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Abstract. Let R be a commutative ring and M be an R-module
with a proper submodule N. A generalization of total graphs, denoted
by T(I'}(M)), is introduced and investigated. It is the (undirected)
graph with all elements of M as vertices and for distinct =,y € M, the
vertices x,y are adjacent if and only if t+y € My (N) where My (N) =
{m € M : rm € N for some r € H}, where H is a multiplicatively
closed subset of R. In this paper, in addition to studying some algebraic
properties of My (IN), we investigate some graph theoretic properties of
two essential subgraphs of T(T'} (M)).
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1. Introduction

Throughout, all rings are commutative with non-zero identity and all
modules are unitary. Let R be a ring, M an R-module and N a proper
submodule of M. The ordinary total graph of a commutative ring R,
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denoted by T(I'(R)), was introduced by Anderson and Badawi in [6],
as the graph with all elements of R as vertices and two distinct vertices
x,y € R are adjacent if and only if x+y € Z(R) where Z(R) denotes the
set of all zero-divisors of R. The authors introduced in [5] the generalized
total graph of R in which Z(R) is extended to H, a multiplicative-prime
subset of R, in such away that ab € H for every a € H and b € R, and
whenever ab € H for all a,b € R, then either a € H or b € H.

The concept of total graphs is a great concept that is usually used in
commutative algebra to obtain many interesting graphs in this field. In
[1] and [2], A. Abbasi and S. Habibi, gave a generalization of the total
graph. They studied in [2] the total graph T'(I'y(M)) of a module over a
commutative ring with respect to a proper submodule. It is an undirected
graph with the vertex set M, where two distinct vertices m and n are
adjacent if and only if m+n € M(N), where M(N) ={m € M :rm € N
for some r € R — (N : M)}. It is easy to see that M(N) is closed under
the multiplication by scalers. However M (N) may not be an additive
subgroup of M.

A proper submodule N of M is said to be a prime submodule if whenever
rm € N for some r € R and m € M, then either m € N or r € (N :p
M). Clearly, if N is a prime submodule of M, then P = (N :g M) is a
prime ideal of R. An element a € R is called prime to N if am € N(m €
M) implies that m € N. Denote by Sg(N) the set of all elements of R
that are not prime to N (see [7]). Consider S(I) = {r € R : sr € I for
some s € R—1I} (see [2]) needed in the context. We now define My (N) =
{m € M :rm € N for some r € H} where H is a multiplicatively closed
subset of R, i.e. ab € H for all a,b € H. Since N is a proper submodule
of M and N C My (N) hence My(N) is not empty. We consider an
undirected graph denoted by T(I'}(M)) with the vertex set consisting
of all elements of M in which two distinct vertices m and m’ are adjacent
if and only if m +m’ € My(N).

Let T¥(Mg(N)) be the (induced) subgraph of T(I'N(M)) with the
vertex set My (N) and let T (MS(N)) be the (induced) subgraph of
T (TN (M)) with vertices of M — My (N).
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In the following, we investigate some properties of the graph T'(IT'}¥ (M)).

Let G be a simple graph. We say that G is connected if there is a path
between any two distinct vertices of G and it is totally disconnected
if none of two vertices of G are adjacent. A subgraph G; of G is an
induced subgraph if the vertex set of (G1 is contained in the vertex set
of G and two vertices of GG1 are adjacent if and only if they are adjacent
in G. We say that two subgraphs G; and Gg of G are disjoint if G
and G2 have no common vertices and no vertex of Gy (resp., Ga) is
adjacent (in G) to any vertex not in G (resp., G2). For vertices x and
y of G, we define d(z,y) to be the length of the shortest path from z to
y (d(z,x) = 0 and d(x,y) = oo if there is no such path). The diameter
of G is diam(G) = sup{d(z,y)|r and y are vertices of G}. The girth of
G, denoted by gr(G), is the length of a shortest cycle in G (gr(G) = oo
if G contains no cycles). We denote the complete graph on n vertices by
K™ and the complete bipartite graph with the partitioned vertex set as
AU B with |A| =m and |B| =n by K"™".

