}}$, then $(x+\mathbb{Z}) \cap \Sigma_{f} \subseteq \bar{D}_{f_{\sigma}}$ and $(x+\mathbb{N}) \subseteq \bar{D}_{f_{\sigma}}$ (and so $\left.\mathbb{Z} \cap \Sigma_{f} \subseteq \bar{D}_{f_{\sigma}}\right)$.
c) If f is absolutely summable on a trenchant subset of $\Sigma_{f}\left(D_{f_{\sigma}}\right)$, then f is absolutely weak summable ($\bar{D}_{f_{\sigma}}=D_{f_{\sigma}}$).

Proof. (a): If $x-1 \in \bar{D}_{f_{\sigma}}$, then $x \in D_{f}$ and $x-1, x \in \Sigma_{f}$. A simple calculation shows that

$$
\left(*_{7}\right) \quad \bar{R}_{k}(x)=\bar{R}_{k+1}(x-1)+\bar{R}_{k}(1)(x+1) ; \quad k \geqslant 2,
$$

so

$$
\sum_{k=2}^{n}\left|\bar{R}_{k}(x)\right| \leqslant \sum_{k=2}^{n}\left|\bar{R}_{k+1}(x-1)\right|+|x+1| \sum_{k=2}^{n}\left|\bar{R}_{k}(1)\right| ; n \geqslant 2 .
$$

By virtue of the relation ($*_{5}$) and Remark 2.2. we get $x \in \bar{D}_{f_{\sigma}}$.
Now if $x \in \bar{D}_{f_{\sigma}} \cap D_{f}$, then $x-1, x \in \Sigma_{f}$ and applying ($*_{7}$) we conclude
that $x-1 \in \bar{D}_{f_{\sigma}}$ (similar to the above case).
(b), (c): The part (a) (with $\Sigma_{f} \cap D_{f}=\Sigma_{f}+1$) implies that

$$
\left(*_{8}\right) \quad \bar{D}_{f_{\sigma}} \cap\left(\Sigma_{f}+m\right) \subseteq \bar{D}_{f_{\sigma}}+m \subseteq \bar{D}_{f_{\sigma}}
$$

for all positive integers m. This relation proves (b) and (c).
Lemma 2.5. The following are equivalent:
a) f is absolutely summable,
b) $D_{f} \subseteq \bar{D}_{f_{\sigma}}, R(1)=0$,
c) $\bar{D}_{f_{\sigma}}=\Sigma_{f}, D_{f} \subseteq D_{f}-1, R(1)=0$.

Proof. By Lemma 2.1. in [2], the items $(a) \Rightarrow(b)$ and $(c) \Rightarrow(a)$ are clear.
$(b) \Rightarrow(c):$ Since $1 \in D_{f} \subseteq \bar{D}_{f_{\sigma}}$, Theorem 2.4 implies that

$$
D_{f}=D_{f} \cap \bar{D}_{f_{\sigma}}=\bar{D}_{f_{\sigma}}+1
$$

so $\bar{D}_{f_{\sigma}}=D_{f}-1=\Sigma_{f}$.
Therefore, if f is absolutely summable, then $\bar{D}_{f_{\sigma}}=D_{f_{\sigma}}=\Sigma_{f}=D_{f}-1$.
Theorem 2.6. Let f be a real function that f_{n} is weak convergent ($R_{n}(1)$ is convergent), then
(a) If f is uniformly summable on $\Sigma_{f} \cap[M, M+1$) (for a real M), then f is uniformly summable on every bounded subset of $\Sigma_{f} \cap(-\infty, M+1)$. (b) If f is uniformly summable on every bounded subset of $\Sigma_{f} \cap(N,+\infty)$, for some real N, then f is uniformly summable on every bounded subset of Σ_{f}.
(c) If Σ_{f} is concentrable and f is uniformly summable on center of Σ_{f}, then f is uniformly summable on every bounded subset of Σ_{f}.

