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Existence of Periodic Solution for a Class of
Linear Third Order ODE
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Abstract. In this paper, we will consider third order linear dif-
ferential equation

y′′′ + αy′′ + βy′ + γy + f(t, y) = e(t),

where α, β, γ are constant coefficients, f(t, y) is continuous, e(t)
is discontinuous, and f and e are periodic functions with respect
to t of period w. We will introduce sufficient conditions under
which the above equation have at least one non-trivial periodic
solution of period w. We will see that under the so called condi-
tions, all the solutions of the equation will be bounded. It must be
mentioned that e in this equation is called “controller” in the en-
gineering problems and it was always considered to be continuous
to ensure us that periodic solution exists. In this paper, we will
show the existence of periodic solution without supposing that e
to be continuous.
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1. Introduction

The third order differential equation:

y′′′ + αy′′ + βy′ + γy + f(t, y) = e(t), (1)

where α, β, γ are constants f is continuous, e is discontinuous, and f

and e are w-periodic functions with respect to t will be discussed.
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First of all, we suppose that all the roots of characteristic equation

p3 + αp2 + βp + γ = 0 (2)

have negative real parts. This will guarantee that all the solutions of
the following homogeneous equation are bounded:

y′′′ + αy′′ + βy′ + γy = 0, (3)

If so, for each solution φ of equation (3), there exists a positive number
M that |φ(t)| 6 Me−αt which means that solution of (3) will tend to
zero when t tends to infinity ([3]).

For this purpose, the third order polynomial

L(p) = p3 + αp2 + βp + γ (4)

must satisfy the Hurwitz conditions ([3]). Hurwitz theorem for a general
third order polynomial M(p) = a0p

3 +a1p
2 +a2p+a3 says that: All the

roots of M(p) = 0 have negative real parts if and only if a0, a1, a2, a3 are
positive and in addition a1a2 > a0a3. (see [3])

By now, we will assume that the characteristic equation L(p) = 0
satisfies the Hurwitz condition, i. e. α, β, γ are positive and αβ > γ.

Now for the characteristic equation L(p) = 0 two situations may
occur:
1) Having 3 real roots (may be indistinct),
2) Having 2 conjugate complex roots and one real root.

For ease, we will consider the second situation and we will find the
integral equation for it. All of our next section is based on this integral
equation.

2. Integral Equation

Let r1 + iβ, r1 − iβ and r2 be the roots of characteristic equation. So a
fundamental set of solutions for (3) is

{er1x cosβx, er1x sinβx, er2x}.
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Calculating the general solution for the equation (1) by the “variation
of parameters method” results in

yg(x) = α1e
r1x cos βx + α2e

r1x sin βx + α3e
r2x+

k1

∫ x

0
er1(x−t)[k2 sin β(t− x)− cosβ(t− x) + β][e(t)− f(t, y)]dt,

(5)

where k1 = 1
β(r2

2−r2
1+β2)

and k2 = (r2 − r1).
Let

φ0(x) = α1e
r1x cosβx + α2e

r1x sinβx + α3e
r2x

and e(t)dt = dg(t) and also

K(x, t) = k1e
r1(x−t)[k2 sinβ(t− x)− cosβ(t− x) + β].

So each solution for equation (1) is in the following form

y(x) = φ0(x) +
∫ x

0
K(x, t)dg(t)−

∫ x

0
K(x, t)f(t, y)dt,

where
∫ x
0 K(x, t)dg(t) is Riemann-Stieltjes integral.

Now, we will try to prove that all the solutions of equation (1), under
Hurwitz conditions and under the conditions which we will introduce
later, are bounded.

Theorem 2.1. If f is continuous on R such that vg(t, t + 1) < h for
some constant positive number h and all t, then

∫ α
0 fdg is bounded for

α ∈ R.

Proof. For some N ∈ N with N − 1 6 α < N .
We claim that g is bounded variation on [0, α].

Vg(0, α) = Vg(0, 1) + Vg(0, 2) + . . . + Vg(N − 1, α)

6 Vg(0, 1) + Vg(0, 2) + . . . + Vg(N − 1, α) + Vg(α, N)

= Vg(0, 1) + . . . + Vg(N − 1, N)

< h + . . . + h︸ ︷︷ ︸
Ntimes

= Nh
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So we can write g as the difference of two ascending functions g1 and
g2: g = g1 − g2 and we have

∫ α

0
fdg =

∫ α

0
fd(g1 − g2) =

∫ α

0
fdg1 −

∫ α

0
fdg2 .