For a graph G, a complete subgraph of G is called a clique. The clique
number, w(G), is the greatest integer n > 1 such that K™ C G, and
w(G) = 0 if K™ C G for all n > 1. We say that a graph G is a forest
if it contains no cycles. A matching in a graph G is a set of edges such
that no two have a vertex in common.

In Section 2, we show that U (N :g M) = (U Y (N):y-1gU (M)
whenever U C H is a multiplicatively closed subset of R and N is a prime
submodule. We proceed in Section 3 by studying the algebraic properties
of graph T(I'Y(M)) and some relationship between it's subgraphs and
the subgraphs of graph T'(I'x(M)) which introduced in [2].

2. Some Properties Concerning My (N)

In this section we obtain some properties concerning My (N). Through-
out the argument, N is a proper submodule of M over the commutative
ring R. We define My (N) ={m € M : rm € N for some r € H}, where
H is a multiplicatively closed subset of R, in such away that ab € H for
every a € H and b € H. It is easy to see that in the following cases one
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has My (N) = M.
1. N=M,
2. 0e H,
3. HN(Mg(N) : M) # 0,
4. HN(0: M) # 0,
5. HO(N : M) # 0.

Throughout the context we suppose that My (N) # M.

Remark 2.1. Note that under our notations, My (N) is a submodule of
M containing N and contained in M(N).

Example 2.2. Let R=Zyx Zyand let M = Zy x Zy , N =0 X Z3 and
H =1{(1,2),(1,0)}. Itis clear that (N : M) = {(0,0),(0,1),(0,2),(0,3)},
M(N) = {(0,0),(0,1),(2,0),(2,1)} and Myg(N) =N = {(0,1),(0,0)}.
This example shows that My (N) G M(N).

Proposition 2.3. Let P be a prime submodule of M. Then P = Mg (P)
if and only if H(\(P: M) = 0.

Proof. Suppose that r € H(\(P : M) and m € M — Mg (P). Then
rm € P and so m € My (P).

Conversely, it suffices to show that My (P) C P. Let x € My (P). Then
re € P for some r € H. So, x € P or r € (P : M), by the primeness
of P. The implication r € (P : M) is impossible, by the assumption, so
x € P and we are done. [

Remark 2.4. (1) With our notations if N is a prime submodule of M,
since Mg (N) = M(N) = N, we have (Mg(N): M)=S(N : M).

We should note that in general, (Mpy(N) : M) # S(N : M). In Example
2.2, one has (Mg(N) : M) = {(0,0),(0,1),(0,2),(0,3)} and S(N
M) = {(27 0)7 (27 1)7 (27 2)7 (27 3)’ (07 0)7 (07 1>7 (0’ 2)7 (07 3)}'

(2) If N is a prime submodule of M, then Sgr(Mg(N)) € S(N : M),
because if r € Sp(Mpg(N)), then there is an m € M — My (N) such that
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rm € Mg(N). So, rtm € N for some t € H (note thatt € R — (N :
M)). This shows that rt € (N : M). Hencer € S(N : M).

Proposition 2.5. For every proper submodule N of M, SR(Mg(N)) =
S(MS(N): M) =0, where M§(N) = M — My (N).

Proof. Suppose that 7 € Sgr(M$(N)). There exists m € My (N) such
that rm € MG (N). So, tm € N for some t € H. Hence, rtm € N. This
shows that ¢ ¢ H, which is a contradiction. Thus, Sg((M§(N))) =
0. Now, let 7 € S((MG(N)) : M). There exists t ¢ (M$(N)) : M) such
that rt € (MS(N)) : M). Because t ¢ ((MS(N)) : M), there exists
m’ € M such that tm’ € My (N). Therefore, rtm’ € My(N)( M (N),
which is a contradiction. So S(M$(N)): M) =0. O

Theorem 2.6. Let M be an R-module. Then for every multiplicatively
closed subset U of R such that U C H, (U Y (Mg (N)):y1gU1(M)) =
U Y (My(N) :g M).