Proof. (a) For all $x \in \Sigma_{f} \cap[M-1, M)$, we have $x+1 \in\left(\Sigma_{f}+1\right) \cap$ $[M, M+1) \subseteq \Sigma_{f} \cap[M, M+1)$ and

$$
f_{\sigma_{n}}(x)=f_{\sigma_{n}}(x+1)-R_{n}(x+1)-f(x): \forall x \in \Sigma_{f} \cap[M-1, M)
$$

Therefore, for these x-s, $f_{\sigma_{n}}(x+1)$ is uniformly convergent. On the other hand, the relation $f_{\sigma_{n}}(x+1)-f_{\sigma_{n-1}}(x+1)=\bar{R}_{n}(x+1)$ implies
that $\bar{R}_{n}(x+1)$ and $R_{n}(x+1)=\bar{R}_{n}(x+1)+(x+1) R_{n-1}(1)$ is uniformly convergent on $\Sigma_{f} \cap[M-1, M)$ (because $R_{n-1}(1)$ is convergent and these x-s are bounded).
Therefore, f is uniformly summable on $\Sigma_{f} \cap[M-1, M)$. Similarly, f is uniformly summable on $S_{i}=\Sigma_{f} \cap[M-i, M+1-i)$ for all positive integers i and on every finite union of S_{i}-s. Therefore, (a) is proved.
(b): the part (a) implies (b) clearly.
(c): Let Σ_{f} be concentrable. Then for all positive integers m we have
$\left\{\Sigma_{f} \cap\left[\sigma_{f}+m-1, \sigma_{f}+m\right)\right\}+1=\Sigma_{f} \cap\left[\sigma_{f}+m, \sigma_{f}+m+1\right)=\left\{\Sigma_{f} \cap\left[\sigma_{f}, \sigma_{f}+1\right)\right\}+m$, since $x-\left[x-\sigma_{f}\right] \in\left[\sigma_{f}, \sigma_{f}+1\right)$, for all $x \in \Sigma_{f}$. Put $S_{m}=\Sigma_{f} \cap\left[\sigma_{f}+\right.$ $m, \sigma_{f}+m+1$). Therefore, if $x \in S_{1}$, then $x-1 \in \Sigma_{f} \cap\left[\sigma_{f}, \sigma_{f}+1\right.$) (the center of Σ_{f}) and

$$
f_{\sigma_{n}}(x)=f_{\sigma_{n}}(x-1)+R_{n}(x)+f(x) ; \quad \forall x \in S_{1},
$$

Similar to the part (a), f is uniformly summable on S_{1} and so on S_{m} for all positive integers m (considering the above relation for S_{m}). Now with due attention to (a) the proof is complete.

Note: In general, $\left\{\Sigma_{f} \cap[M+1, M+2)\right\}-1 \nsubseteq \Sigma_{f} \cap[M, M+1)$, for this reason the part (a) in the above theorem can not be stated for $\Sigma_{f} \cap[M+1, M+2)$ and for the bounded subsets of $\Sigma_{f} \cap[M+1,+\infty)$. But in part (c) (when Σ_{f} is concentrable and $M=\sigma_{f}$) this problem is removed. Also, note that if in this theorem Σ_{f} be replaced by $D_{f_{\sigma}}$ (in the hypothesis and (a), (b), (c)), then the theorem is valid (for if $R_{n}(1)$ is convergent, then $D_{f} \cap D_{f_{\sigma}}=D_{f_{\sigma}}+1$, i.e., there exist similarities between the properties of $D_{f_{\sigma}}$ and those of Σ_{f}).

In the following we introduce a test for (absolutely) summability of the composition of functions.

Theorem 2.7. Suppose f is a function for which $\sum_{n=1}^{\infty} R_{n}(x)$ is absolutely convergent on Σ_{f} and let g be a function that $f\left(\mathbb{N}^{*}\right) \subseteq D_{g}$, and

$$
|g(s)-g(t)| \leqslant M|s-t| \quad \forall s, t \in D_{g}
$$

Then gof is absolutely semi summable, moreover

$$
\left|(g \circ f)_{\sigma}(x)\right| \leqslant(g \circ f)_{\bar{\sigma}}(x) \leqslant c|x|+M \sum_{n=1}^{\infty}\left|R_{n}(x)\right|
$$

where $c=M \sum_{n=1}^{\infty}\left|R_{n}(1)\right|+|g(f(1))|$.
Proof. First note that $\left(\mathbb{N}^{*} \subseteq D_{g o f}\right.$ and) $\Sigma_{g o f} \subseteq \Sigma_{f}$. Now if $x \in \Sigma_{g o f}$, then one can write

$$
\left|R_{n}(g \circ f, x)\right| \leqslant M\left|R_{n}(f, x)\right|+M|x|\left|R_{n-1}(f, 1)\right|: \quad \forall n>1
$$

