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Abstract. In this paper, some concepts of negative dependence
for bivariate distributions, especially hazard and local negative de-
pendence (HND, LND) are studied. The Clayton-Oakes, ϕ and γ
measures of association and relationship of HND with these mea-
sures are obtained. In addition, various examples illustrate the
usefulness of these notions in some family of distributions.
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1. Introduction

Let X and Y be absolutely continuous random variables having joint
density f(x, y) and survival function F̄ (x, y). Basu ([3]) introduced bi-
variate hazard function by r(x, y) = f(x, y)/F̄ (x, y). In the independent
case the bivariate hazard function is equal to product of conditional haz-
ard functions, ∂

∂x [− log F̄ (x, y)] and ∂
∂y [− log F̄ (x, y)]. If equality failed

we deal with dependent (positive or negative) random variables. Oluyede
([17, 18]) has obtained some properties and inequalities for positively
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hazard and local dependence. More details about notions of dependence
are in Lehmann ([14]), Karlin ([13]), Esary and Proschan ([5]), Joe ([10])
and Shaked and Shanthikumar ([20]). In this paper we use notions of
negatively hazard and local dependence, say HND, LND, and inves-
tigate relationship between these concepts with some other concepts of
dependence. Finally, we obtain measures of association as Θ-measure
(known as Clayton-Oakes measure), ϕ-measure and γ-measure for some
bivariate distributions family, then evaluate the relationship between
these measures and HND(LND).

Let (X,Y ) be an absolutely continuous random vector with distri-
bution function F (x, y) and survival functionF̄ (x, y). Next, we need the
following definitions.

Definition 1.1. ([17]) Absolutely continuous random variables X and
Y having a joint density function f(x, y) are hazard negative (posi-
tive)dependence, HND(HPD), if and only if

f(x, y)
F̄ (x, y)

6 (>)
∫ ∞

x

f(u, y)du

F̄ (x, y)

∫ ∞

y

f(x, v)dv

F̄ (x, y)
(1)

where f(x,y)
F̄ (x,y)

is the bivariate hazard rate function, and
∫ ∞

x

f(u, y)du

F̄ (x, y)
=

∂

∂y
[− log F̄ (x, y)], and

∫ ∞

y

f(x, v)dv

F̄ (x, y)
=

∂

∂x
[− log F̄ (x, y)]

are conditional hazard functions. Note that, equality holds in (1) if and
only if X and Y are independent.

Definition 1.2. ([18]) Absolutely continuous random variables X and
Y having a joint density function f(x, y) are locally negative (positive)
dependence, LND(LPD), if and only if

F (x, y)f(x, y) 6 (>)
∫ x

−∞
f(u, y)du

∫ y

−∞
f(x, v)dv, (2)

Note that, equality holds in (2) if and only if X and Y are independent

Definition 1.3. A non-negative function h on A2 , where A ⊆ IR , is
reverse rule of order 2 ( RR2 ) if for all x1 < x2 and y1 < y2 , with
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xi, yj ∈ A i = 1, 2 j = 1, 2

h(x1, y1)h(x2, y2) 6 h(x1, y2)h(x2, y1). (3)

Definition 1.4. Let X and Y be continuous random variables.Then;

• X and Y are right corner set decreasing,( which we denote RCSD(X,Y )),
if

P (X > x, Y > y|X > x′, Y > y′) (4)

is decreasing (non-increasing) in x′ and in y′ , for all x and y .

• X and Y are left corner set increasing, LCSI(X, Y ) , if

P (X 6 x, Y 6 y|X 6 x′, Y 6 y′) (5)

is increasing (non-decreasing) in x′ and in y′ , for all x and y .

Definition 1.5. Let Fθ(x) be a family of distribution functions. This
family is called monotone decreasing likelihood ratio, (MDLR)(monotone
increasing likelihood ratio, (MILR)) if for all η > θ , Fη(x)

Fθ(x) is decreasing
(increasing) in x.

2. Main Results

In this section, we obtain some useful results about HND and LND which
show relation of these concepts with other notions of dependence.