In particular, H Y (Myg(N) :g M) = (H Y (Mg (N)):g-1gH 1 (M)).

Proof. It suffices to show that (U~ (Mg (N)):y-1gU Y (M)) C U1 (My
(N):r M).Letr/s € (U Y (My(N)):y-1zgU"(M)) such that r € R and
s€Uandlet m € M. Then r/s-m/1 € U1 (My(N)). There exist m’ €
Mpg(N) and s’ € U such that r/s-m/1 = m//s'. Since m' € My(N),
there exists v’ € H such that »'m’ € N. Because r/s-m/1 = m'/s', there
exists t € U such that rms’t = sm/t. Hence r'rms't = r’sm/t € N. Then
rm € Mg(N), because s',7',t € H, so r € (My(N) : M), therefore
T/S S U_I(MH(N) ‘R M) O

Remark 2.7. With the above notations, if N is a prime submodule of
M, then U"Y(N :g M) = (U Y(N):gp-1gUH(M)).

Lemma 2.8. Let m/s € H 'N such that m € M and s € H, then
m e MH(N)

Proof. Let m/s € H™'N such that m € M and s € H. There exist
n € N and t € H such that m/s = n/t. So, rtm = rsn € N for some
r € H. Hence m € My (N), since rt € H. [
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Theorem 2.9. Let M be an R-module. Then for every multiplicatively
closed subset U of R such that
UCH, U (My(N)) = U~ (M) (U(N)).

Proof. If m/s € U"Y(M)y-1g(U"Y(N)), where m € M and s € U,
then there is 7/t for some r € H and t € U such that (m/s).(r/t) €
U~Y(N). There are n € N and s’ € U such that mr/st = n/s’. So,
umrs' = unst € N for some u € U. Hence m € My(N) and m/s €
U~ (Mp(N)). Conversely, choose m/s € U~ (Mpg(N)) such that m €
Mg(N) and s € U. Then tm € N for some t € H. So (m/s).(t/1) €
U~Y(N). Therefore, m/s € U (M) -1 g (UTY(N)). O

3. The Generalized Total Graph

In the following, we introduce a generalized total graph T'(I'}(M)) as a
simple graph with vertex set M in which two distinct elements xz,y € M
are adjacent if and only if x +y € My (N). It follows from the definition
that if My (N) = M, then T(I'¥(M)) is complete, so we suppose that
My (N) # M. We denote by I'N(My(N)) and T'N(MG(N)) the (in-
duced) subgraphs of T(I'N(M)) with vertices in My (N) and M§(N),
respectively, where M (N) = M — My (N). Based our assumptions
My (N) # M, hence TN (M (N)) is always nonempty.

Recall from [2] that T(I'y(M)) is the graph with vertex set M such
that two vertices m, m’ are adjacent if and only if m +m’ € M(N). As
[2], we denote by M(I'ny(M)) and M (T'x(M)) the (induced) subgraph
of T(I'ny(M)) with vertices in M (N) and M — M (N), respectively. It is
assumed in [2] that M(N) # M; M(T'y(M)) is not a null graph.

Remark 3.1. Let N be a submodule of M such that Mg (N) # M. Then
(1) TH(N) is a complete graph.
(2) The total graph TX(My(N)) is a complete graph.

(3) TR(My(N)) and TH(MSG(N)) are disjoint subgraphs of the total
graph T(TN(M)), so T(TH(M)) is never connected.
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(4) In the case where R is an integral domain and H = R — {0} is a
multiplicatively closed subset, then Mg (0) = T (M) and T(I‘g)(M))
is the total torsion elements graph of a module, which studied in

[8].

(5) IfTN(MS(N)) just consists of one edge, then M (T n(M)) is a null
graph, or just consists of a single vertex or one edge.

(6) If z,y € M — M(N) and x is adjacent to y in Y (MS(N)), then
x is adjacent to y in M (T n(M)).

(7) If TN(M&(N)) is connected (complete), then M (T n(M)) is con-
nected (complete).