Since the series $\sum\left|R_{n}(x)\right|$ and $\sum\left|R_{n}(1)\right|$ are convergent so $g o f$ is absolutely summable at x. Also, we have

$$
\left|R_{n}(g \circ f, 1)\right| \leqslant M\left|R_{n}(f, 1)\right|
$$

so $R(f, 1)=0$ implies that $R(g o f, 1)=0$. Therefore, f is absolutely semi summable. Now considering the above inequalities and

$$
\left|(g \circ f)_{\sigma_{1}}(x)\right| \leqslant|g(f(1))||x|+M\left|R_{1}(x)\right|
$$

with relations $\left(*_{5}\right),\left(*_{6}\right)$, the last part is proved.
Example 2.8. If $|a|<1$, then the functions $\sin \left(a^{x}\right)$ and $\cos \left(a^{x}\right)$ are absolutely summable and $\sin \left(\frac{1}{x}\right), \cos \left(\frac{1}{x}\right)$ are absolutely semi summable.

3. Monotonic, Concave and Convex Limit Summable Functions

Let E be a subset of \mathbb{R} (not necessarily an interval) and suppose $E \subseteq D_{f}$ (f is a real function defined on E). A function f is called convex on E if for every three elements x_{1}, x_{2}, x_{3} of E with $x_{1}<x_{2}<x_{3}$ the following inequalities hold

$$
\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}} \leqslant \frac{f\left(x_{3}\right)-f\left(x_{1}\right)}{x_{3}-x_{1}} \leqslant \frac{f\left(x_{3}\right)-f\left(x_{2}\right)}{x_{3}-x_{2}}
$$

If the above inequalities are reversed, then f is called concave. Therefore, a function f is concave if and only if the function $-f$ is convex. If f is convex on E, then it is so on each subset of E. For example if f^{\prime} is increasing on (a, b), then f is convex on each subset of (a, b).
The function f is called monotonic (convex or concave) on E from a number on if there exists a real M such that f is non decreasing or non increasing (convex or concave) on $E \cap(M,+\infty)$

Theorem 3.1. Let f be a real function that the sequence f_{n} is bounded. (a) For a $x_{0} \in \Sigma_{f}$, if f is monotonic on $\mathbb{N}^{*} \cup\left(\mathbb{N}^{*}+x_{0}\right)$ from a number on, then f is absolutely summable at x_{0}.
(b) If f is monotonic on $\Sigma_{f}+1$ from a number on, then
i : f is absolutely semi summable.
ii: f is uniformly summable on every bounded subset of Σ_{f} and the series $\sum_{n=1}^{\infty} R_{n}(x)$ is uniformly convergent on it.
(c) If f is non-increasing on $\Sigma_{f}+1$, then $\operatorname{sgn}(x) f_{\sigma}(x) \geqslant f(\infty)|x|$ (i.e. $f_{\sigma}(x) \geqslant f(\infty) x$ if $x \geqslant 0$ and $f_{\sigma}(x) \leqslant f(\infty) x$ if $\left.x \leqslant 0\right)$, where, $f(\infty)=$ $\lim _{n \rightarrow \infty} f_{n}$.
Moreover, if $f(\infty) \geqslant 0$ then f_{σ} is non-decreasing (on its domain $D_{f_{\sigma}}=$ $\left.\Sigma_{f}\right)$ and

$$
\frac{f_{\sigma}(y)-f_{\sigma}(x)}{y-x} \geqslant f(\infty),
$$

for all $x, y \in \Sigma_{f}$ that $x<y$.
(If f is non-decreasing, then the function $-f$ satisfies the condition (c) and by considering $(-f)_{\sigma}=-f_{\sigma}$ one can write similar properties for f, in this case).