Proposition 2.1. Let (X,Y) be an absolutely continuous random vector
with distribution F (x, y) and survival function F̄ (x, y) .Then

i) F̄ (x, y) is RR2 if and only if for all x1 < x2 and y1 < y2 ,

P (X > x2, Y > y2)P (x1 < X 6 x2, y1 < Y 6 y2)
6 P (x1 < X 6 x2, Y > y2)P (X > x2, y1 < Y 6 y2). (6)

ii) F (x, y) is RR2 if and only if for all x1 < x2 and y1 < y2,

P (X 6 x1, Y 6 y1)P (x1 < X 6 x2, y1 < Y 6 y2)
6 P (X 6 x1, y1 < Y 6 y2)P (x1 < X 6 x2, Y 6 y1). (7)
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Proof. We prove part (i). The part of (ii) is similar. Note that F̄ (x, y)
is RR2 , i.e. for all x1 < x2 and y1 < y2

∣∣∣∣
P (X > x1, Y > y1) P (X > x1, Y > y2)
P (X > x2, Y > y1) P (X > x2, Y > y2)

∣∣∣∣ 6 0. (8)

It is easy to show that (8) is equivalent to
∣∣∣∣

P (x1 < X 6 x2, y1 < Y 6 y2) P (x1 < X 6 x2, Y > y2)
P (X > x2, y1 < Y 6 y2) P (X > x2, Y > y2)

∣∣∣∣ 6 0. (9)

and (9) is equivalent to (6). This completes the proof. The following
proposition gives a relationship between RR2 and HND(LND). ¤

Proposition 2.2. Let (X,Y) be an absolutely continuous random vector
with distribution function F (x, y) and survival function F̄ (x, y). Then,

i) F̄ (x, y) is RR2 ⇒ HND(X,Y).

ii) F (x, y) is RR2 ⇒ LND(X,Y).

Proof.

i) Let x1 = x , x2 = x + ∆x , y1 = y , y2 = y + ∆y where ∆x,∆y > 0.

By using (6) and dividing the result by ∆x∆y and letting ∆x →
0,∆y → 0 , the result follows.

ii) The proof is similar, to (i). ¤

Theorem 2.3. Let (X,Y ) be an absolutely continuous random vector
with distribution function F (x, y) and survival function F̄ (x, y). Then,

i) RCSD(X,Y ) if and only if F̄ (x, y) is RR2.

ii) LCSI(X, Y ) if and only if F (x, y) is RR2.

Proof. The first part is proved, the second is similar.
RCSD(X, Y ) ⇒ F̄ (x, y) is RR2 : In this case, taking y = −∞,
P (X > x|X > x′, Y > y′) is decreasing in x′ and in y′, for all x ∈ IR . So,
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if x > x′, then P (X > x|X > x′, Y > y′) = P (X>x,Y >y′)
P (X>x′,Y >y′) is decreasing

in y′, consequently for all y′ < y, we obtain

P (X > x, Y > y)
P (X > x′, Y > y)

6 P (X > x, Y > y′)
P (X > x′, Y > y′)

, (10)

this implies that F̄ (x, y) is RR2.
F̄ (x, y) is RR2 ⇒ RCSD(X, Y ) : In this case, for all x > x′ and y > y′,
(10) valid and for all x > x′, P (X > x|X > x′, Y > y′) = P (X>x,Y >y′)

P (X>x′,Y >y′)
is decreasing in y′ . Similarly for all y > y′ we have,

P (Y > y|X > x′, Y > y′) > P (Y > y|X > x, Y > y′)

i.e. P (Y > y|X > x′, Y > y′) is decreasing in x′ . Now, if x > x′, y < y′

P (X > x, Y > y|X > x′, Y > y′) =
P (X > x, Y > y′)
P (X > x′, Y > y′)

6 P (X > x, Y > y)
P (X > x′, Y > y)

= P (X > x, Y > y|X > x′, Y > y),

then, P (X > x, Y > y|X > x′, Y > y′) is decreasing in y′. Similarly for
x 6 x′, y > y′, P (X > x, Y > y|X > x′, Y > y′) is decreasing in x′.
Also for x < x′, y < y′, P (X > x, Y > y|X > x′, Y > y′) = 1. Therefore
(X, Y ) is RCSD. ¤

Corollary 2.4. Under the assumptions of Theorem 2.3. and Proposition
2.2.

i) RCSD(X,Y ) ⇒ HND(X,Y ).

ii) LCSI(X, Y ) ⇒ LND(X,Y ).

Theorem 2.5. Let Fθ(x) and Gθ(y) be two families of distribution
functions. For any mixing distribution K , consider the distribution

H(x, y) =
∫

Ω
Fθ(x)Gθ(y)dK(θ),

where Ω is a Borel set in IRn and K is a probability measure on Ω .
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(i) If one of the family is MILR and the other is MDLR , then H(x, y) is
LND.

(ii) If Fθ(x) and Gθ(y) are both MDLR or MILR, then H(x, y) is LPD.