Then

| ∫ α
0 fdg| 6 | ∫ α

0 fdg1|+ | ∫ α
0 fdg2|

6
∫ α
0 |f |dg1 +

∫ α
0 |f |dg2

6 max |f |(∫ α
0 dg1 +

∫ α
0 dg2)

= max |f |(g1(α)− g1(0) + g2(α)− g2(0))

6 max |f |(V g1(0, α) + V g2(0, α)) < ∞ .

It completes the proof. ¤
Theorem 2.2. If there exists h, such that Vg(t, t + 1) < h for all t,
(where dg(t) = e(t)dt) and f(t, y) ≡ 0, then every solution of equation
(1) is bounded.

Proof. When f(t, y) ≡ 0, every solution of equation (1) is in the form

y(x) = φ0(x) +
∫ x

0
K(x, t)dg(t),

where φ0(x) is a solution of homogeneous equation (3) (that has already
assumed to be bounded) and

K(x, t) = k1[(r2 − r1) sinβ(t− x)− cosβ(t− x) + β]er1(x−t).

We can see that

|K(x, t)| 6 k1[|r2 − r1|+ 1 + β]er1(x−t) 6 Ber1(x−t),

where B = (|r2 − r1|+ 1 + β)k1.
In addition there exists A; such that for all x, |φ0(x)| 6 A. So we have

|y(x)| 6 A + B|
∫ x

0

er1(x−t)dg(t)|.
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For each x > 0, there is a k ∈ N such that k 6 x < k + 1.
So we have:

|y(x)| 6 A + B| ∫ x
0 er1(x−t)d(g1 − g2)|

6 A + B(| ∫ x
0 er1(x−t)dg1|+ | ∫ x

0 er1(x−t)dg2|
6 A + B(

∫ x
0 |er1(x−t)|dg1 +

∫ x
0 |er1(x−t)|dg2

6 A + B(
∫ x
0 er1(x−t)dg1 +

∫ k+1
x er1(x−t)dg1 +

∫ x
0 er1(x−t)dg2

+
∫ k+1
x er1(x−t)dg2)

= A + B(
∫ k+1
0 er1(x−t)dg1 +

∫ k+1
0 er1(x−t)dg2).

We can choose g1 and g2 such that

g1(x) =
1
2
Vg(0, x) +

1
2
g(x),

g2(x) =
1
2
Vg(0, x)− 1

2
g(x)

Then for all t, i = 1, 2, Vgi(t, t + 1) 6 Vg(t, t + 1) < h. Now for i = 1, 2,

we have
∫ k+1
0 e−r1tdgi =

∑k+1
m=1

∫ m
m−1 e−r1tdgi

<
∑k+1

m=1 e−r1m
∫ m
m−1 dgi

< h
∑k+1

m=1 e−r1m = he−r1 1−e−r1(k+2)

1−e−r1
,

So we conclude that

Ber1k
∫ k+1
0 e−r1tdgi < Ber1khe−r1 1−e−r1(k+2)

1−e−r1

= Bh er1(k−1)−er1(k−1−k−2)

1−e−r1

= Bh e−r1(1−k)−e−3r1

1−e−r1

= Bh e−3r1−e−r1(1−k)

e−r1−1

6 Bh e−3r1

e−r1−1
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and therefore |y(x)| 6 A + B(2h) e−3r1

e(−r1)−1
.

The latter bound is independent from k, and then is independent from
x. So the proof is complete. ¤
Theorem 2.3. Let L < −r1

B be such that |f(t, y)| 6 L|y| for all t,
|y| < H and B, r1 are as in the Theorem 2.2. If there exists h such
that Vg(t, t + 1) < h for all t whenever dg = edt then every solution of
equation (1) is bounded.

Proof. We have seen that every solution of equation (1) is of the form
(5). Also we have seen that there exists A such that |φ0(x)| < A for all
x. Now we suppose that

y(x) = −k1

∫ x

0
er1(x−t)K(x, t)fdt + k1

∫ x

0
er1(x−t)K(x, t)dg.