Proof. (a): Put $E=\mathbb{N}^{*} \cup\left(\mathbb{N}^{*}+x_{0}\right)$ (clearly $\left.E \subseteq \Sigma_{f}+1 \subseteq D_{f}\right)$. Let f be non-increasing on $E \cap(M,+\infty)$, for a positive number M (without loss of generality). Since f_{n} is non-increasing (from a number on) and convergent, then f_{n} and so $R_{n}(1)$ are absolutely convergent. Therefore, $\mathbb{N}^{*} \subseteq \bar{D}_{f_{\sigma}}$. Now let m be a positive integer such that $x_{0}+m \geqslant 0$. Clearly there exists a N such that

$$
\left(*_{9}\right) \quad 0 \leqslant R_{k}\left(x_{0}+m\right) \leqslant R_{k}\left(\left[x_{0}\right]+m+1\right): \forall k \geqslant N .
$$

Since the series $\sum_{k=1}^{\infty} R_{k}\left(\left[x_{0}\right]+m+1\right)$ is absolutely convergent, by Remark 2.2. $\sum_{k=1}^{\infty} R_{k}\left(\left[x_{0}\right]+m\right)$ is absolutely convergent, so $x_{0}+m \in \bar{D}_{f_{\sigma}}$ and $x_{0} \in \bar{D}_{f_{\sigma}}$, by Theorem 2.4.
(b): The part (i) of (b) is a direct result of (a). Suppose f be nonincreasing on $\Sigma_{f}+1$ from a number on. Similar to ($*_{g}$), for all positive integers m and each $x \in \Sigma_{f} \cap[0, m]$, there exists a positive integer N such that if $k \geqslant N$, then $0 \leqslant R_{k}(x) \leqslant R_{k}(m)$. So the series $\sum_{k=1}^{\infty} R_{k}(x)$ is uniformly convergent on $\Sigma_{f} \cap[0, m]$. Therefore, f is uniformly summable on every bounded subset of Σ_{f}^{+}so f is uniformly summable on every bounded subset of Σ_{f}, by Theorem 2.6.
(If f is non decreasing, then we can proof the parts (a), (b) similarly.)
(c): If $x, y \in \Sigma_{f}$ and $x<y$, then $R_{k}(x) \leqslant R_{k}(y)$ for all positive integers k (because f is non increasing on all $\Sigma_{f}+1$) so $\sum_{k=1}^{n} R_{k}(x) \leqslant \sum_{k=1}^{n} R_{k}(y)$ and so

$$
\frac{f_{\sigma_{n}}(y)-f_{\sigma_{n}}(x)}{y-x} \geqslant f(n)
$$

for all n. Applying the above inequality for $x=0$ and $y=0$ and putting $f(\infty)=\lim _{n \rightarrow \infty} f_{n}$ with due attention to (a) we get the results.

Example 3.2. The function $f(x)=\sqrt{x}-\sqrt{x+1}$ is absolutely summable and $\bar{D}_{f_{\sigma}}=D_{f_{\sigma}}=D_{f}-1=[-1,+\infty)$.

In ([2]), we prove a main (uniqueness) Theorem. Since it is very important and we use it repeatedly in the sequel, it is introduced here:

Theorem A. Let f be a real function for which $R_{n}(f, 1)$ is convergent. Suppose there exists a function λ such that

$$
\lambda(x)=f(x)+\lambda(x-1): \quad \text { for all } x \in \Sigma_{f}+1
$$

(a) If $R(1) \geqslant 0$ and λ is convex on $\Sigma_{f}+1$ from a number on, then f is weak summable.
(b) If $R(1) \leqslant 0$ and λ is concave on $\Sigma_{f}+1$ from a number on, then f is weak summable.

In each of the above cases we have

$$
f_{\sigma}(x)=\lambda(x)+R(1) \frac{x^{2}+x}{2}-\lambda(0): \quad \text { for all } x \in \Sigma_{f} .
$$

Proof. See Theorem 3.1. in [2].
Theorem 3.3. Suppose f is a real function for which $R_{n}(1)$ is bounded. (a): If f is concave or convex on $\mathbb{N}^{*} \cup\left(\mathbb{N}^{*}+x_{0}\right)$ from a number on, then f is absolutely summable at x_{0}.
(b) If f is convex or concave on $\Sigma_{f}+1$ from a number on, then i : f is absolutely weak summable.
ii: f is uniformly summable on every bounded subset of Σ_{f}.
(c) If f is concave on $\Sigma_{f}^{+}+1$, then

$$
f_{\sigma}(x) \geqslant(x+1) f(1)-f(x+1) \quad: \quad \forall x \in \Sigma_{f}^{+} \cup\{0\} .
$$