Proof. We prove part (i) . The proof of part (ii) is similar . Let Fθ(x)
be MDLR and Gθ(y) be MILR , so that for x < x′ , y < y′ and η > θ

(η, θ ∈ Ω) , we have

[Fη(x)Fθ(x′)− Fη(x′)Fθ(x)][Gη(y)Gθ(y′)−Gη(y′)Gθ(y)] 6 0.

After some simple calculation we obtain H(x, y)H(x′, y′) 6 H(x, y′)H(x′, y).
Therefore the distribution function H is RR2, and hence H is LND. ¤

3. Example and Measures of Dependence

In this section, we first discuss three local dependence measures, such
as γ- measure, the Clayton-Oakes association measure(θ-measure) and
ψ- measure and drive the relationship of these measures with hazard
negative dependence,then we give some examples.
γ-Measure:
Holland and Wang ([9]) defined, the local dependence function γh(x, y)
as follows;

γ
h
(x, y) =

∂2Logh(x, y)
∂x∂y

=
1

h(x, y)
{h11(x, y)−h10(x, y)h01(x, y)

h(x, y)
}, (11)

where h(x, y) > 0, hij = ∂i+jh(x,y)
∂xi∂yj , i, j = 0, 1, the mixed partial deriva-

tive of h(x,y) exists and h is defined on a Cartesian product set. They
show that this measure is symmetric and γ = 0 if and only if X and Y

are independent. Also, Jones ([11, 12]) studied dependence properties
of this measure and proved that γ is an appropriate index for measuring
local likelihood ration dependence.

Remark 3.1. Let X and Y be continuous random variables with bivari-
ate distribution function F (x, y) and survival function F̄ (x, y). Then, it
is easy to show that,

γF (x, y) =
f(x, y)F (x, y)− ∫ x

−∞ f(u, y)du
∫ y
−∞ f(x, v)dv

F 2(x, y)
,
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and

γF̄ (x, y) =
f(x, y)F̄ (x, y)− ∫ ∞

x f(u, y)du
∫ ∞

y f(x, v)dv

F̄ 2(x, y)
.

Therefore,
• Lemma 4.2. in Holland and Wang ([9]) implies that X and Y are

independent if and only if γF (x, y) = 0 ( γ
F̄
(x, y) = 0) or, equivalently

equality occur in (1) or (2).
• Moreover, it is easy to show that the following implications hold

HND(X, Y )(HPD(X, Y )) ⇔ γ
F̄
(x, y) 6 (>)0,

and
LND(X, Y )(LPD(X, Y )) ⇔ γF (x, y) 6 (>)0.

Θ-Measure

Clayton([4]) and Oakes ([19]) defined the following associated measure:

Θ(x, y) =
F̄ (x, y)D12F̄ (x, y)

D1F̄ (x, y)D2F̄ (x, y)
, (12)

where D12F̄ (x, y) = ∂2

∂x∂y F̄ (x, y), D1F̄ (x, y) = ∂
∂x F̄ (x, y) and D2F̄ (x, y) =

∂
∂y F̄ (x, y). The function Θ(x, y) measures the degree of association be-
tween X and Y , and has direct relation to local dependence function,
γ

F̄
(x, y).

• Θ(x, y) = 1 if and only if γ
F̄
(x, y) = 0 i.e X and Y are indepen-

dent,

• Θ(x, y) > 1 if and only if γ
F̄
(x, y) > 0 i.e X and Y are positively

dependent,

• Θ(x, y) < 1 if and only if γ
F̄
(x, y) < 0 or equivalently X and Y

are negatively dependent.

According to Gupta ([7]) we have the following quantities to formulate
Θ(x, y).
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r1(x, y) := − ∂
∂x [log F̄ (x, y)] = −D1F̄ (x,y)

F̄ (x,y)
, r2(x, y) :=

− ∂
∂y [log F̄ (x, y)] = −D2F̄ (x,y)

F̄ (x,y)

and

∂2

∂x∂y
log F̄ (x, y) = r1(x, y)r2(x, y)(Θ(x, y)− 1). (13)

So,
r(x, y) = r1(x, y)r2(x, y)Θ(x, y), (14)

where r(x, y) = f(x,y)
F̄ (x,y)

is Basu’s failure rate. We observe that,

Θ(x, y) < 1 ⇔ ∂2

∂x∂y
log F̄ (x, y) < 0 ⇔ RCSD(X, Y ) ⇔ r(x, y) < r1(x, y)r2(x, y).

ψ- Measure

The following associated measure (known as ψ- measure) defined by An-
derson et al. ([2]);

ψ(x, y) =
P (X > x|Y > y)

P (X > x)
=

F̄ (x, y)
F̄1(x)F̄2(y)

(15)

Under the some regular conditions, the following statements are valid
for ψ- measure in (15);

• ψ(x, y) = 1 ⇔ X and Y are independent.