Theorem 3.2. Suppose that M is an R-module. If there exists an edge
in TN(MS(N)) between two distinct vertices my and myo such that my #
—mg, —my, then TN(MS(N)) contains a 3 or a 4-cycle.

Proof. Let m; and my be distinct vertices of T'¥(M$(N)) which are
adjacent and my # —ma, —my. So, mi +ma € My (N). If mg = —mao,
then m1 — mg— (—my)— my is a path in TN (ME(N)), so we have a 3-
cycle. If mg # —mag, there is a path m; — mo— (—ma)— (—m1)— my
in I'N(M§(N)) and we have a 4-cycle. [

Theorem 3.3. Suppose that TN (MG (N)) is a forest with no isolated
vertices such that for every two adjacent vertices m; and mj, m; #
—m;, —m;. Then TN(M§(N)) is a matching.

Proof. Assume one vertex m of T'¥(MS(N)) is adjacent to a vertex
m’ # —m/, —m. By Theorem 3.2, we have a 3 or 4-cycle in the graph
and this is a contradiction with our assumption. This yields each vertex
m is just adjacent to —m and so, TN(M§(N)) is a matching. O

The proof of the following lemma is similar to [2, Theorem 3.2].

Lemma 3.4. Suppose that M is an R-module.

()If T is an induced subgraph of T'N(MS(N)) and if my and ms are
distinct vertices of I' that are connected by a path in I', then there exists



94 A. ABBASI AND L. HAMIDIAN JAHROMI

a path in I' of length at most 2 between my and mo. In particular, if
TN (M&(N)) is connected, then diam( TH(ME(N)) < 2.

(2) Let my and ma be distinct elements of TN (MG (N)) that are con-
nected by a path. If my and mg are not adjacent, then m; — (—my)
— mg and my — (—mg)— ma are paths of length 2 between my and ma
in T (ME(N).

The proof of the following theorem is similar to [2, Theorem 3.3].

Theorem 3.5. Let M be an R-module. Then the following statements
are equivalent.

1- TR(ME(N)) is connected.

2- Either m+m’ € Myg(N) orm —m' € My(N) (but not both) for all
m,m' € MS(N).

3- FEither m +m/ € Myg(N) or m + 2m’ € Mg(N) for all m,m’ €
M§(N).

In particular, if (3) holds, then 2m € Mg (N) or 3m € Mg (N) for all
m,m' € MS(N).

Theorem 3.6. Let | My (N) |=a, | M/Mg(N) |= (6 (we allow o, 3 to
be infinite) and 2 € (Mg (N) : M). Then T(TN(M)) is a disjoint union
of B copies of K<.

Proof. We at first note that the subgraph of T(I'¥(M)) induced by
vertices in x + Mg (N) is a complete graph for each x € M, because
(x+y)+(@+2) =204+ (y+2) € Mg(N) for all y,z € Mg(N).
Hence the subgraph induced by x + My (N) is isomorphic to K. Now
assume that z1 and z9 are disjoint elements of M. It is easy to see that
x1+x9 € My (N) if and only if 21 —x9 € My (N) (because x1—x2 = x1+
x9—2x9 € My (N)) if and only if x1+Mpy(N) = x9+Mpg(N). So, 1 and
z9 are adjacent in T(I'N(M)) if and only if 21 + My (N) = zo+ My (N).
By the fact that the vertex set of T(I'}(M)) is a disjont union of vertex
sets in the form of x + My (N) for € M, we are done. [

Corollary 3.7. With the above notations, T (M$(N)) is a disjoint
union of 3 — 1 copies of K<.
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Example 3.8. Let R = Zy x Zy and let M = Zs x Zs, N = 0 X Zs
and H = {(1,1),(3,3)}. It is clear to see that N = Mpg(N). Also,
(2,2) € (Mg(N) : M) and T(T'¥(M)) is a disjoint union of 2 copies of
K2. (see Figure 1).

(1,0)e (1,1)
(0,0)e *(0,1)
Figure 1.