Moreover, if $f_{\sigma_{1}}(y) \geqslant f_{\sigma_{1}}(x)$ for all $x, y \in \Sigma_{f}^{+}$with $x<y$, or $0 \in D_{f}$ and $f(0) \geqslant 0$, then f_{σ} is non-decreasing and non negative on $\Sigma_{f}^{+} \cup\{0\}$. d) If the concavity of f holds on $\Sigma_{f}+1$, then the summand function of $f\left(f_{\sigma}\right)$ is convex (on its domain Σ_{f}) and f_{σ} is the only function (with domain Σ_{f}) that is convex on $\Sigma_{f}+1$ (from a number on), $f_{\sigma}(0)=0$ and satisfies the functional equation $\left(*_{3}\right)$:

$$
f_{\sigma}(x)=f(x)+f_{\sigma}(x-1)+R(1) x ; \quad \forall x \in \Sigma_{f}+1 .
$$

Proof. Put $E=\mathbb{N}^{*} \cup\left(\mathbb{N}^{*}+x_{0}\right)$. There exists a positive integer N such that f is concave on $E \cap[N,+\infty)$. First let $x_{0} \geqslant N$. Applying the concavity of f for $k<k+1<k+2$ and $k-1<k<k+x_{0}<k+1+\left[x_{0}\right]$, where $k>N$ is an integer, we infer that

$$
\begin{array}{ll}
\left(*_{10}\right) & R_{k}(1) \leqslant \frac{1}{2} R_{k}(2) \leqslant R_{k+1}(1) ; \quad \forall k>N, \\
\left(*_{11}\right) & 0 \leqslant \bar{R}_{k}\left(x_{0}\right) \leqslant \bar{R}_{k}\left(\left[x_{0}\right]+1\right) ; \quad \forall k>N,
\end{array}
$$

Considering ($*_{10}$) the sequence $R_{k}(1)$ is absolutely convergent so $\left[x_{0}\right]+$ $1 \in \bar{D}_{f_{\sigma}}$ thus ($*_{5}$) implies that the series $\sum_{k=2}^{+\infty} \bar{R}_{k}\left(\left[x_{0}\right]+1\right)$ is (absolutely)
convergent and so $x_{0} \in \bar{D}_{f_{\sigma}}$. . If $x_{0}<N$, then there exists a positive integer m such that $x_{0}+m \in E \cap[N,+\infty)$ and we get the result by Theorem 2.4.
(b): The part (i) of (b) is a direct result of (a). Similar to $\left(*_{11}\right)$, for all positive integers m and each $x \in \Sigma_{f} \cap[0, m]$, there exists a positive integer N such that if $k>N$, then $0 \leqslant \bar{R}_{k}(x) \leqslant \bar{R}_{k}(m)$. So the series $\sum_{k=2}^{\infty} \bar{R}_{k}(x)$ is uniformly convergent on $\Sigma_{f} \cap[0, N]$. Therefore, f is uniformly summable on every bounded subset of Σ_{f}^{+}so f is uniformly summable on every bounded subset of Σ_{f}, by Theorem 2.6.
(c): If $x, y \in \Sigma_{f}^{+}$and $x<y$, then similar to $\left(*_{11}\right)$ we have $0 \leqslant \bar{R}_{k}(x) \leqslant$ $\bar{R}_{k}(y)$ for all positive integers $k \geqslant 2$ so, $0 \leqslant \sum_{k=2}^{n} \bar{R}_{k}(x) \leqslant \sum_{k=2}^{n} \bar{R}_{k}(y)$ and so $\left(*_{5}\right)$ implies that

$$
\left(*_{12}\right) \quad 0 \leqslant f_{\sigma_{n}}(x)-f_{\sigma_{1}}(x) \leqslant f_{\sigma_{n}}(y)-f_{\sigma_{1}}(y): \quad \forall n .
$$

If $0 \in D_{f}$ then the first inequality (in this part) holds for all positive integers k and so

$$
\left(*_{13}\right) \quad 0 \leqslant f_{\sigma_{n}}(x)-x f(0) \leqslant f_{\sigma_{n}}(y)-y f(0)
$$