We will prove that y is bounded.
From the assumption we have

|y(x)| 6 LB

∫ x

0
er1(x−t)|y|dt + B

∫ x

0
er1(x−t)|dg|,

where |dg| = dg1 + dg2. Let h(x) = B
∫ x
0 e−r1tdg and φ(x) = |y(x)|e−r1x

then
φ(x) 6 LB

∫ x

0
φ(t)dt + h(x). (6)

Now let R(x) =
∫ x
0 φ(t)dt. Then

R′(x)− LBR(x) 6 h(x)

e−LBxR′(x)− e−LBxLBR(x) 6 e−LBxh(x)
d
dx(R(x)e−LBx) 6 e−LBxh(x)

R(x)e−LBx 6
∫ x
0 e−LBth(t)dt

R(x) 6 eLBx
∫ x
0 e−LBth(t)dt .

By (6) and above relations we have

φ(x) 6 h(x) + LB

∫ x

0
eLB(x−t)h(t)dt.
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By using the integration by parts we have;

φ(x) 6 [−eLB(x−t)h(t)]x0 +
∫ x
0 eLB(x−t)dh + h(x)

φ(x) 6 −h(x) + h(0) +
∫ x
0 eLB(x−t)dh + h(x)

φ(x) 6
∫ x
0 eLB(x−t)dh.

Then
|y(x)|e−r1x 6 B

∫ x
0 eLBxe−LBte−r1t|dg|

|y(x)| 6 Ber1xeLBt
∫ x
0 e(−r1−LB)t|dg|

|y(x)| 6 Be−λx
∫ x
0 eλt|dg|,

where −λ = r1 + LB, and by assumption −λ < 0. For each x > 0 there
exists a k ∈ N such that k 6 x < k + 1. So we can write

|y(x)| 6 Be−λk
∫ k+1
0 eλt|dg|

6 Be−λk
∑k+1

m=1

∫ m
m−1 eλt|dg|

6 Be−λk
∑k+1

m=1 emλ
∫ m
m−1 |dg|

6 Be−λk(2h)
∑k+1

m=1 eλm

= 2Bhe−λkeλ(1−eλ(k+2)

1−eλ )

= 2Bh( e−λ(k−1)−e−λ(k−1−k−2)

1−eλ )

= 2Bh e−λ(k−1)−e3λ

1−eλ

= 2Bh e3λ−eλ(1−k)

eλ−1
< 2Bh e3λ

eλ−1
.

Therefore

|yg(x)| 6 A + B(2h)
e3λ

eλ − 1
and this completes the proof. ¤

3. Existence and Stability of Periodic Solution

We use Banach fixed point theorem to prove that at least one periodic
solution exists.
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First, we introduce an operator which maps an initial condition for
equation (1) to the value of the solution at time T. We know that each
initial condition for a differential equation of order 3 is a triple like
(y(t0), y′(t0), y′′(t0)). Here we consider equation (1) as a system of dif-
ferential equations. Let y = x1, y

′ = x2 and y′′ = x3. Then equation (1)
becomes:





x′1 = x2

x′2 = x3

x′3 = −γx1 − βx2 − αx3 − f(t, x1) + e(t)

(7)

or X ′ = A(t)X + F (t, x) + E(t) where,

X ′ =




x′1
x′2
x′3


 , A(t) =




0 1 0
0 0 1
γ −β −α




X =




x1

x2

x3


 , F (t, x) =




0
0

−f(t, x1)




and E(t) =




0
0

e(t)


. We consider the space of matrices equipped

with the norm ||A|| =
∑

i,j |aij | for A = [aij ]. Note that the condition
|f(t, y)| 6 L|y| becomes ||F (t, x)|| 6 L||X|| because we have

||F (t, x)|| = |f(t, x1)| = |f(t, y)| 6 L|y| = L|x1| 6 L(|x1|+ |x2|+ |x3|) = L||X||.

Each solution of system (7) is of the following form

X(t) = Y (t)X(0) +
∫ t

0
Y (t− α)(F (α, X(α))−E(α))dα

where Y (t) is a fundamental matrix of solutions with Y (0) = I as initial
condition. Hence

||X(t)|| 6 ||Y (t)||.||X(0)||+
∫ t

0

||Y (t−α)||.||F (α, X(α)||dα+
∫ t

0

||Y (t−α))||dG,
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where dG = Edt or d




0
0
g


 =




0
0
e


 dt (we suppose dg = dg1 + dg2 where

g1 and g2 are ascending).
From the theory of systems of differential equations, if “a” is a real

number such that a > Re(λr) where λ,
rs are roots of characteristic

polynomial of the coefficient matrix, then there is a “C” such that for
every x(t), a solution of the system x′ = Ax, we have

||x(t)|| 6 C||x(0)||exp(at).