Example 3.9. Let R =M = Zg and let N =475 and H = {1,5}. It
is clear that N = My(N), 2 ¢ H and 2 ¢ (My(N) : M). In this case
'Y (ME(N)) is a disjoint union of one copy of K? and K22. (see Figure

2).
He o3 Oe
le o7 20
Figure 2.

Theorem 3.10. Suppose that M is an R-module and that | My(N) |= «
and | M/Mg(N) |= 3 (we allow «, 3 to be infinite). If H contains some
even elements, then T'N(MG(N)) is a disjoint union of (3—1)/2 copies
of K™,

Proof. We assume that 2¢t € H for some ¢t € R and that S = {z): \ €
A} where | A |= [ is a complete representative subset of M /Mg (N)
such that xg = 0 and z; ¢ My (N) for all i # 0. Let for distinct nonzero
elements i, j of A, z; is adjacent to z;. Then z; + x; € My (). Hence,
x; = —x;. This means that each element of z; + My (N) is adjacent to
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every element of 2; + My (). On the other hand, there are no elements
of the set x; + My (N) (z; # 0) adjacent to each other. Otherwise,
let x; + y is adjacent to z; + 2z for some y,z € My(N). Then 2z; €
Mg (N). There is r € H such that 2rz; € N, so 2tra; € N. This
yields z; € My (N) and x; = 0. Therefore, for all i # 0, z; + Mg (N)
and —z; + My (N) form a complete bipartite subgraph of I'¥ (M$(N))
considered as a K“®. It is clear that the total number of such subgraphs

is(B-1)/2. O

Example 3.11. Let R = Zg X Zg and let M = Z3 x Zg, N = 0 x Z3
and H = {(2,2),(1,1),(4,4),(7,7),(5,5), (8,8)}. It is clear to see that
N = My(N). Also (2,2) € H and I'N(M§(N)) is the complete bipartite
graph K33(a = 3 and 8 = 3).

(1,2)e o(2,2)

(1,1)e (2,1)

(1,0)e ¢(2,0)
Figure 3.

Example 3.12. Let R = M = Zy, N = 3Zy = {0,3,6} and H =
{1,4,7}. Here 2 ¢ H but 4 € H. It is clear that My(N) = N and
¥ (ME(N)) is isomorphic to K33

Note that 2 ¢ H(\(Mg(N) : M) by item 3 at the beginning of section
2. In the following example we see that non of the Theorems 3.6 and
3.10 are true if 2 ¢ HJ(Mg(N) : M).

Theorem 3.13. Let = be a vertex of T(TX(M)). Then the degree of
x is either | My(N) | or | Mg(N) | —1. In particular, if for every
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m € MY(N), 2m € My(N), then T(TN(M)) is a (| My(N) | —1)-
regular graph.

Proof. If x € Mgy(N), then the degree of z is |My(N)| — 1, since
'Y (Mpy(N)) is complete.

Now, let x € Mg(N) If = is adjacent to y, then x +y = a € My (N)
and hence y = a — x for some a € My (N). We have two cases:

Case 1. Suppose 2z € Mg (N). Then z is adjacent to a — z for any a €
Mp(N) —{2z}. Thus the degree of z is (| My (N) | —1). In particular,
if 2m € My (N) for every m € MG(N), then T(TN(M))is a (| Mg(N) |
—1)-regular graph.

Case 2. Suppose 2z ¢ My (N). Then z is adjacent to a — = for any
a € My (N). Thus the degree of z is [Mg(N)|. O

Theorem 3.14. If TN (M (N)) is connected, then diam TN (M$(N)) <
2 and gr(TN(ME(N))) = 4.

Proof. Let | M |= 2 and My(N) = {0}, then diam TN (MG (N) = 0.
If TN(M$(N)) is connected and there exist two elements mi,ms €
M§(N) such that they are not adjacent (so diam T'N(MG(N)) # 1),
then by part (2) of Theorem 3.5, m; —mgy € My (N), so we have a path
my — (—mz)— ma; hence diam I'N (MG (N)) = 2.