• ∂2

∂x∂yψ(x, y) = γ
F̄
(x, y).

• If ψ(x, y) > 1 then (X, Y ) is PQD.

• If ψ(x, y) < 1 then (X, Y ) is NQD.

• If Θ(x, y) < (>)1 then ψ(x, y) < (>)1 (the converse is not true).
For more details, see Gupta ([7]).

The following proposition gives relationship between the mentioned local
dependence measures.

Proposition 3.2. Let (X, Y ) be an absolutely continuous random vector
having survival function F̄ (x, y). The following statements are equiva-
lent
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• Θ(x, y) < 1,

• γ
F̄
(x, y) < 0,

• ∂2

∂x∂yψ(x, y) < 0,

• r(x, y) < r1(x, y)r2(x, y),

• (X, Y ) is HND.

Proof. Combining ([6, 11, 12, 13, 14]) the proposition proved immedi-
ately. ¤

Example 3.3. (Farlie-Gumble-Morganstern distribution (FGM) [6])
Consider the family of bivariate distribution functions

F (x, y) = F1(x)F2(y)[1 + α(1− F1(x))(1− F2(y))]

where |α| 6 1 and F1(x) and F2(y) are continuous distribution functions.
It can be shown that,

γF (x, y)
αf1(x)f2(y)

[1 + αF̄1(x)F̄2(y)]2
6 (>) 0 ⇔ − 1 6 α 6 0 (0 6 α 6 1).

Therefore, LND(X,Y )(LPD(X,Y )) if and only if −1 6 α 6 0 (0 6
α 6 1).
In terms of survival functions F̄ (x, y) = P [X > x, Y > y]; F̄i(xi) =
P [Xi > xi]; i = 1, 2 the FGM family equivalent to

F̄ (x, y) = F̄1(x)F̄2(y)[1 + α F1(x)F2(y)], |α| 6 1.

It follows from simple calculations that

γ
F̄
(x, y) =

α f1(x)f2(y)
[1 + α F1(x)F2(y)]2

6 (>) 0 ⇔ −1 6 α 6 0 (0 6 α 6 1),

so HND(X, Y )(HPD(X,Y )) if and only if −1 6 α 6 0 (0 6 α 6 1).
For more details about FGM family see Mari and Kotz ([15]).
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Example 3.4. (Gumbel’s bivariate exponential distribution) The sur-
vival function of Gumbel’s bivariate distribution is

F̄ (x, y) = exp{−α1x− α2y − βxy}, α1, α2 > 0 and 0 6 β 6 α1α2.

For x < x′ and y < y′;

F̄ (x, y)F̄ (x′, y′) −F̄ (x, y′)F̄ (x′, y)
= exp{−α1(x + x′)− α2(y + y′)}
×

[
exp{−β(xy + x′y′)} − exp{−β(xy′ + x′y)}

]
6 0.

Since xy + x′y′ > xy′ + x′y , hence F̄ is RR2, and this implies that
(X, Y ) is HND.

Example 3.5. (Ali-Mikhail-Haq distribution [1]) Consider Ali-Mikhail-
Haq family of bivariate distribution functions

F (x, y) =
F1(x)F2(y)

1− β F̄1(x)F̄2(y)
, |β| 6 1

where F1 and F2 are continuous distribution functions and F̄i = 1 −
Fi i = 1, 2. by simple calculation, we obtain

γF (x, y) =
β f1(x)f2(y)

[1− β F̄1(x)F̄2(y)]2
6 0 (> 0) ⇔ −1 6 β 6 0 (0 6 β 6 1).

So, LND(X, Y)(LPD(X, Y)) if and only if −1 6 β 6 0 (0 6 β 6 1).

Remark 3.6. In the Example 3.4. we can use the Proposition 3.2. and
obtain

r1(x, y) = − ∂

∂x
[log F̄ (x, y)] = α1 + βy

r2(x, y) = − ∂

∂y
[log F̄ (x, y)] = α2 + βx

r(x, y) =
f(x, y)
F̄ (x, y)

= (α1 + βy)(α2 + βx)− β

Θ(x, y) =
r(x, y)

r1(x, y)r2(x, y)
=

(α1 + βy)(α2 + βx)− β

(α1 + βy)(α2 + βx)
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since αi > 0, i = 1, 2 and β > 0 , therefore Proposition (3.2.) implies
that (X, Y ) is HND.