Now we get the results by $\left(*_{12}\right)$ and $\left(*_{13}\right)$.
(d): Let $x_{1}, x_{2} \in \Sigma_{f}, \mu_{1}, \mu_{2} \geqslant 0, \mu_{1}+\mu_{2}=1$ and $\mu_{1} x_{1}+\mu_{2} x_{2} \in \Sigma_{f}+1$. Concavity of f on $\Sigma_{f}+1$ implies that

$$
\begin{gathered}
f\left(k+\mu_{1} x_{1}+\mu_{2} x_{2}\right)=f\left(\mu_{1}\left(k+x_{1}\right)+\mu_{2}\left(k+x_{2}\right)\right) \geqslant \\
\mu_{1} f\left(k+x_{1}\right)+\mu_{2} f\left(k+x_{2}\right) ; \forall k \in \mathbb{N}^{*}
\end{gathered}
$$

therefore,

$$
\sum_{k=1}^{n} R_{k}\left(\mu_{1} x_{1}+\mu_{2} x_{2}\right) \leqslant \sum_{k=1}^{n}\left(\mu_{1} R_{k}\left(x_{1}\right)+\mu_{2} R_{k}\left(x_{2}\right)\right) ; \quad \forall n \in \mathbb{N}
$$

So $f_{\sigma_{n}}(x)$ is convex on Σ_{f} for all n, hence $f_{\sigma}(x)$ is convex on $\Sigma_{f}=D_{f_{\sigma}}$. Now if λ is a function that satisfies these conditions, then putting $f^{*}(x)=f(x)+R(1) x, f^{*}$ (instead of f), λ satisfies the conditions of Theorem A. On the other hand $R\left(f^{*}, 1\right)=0$ and $f_{\sigma_{n}}^{*}(x)=f_{\sigma_{n}}(x)$ for all positive integers n and $x \in \Sigma_{f}=\Sigma_{f *}$ so,

$$
f_{\sigma}(x)=f_{\sigma}^{*}(x)=\lambda(x) ; \quad \forall x \in \Sigma_{f}
$$

Corollary 3.4. Let f be a real function that is concave (convex) on $\Sigma_{f}+1$ and $R(1)=0$. Then the general form of all convex (concave) solutions of the functional equation

$$
\lambda(x)=f(x)+\lambda(x-1) \quad \text { for all } x \in \Sigma_{f}+1
$$

is $\lambda=f_{\sigma}+c$, for all $c \in \mathbb{R}$.
Moreover, if $D_{f} \subseteq D_{f}-1$ then the functional equation

$$
\lambda(x)=f(x)+\lambda(x-1) \quad \text { for all } x \in D_{f}
$$

has a unique convex (concave) solution with $\lambda(0)=0$.
Remark 3.5. Comparing the above corollary and Corollary 3.4. in ([2]) shows that if $D_{f} \subseteq D_{f}-1, R(1)=0$ and f is concave (convex) on D_{f}, then the conditions of Corollary 3.4. (in[2]) are held.

Corollary 3.6. Consider the real rational function $f(x)=\frac{p_{m}(x)}{q_{k}(x)}$ where $p_{m}(x)=a_{m} x^{m}+\cdots+a_{0}, q_{k}(x)=b_{k} x^{k}+\cdots+b_{0}$ and $q_{k}(x)$ has no any positive inreger roots. Clearly, $D_{f}=\mathbb{R} \backslash\left\{x_{1}, \cdots, x_{l}\right\}, \Sigma_{f}=\mathbb{R} \backslash$ $\left(\left\{x_{1}, \cdots, x_{l}\right\}+\mathbb{Z}^{-}, \Sigma_{f}+1=\mathbb{R} \backslash\left(\left\{x_{1}, \cdots, x_{l}\right\}+\mathbb{Z}_{0}^{-}\right.\right.$, where x_{1}, \cdots, x_{l} are the real roots of $q_{k}(x)$, and if $q_{k}(x)$ has no any real roots, then $D_{f}=\Sigma_{f}=\Sigma_{f}+1=\mathbb{R}$.