Now, let T (M$(N)) is connected and my, me € MG (N) are not adja-
cent. Then by Theorem 3.5, m; — my € Mpy(N). So, there exists cycle
my — (—mg)— ma— (—m1)— m; and we have a 4-cycle. If m1, mg €
M (N) are adjacent, then there exists cycle m; — (—my)— (—ma)—
(mg)— mj and we are done. [

Theorem 3.15. Let M be an R-module.

(1) If 2 € (Mu(N) : M) and | (Mp(N)) |> 3, then gr(DN(MG(N))) =
gr(T(T(M))) = 3.

(2) If2 € H and | (My(N)) |> 2, then gr(TR(M$(N))) = 4.

Proof. (1) By Theorem 3.6, I'N(M&(N)) and T(T'H(M)) are disjoint
union of copies of K¢ where | (My(N)) |> 3, so gr(T¥(M$(N))) =
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gr(T(T(M))) = 3.

(2) By Theorem 3.10, T¥(M§(N)) is a disjoint union of copies of K%
where | (Mg(N)) |> 2, so gr(TN(MG(N))) =4. O

Definition 3.16. A vertex x of a connected graph G is called a cut-point
of G if there are vertices u,w of G such that x is in every path from u to
w(and x # u,x # w). Equivalently, for a connected graph G, x is called
a cut-point of G if G — {x} is not connected.

Theorem 3.17. If TN (MS(N)) is connected, then it has no cut-points.

Proof. Assume that the vertex z of TX(ME(N)) is a cut-point. Then
there are vertices a, b such that a # b and x lies on every path from a
to b. So, a and b are not adjacent. Hence, a — b € My (N), by Theorem
3.5. Similarly b —a € My (N). Thus there is a path a — (—a)— b in
TN (ME(N)). Since z is a cut-point, so we must have z = —a. But there
exists another path a — (—b)— b in TN (M (N)) such that z = —a # —b
and it contradicts the fact that x is a cut-point. [J

Definition 3.18. Let m € M. We call the subset m+ Mg (N) a column
of TN (M§(N)). If 2m € My(N) for every m € MG(N)), then we call
m+ My (N) a connected column of TN (MG (N)).

The following proposition is clear from Definition 3.18.

Proposition 3.19. Let M be an R—module, N be a submodule of M
and m € M. If m+ My (N) is a connected column of TN (M (N)), then

the subgraph induced by the set m + My (N) is a complete subgraph of
IY(MGN)) and thus (T (MG(N) 2| My (N) .

Lemma 3.20. (See [2, Theorem 3.4]) Let M be an R-module and let
| M(N) |=a and | M/M(N) |= 8 (we allow «, 3 to be infinite).

(1) If 2 € S(N : M), then M(Tn(M)) is a disjoint union of 3 — 1
copies of K<.

(2) If2 ¢ S(N : M), then M(Tn(M)) is a disjoint union of (3 —1)/2
copies of K4,
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Theorem 3.21. Let M be an R— module. Then

(1) One has w(T(TH(M))) =| Mu(N) |.

(2) If w(M(Tn(M))) is finite, then w(M(Tn(M))) =| M(N) | or 2.

(3) If | M(N) |> 2 and finite, then w(T'(I'n(M))) =| M(N) |.

Proof.

(1) It is clear from the fact that M (V) induces a complete subgraph
of T(TN(M)).

(2) By Lemma 3.20,If 2 € S(N : M), then w(M(T'x(M))) =| M(N) |.
Otherwise, M(I'y(M)) is a disjoint union of copies of K*%, so

w(M(Tn(M))) = 2.
(3) It is clear from the definition of M(I'y(M)) and case (2). O

Example 3.22. In the Example 2.2, we have w(T(T'H(M))) = 2 and
w(T(Cn(M))) = 4.

Theorem 3.23. If T¥(MS(N)) is connected and has a connected col-
umn namely m+My(N) form € MG(N) and at least one vertexr b # m,
then w (TN(MG(N)) = | Mg(N) | +1.