So in our argument, we can conclude that there exists B > 0 and a > 0
such that

||Y (x)|| 6 B exp(−at).

Since ||F (t, x)|| 6 L||X||, then

||X(t)|| 6 B exp(−at)||X(0)||+ ∫ t
0 LB exp(−a(t− α)||X(α)||dα

+
∫ t
0 B exp(−a(t− α))dG.

In the proof of Theorem 2.2. we saw that
∫ t

0
LBe−a(t−α)||X(α)||dα +

∫ t

0
Be−a(t−α)dG < 2Bh

e3λ

eλ − 1
= K .

We will search for δ and K such that ||X(T )|| 6 Bδe−at + K < δ

whenever ||X(0)|| < δ. We solve this inequality for T :

Bδe−at 6 δ − k

e−at 6 δ−k
Bδ

−at 6 log( δ−k
Bδ )

at > log( Bδ
δ−k )

or
T > 1

a
log(

Bδ

δ − k
).

It is sufficient to choose δ > k and then choose T > 1
a log( Bδ

δ−k ). This
guarantees that if we consider an operator U , which maps X(0) to X(T ),
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this operator maps the ball centered at origin in R3 with radius δ into
itself.
Now we will show that U is a contraction, i.e., there exists 0 < B < 1
such that

||X(T )− Y (T )|| 6 B||X(0)− Y (0)||).
If it is so and if X(0) = Y (0) then X(T ) = Y (T ) and this means that
the solution of (1) with an initial condition is unique. Hence U is well
defined.
For U to be contraction, we need another assumption on f, the Lipschitz
conditions; i.e.,

|f(t, x(t))− f(t, y(t))| 6 k1|x(t)− y(t)| , |y|, |x| < H,

for some k1 > o and all t. By this condition we have,

||F (t,X(t))− F (t, Y (t))|| = |f(t, x1(t))− f(t, y1(t))|
6 k1|x1(t)− y1(t)|
6 k1

∑3
i=1 |xi(t)− yi(t)

= k1||X||.

Then

||U(X(0))− U(Y (0))|| = ||X(T )− Y (T )||
6 B||X(0)− Y (0)|| exp(−at)
+

∫ T
0 ||Y (t− α)||.||f(α, x)− f(α, y)||dα.

Therefore

||X(T )−Y (T )|| 6 B||X(0)−Y (0)|| exp(−at)+
∫ T

0

k1Be−a(t−α)||X(α)−Y (α)||dα.

By assuming ||X(T )− Y (T )|| = R(T ), we have

R(T ) 6 BR(0)e−at +
∫ T

0
k1Be−a(T−α)R(α)dα
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or

R(T )eat 6 BR(0) + k1B

∫ T

0
k1e

aαR(α)dα .

From Gronwall-inequality we have

R(T ) 6 Be(k1B−a)T R(0) 6 BR(0)

provided that k1B < a. So

||U(X(0))− U(Y (0))|| = ||X(T )− Y (T )|| 6 B||X(0)− Y (0)||.

Then U is a contraction if and only if B < 1. B is such that B = n2c = gc

where 1
exp(a−α)T < c . By choosing a suitable T we can have c such that

c < 1
q . So U is a contraction. Since closed ball in R3 is a complete metric

space, then from the Banach fixed point theorem, U has a unique fixed
point in Bδ(0). It means that there exists a X0 such that the solution
with initial condition X(0) = X0 satisfies X(T ) = X(0), with T = w.
This solution is the periodic solution.
Now, suppose that X is this periodic solution and Y is another arbitrary
solution of (1). As we saw before, for all t > 0,

||X(t)− Y (t)|| 6 B||X(0)− Y (0)||.

So for given ε > 0, it is sufficient to choose δ = ε
B with ||X(0)−Y (0)|| < δ

then for all t > 0
||X(t)− Y (t)|| < ε

and so X is stable.
The proof is completed. ¤
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