Since every real rational function is monotonic and convex or concave from a number on, then considering Theorem 3.1, 3.3. we have:
Case 1) $m \leqslant k$: If $q_{k}(x)$ has no any real roots, then f is absolutely summable and if $q_{k}(x)$ has some real roots then f is absolutely semi summable.
Case 2) $m>k$: (In this case considering $\left.R_{n}(f, 1)\right)$ if

$$
\operatorname{deg}\left(p_{m}(x) q_{k}(x+1)-p_{m}(x+1) q_{k}(x)\right)<\operatorname{deg}\left(q_{k}(x) q_{k}(x+1)\right)
$$

then f is absolutely semi summable (if $q_{k}(x)$ has no any real roots, then f is absolutely summable) and if

$$
\operatorname{deg}\left(p_{m}(x) q_{k}(x+1)-p_{m}(x+1) q_{k}(x)\right)=\operatorname{deg}\left(q_{k}(x) q_{k}(x+1)\right)
$$

then f is absolutely weak summable. Also, if

$$
\operatorname{deg}\left(p_{m}(x) q_{k}(x+1)-p_{m}(x+1) q_{k}(x)\right)>\operatorname{deg}\left(q_{k}(x) q_{k}(x+1)\right)
$$

then $1 \notin D_{f_{\sigma}}$ and so f is not weak summable.
Moreover, in all of the above cases if f is concave on $\Sigma_{f}^{+}+1$, then we have:

$$
f_{\sigma}(x) \geqslant \frac{(x+1)\left(a_{0}+\cdots+a_{m}\right) q_{k}(x+1)-\left(b_{0}+\cdots+b_{k}\right) p_{m}(x+1)}{\left(b_{0}+\cdots+b_{k}\right) q_{k}(x+1)}
$$

for all $x \in \Sigma_{f}^{+}$(if f is convex, then the above inequality is reversed).
Example 3.7. For any real number r put $p(x)=x^{r}$ where $D_{p}=$ $[0,+\infty)$ if $r>0$, and $D_{p}=(0,+\infty)$ if $r<0$. If $r>1$, then $R_{n}(p, 1)$ is not convergent, so p is not weak summable (if $r \geqslant 2$, then $\bar{R}_{n}(x)$ is not convergent for all $x \neq 0$ so p is not summable at any $x \neq 0$). Now if $r<1$, then $R_{n}(p, 1) \rightarrow 0$ as $n \rightarrow \infty$ and $p(x)$ is concave, if $0<r<1$ or convex, if $r<0$. So if $r<1$, then x^{r} with the above cited domain is summable (by Theorem 2.3) and $D p_{\sigma}=[-1,+\infty)$ or $(-1,+\infty)$. Also,

$$
\begin{aligned}
& p_{\sigma}(x)=\lim _{n \rightarrow \infty}\left[x n^{r}+\sum_{k=1}^{n}\left(k^{r}-(k+x)^{r}\right)\right] \\
& =\sum_{n=1}^{+\infty}\left[(1+x) n^{r}-(n+x)^{r}-x(n-1)^{r}\right]
\end{aligned}
$$

for all $x \in D p_{\sigma}$ and

$$
p_{\sigma}(x) \geqslant 1+x-(1+x)^{r} ; \quad \forall x \geqslant 0
$$

If $r<0$, then

$$
p_{\sigma}(x)=\sum_{n=1}^{+\infty}\left[n^{r}-(n+x)^{r}\right]
$$

In case $r=1 / 2$, we have

$$
p_{\sigma}(x)=x \sum_{n=1}^{+\infty}\left[\frac{1}{\sqrt{n}+\sqrt{n-1}}-\frac{1}{\sqrt{n}+\sqrt{n+x}}\right]
$$

Finally, p_{σ} is the only concave (if $r<0$) or convex (if $0<r<1$) function on its domain that $p_{\sigma}(1)=p(1)=1$ and

$$
p_{\sigma}(x)=x^{r}+p_{\sigma}(x-1) ; \quad \forall x \in D_{p} .
$$

References

[1] R. J. Webster, Log-Convex Solutions to the Functional Equation $f(x+$ 1) $=g(x) f(x): \Gamma$-Type Functions, J. Math. Anal. Appl., 209 (1997), 605-623.
[2] M. H. Hooshmand, Limit Summability of Real Functions, Real Analysis Exchange, 27 (2) (2002), 463-472.
[3] E. Artin, The Gamma Function, Holt Rhinehart \& Wilson, New York, 1964; Transl. by M. Butler from Einfuhrung un der Theorie der Gamma fonktion, Teubner, Leipzig, 1931.

Mohammad Hadi Hooshmand
Department of Mathematics
Islamic Azad University-Shiraz Branch
Shiraz, Iran
E-mail: hadi.hooshmand@gmail.com