Proof. Because I (M (N)) is connected, so by Theorem 3.5, b+m €
Mg (N) or m+2b € My(N). Then each element of the connected column
m + Mg (N) is adjacent to b or 2b, and so (m + Mg(N)) U {b} or
(m+ Mg (N)) U {2b} forms a complete subgraph. O

An independent set is a set of vertices in a graph, no two of which are
adjacent. The vertex independence number of a graph G, a(G), often
called simply the “independence number”, is the size of a maximum
independent set.

Theorem 3.24. Let in graph T(I'N(M)), the subgraph TN (MG (N)) be

connected with diam(I'N(MG(N))) = 2 and 2m # 0 for every m €

MS(N). Then a(T(IY(M))) = MENL 44
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Proof. Choose z € V(I'N(MS(N))). Put A, = {—y € MS(N))|y is
adjacent to z}, A, = {y € MG(N)|y # = and y is not adjacent to x}
and let P, = A, U A", For every n(# z,—x) € MS(N), n € P, or
—n € P,.

Claim: P, is an independent set in T (M & (N)).

By way of contradiction, let there exist ni,ny € P, such that they are
adjacent. Since ny,no € P, so ny,ne are not adjacent to x. It should
be noted that for every m € MG (N), either m +z € My(N) or m —
z € My (N) (but not both), by Theorem 3.5, so ni,ng are adjacent to
—x. Then there is a path ny;— na— (—ng)— = in I'N(MG(N)) and
ni +x = (n1 +n2) + (—n2 + ) € My(N), a contradiction. Hence,
P, is an independent set in T'Y (M (N)). On the other hand, for every
y(# z) € V(I'N(ME(N))), one has |P,| = |P,|. We show that P, is the
largest independent set in Ty (M (N)). Let there exists an independent
set U in TN (MY (N)) such that |U| > |P,| = %Q(N)' So, there exists
I € V(I'N(ME(N))) such that I,—I € U; this implies that U is not
independent. Hence, P, is the largest independent set in T (Mg (N)).

Now, let m € V(I'¥(Mg(N))). Then in T(I'N(M)), B = P, U{m} is an
independent set (since T'N (M (N)) and TR (ME(N)) are disjoint sub-
graphs of T(I'Y(M)) and that T2 (Mg (N)) is complete, so we can choose
just one vertex m € My(N)) that P, U{m} is a largest independent set
in T(TH(M)) ( because I'N(Mp(N)) is complete and P, is the largest

independent set in I'Y (M$(N))), hence a(T (TN (M))) = %2(]\7)'—1-1. O

A wvertex coloring is an assignment of colors to the vertices of a graph
G such that no two adjacent vertices have the same color. Therefore,
no two vertices of an edge should be of the same color. The minimum
number of colors required for vertex coloring of graph G is called as the
chromatic number of G, denoted by x(G).

Theorem 3.25. Let in T(I'N (M)
nected with diam(T(M$(N))) =
Then x(T(T(M))) = [Mu(N)|.

), the subgraph TN (MG (N)) be con-
2 and 2m # 0 for everym € MG (N).

Proof. Suppose that z € V(I'N(M§(N))). Considering our hypothesis
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and by the proof of Theorem 3.24, for every vertex t other than x and —x,
t is adjacent to either —z or x (but not to both of them). If ¢ is adjacent
to x, then t is not adjacent to —x, so t € P_;; otherwise, ¢t € P,. Hence
P, UP_, = V(I'F(MS(N))). Now, we assign color a to elements of P,
and color b to elements of P_, ( it should be noted that, by the proof
of Theorem 3.24, P, for every z € V(I'N(M§(N))), is the largest in-
dependent set in TN (M$(N))). Hence x(I'N(ME(N))) = 2. Since the
subgraphs FZ(MH(N)) and Fg(Mg(N)) of graph T(FZ(M)) are dis-
joint and I'Y (M (N)) is complete, so we assign | My (N)|—2 colors along
with colors a and b to vertices of I'N(Mg(N)). So, x(TH(Mg(N))) =
X(T(CFH(M)) = [Mu(N)|. O
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