Measure of Dependence Based on Copula

The copula function C(u, v) is a bivariate distribution function with
uniform marginals on [0, 1], such that

F (x, y) = CF (F1(x), F2(y))

By Sklar’s Theorem ([21]), this copula exists and is unique if F1 and F2

are continuous. Thus we can construct bivariate distributions F (x, y) =
CF (F1(x), F2(y)) with given univariate marginals F1 and F2 by using
copula CF ([16]). Then we have the following properties:

• ([16]) Let X and Y be continuous random variables with joint
distribution function F (x, y) and marginals F1(x) and F2(y) re-
spectively, then
i) The copula C(u, v) and survival copula which refer to Ĉ(u, v)
are given by

CF (u, v) = F (F−1
1 (u), F−1

2 (v)), ∀u, v ∈ [0, 1],

and
Ĉ(u, v) = F̄ (F̄−1

1 (u), F̄−1
2 (v)), ∀u, v ∈ [0, 1]

Where, F−1
i and F̄−1

i are quasi-inverses of Fi and F̄i, i = 1, 2
respectively. Note that;

Ĉ(u, v) = u + v − 1 + C(1− u, 1− v), ∀u, v ∈ [0, 1]

ii) The partial derivatives ∂CF (u,v)
∂u and ∂CF (u,v)

∂v exist and c(u, v) =
∂2CF (u,v)

∂u∂v is density function of CF (u, v).

• The Sklar’s theorem implies that in FGM family for −1 6 α 6 1

C(u, v) = Ĉ(u, v) = uv(1 + α(1− u)(1− v)), (16)
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and
c(u, v) = 1 + α(1− 2u)(1− 2v). (17)

Also in Gumbel family for α1 = α2 = 1, the survival copula is

Ĉ(u, v) = uv. exp(−β ln(u) ln(v)), ∀ 0 6 β 6 1. (18)

Proposition 3.7. Let (X,Y) be a random vector with FGM distribution
function and copula function given in (16), then

i) ψ(u, v) = Ĉ(u,v)
uv = 1 + α(1− u)(1− v),

ii) γC(u, v) = γĈ(u, v) = ∂2 log(C(u,v))
∂u.∂v = α

[1+α(1−u)(1−v)]2
,

iii) Θ(u, v) = Ĉ(u,v)
∂2Ĉ(u,v)

∂u.∂v
∂Ĉ(u,v)

∂u
∂Ĉ(u,v)

∂v

= (1+α(1−u)(1−v)).(1+α(1−2u)(1−2v)
(1+α(1−u)(1−2v)1+α(1−v)(1−2u)) .

• Figure 1 shows the surface of γα2(u, v)− γα1(u, v) for some values
of α1, α2 such that α1 < α2 in FGM family with uniform marginals on
(0, 1). These surfaces, show that γα(u, v) increases in α.

• Figure 2 shows the surface of Θα2(u, v)−Θα1(u, v) for some values
of α1, α2 such that α1 < α2 in FGM family with uniform marginals on
(0, 1). These surfaces, show that Θα(u, v) increases in α.

Proposition 3.8. Let (X,Y) be a random vector with Gumbel distri-
bution function with α1 = α2 = 1 and survival copula given in (18),
then

i) ψ(u, v) = exp(−β ln(u) ln(v)),

ii) γĈ(u, v) = βuv ln(uv)(1+β)−βuv−βu2v2 ln(u)−β2 ln(u) ln(v)
u3v3 ,

iii) Θ(u, v) = u2v2−βuv−βu2v2 ln(u)+β2uv ln(u) ln(v)
u2v2−βuv ln(u)−βuv ln(v)+β2 ln(u) ln(v)

.
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•Figure 3 shows the surface of γβ2(u, v) − γβ1(u, v) for some values
of β1, β2 such that β1 < β2 in Gumbel family. These surfaces, show that
γβ(u, v) decreases in β.

• Figure 4 shows the surface of Θβ2(u, v)−Θβ1(u, v) for some values
of β1, β2 such that β1 < β2 in Gumbel family. These surfaces, show that
Θβ(u, v) is not monotone in β.

Remark 3.9. It is clear that ψα(u, v) in FGM family is increasing in
α and ψβ(u, v) in Gumbel family is decreasing in β.
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FIGURE 1: Perspective plots of γα2(x, y) − γα1(x, y) for FGM family
with parameter α1 and α2 equal to 0.5 and 0.75(right), -0.75 and -
0.5(left).

FIGURE 2: Perspective plots of Θα2(x, y) − Θα1(x, y) for FGM fam-
ily with parameter α1 and α2 equal to 0.5 and 0.75(right), -0.75 and
-0.5(left).
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FIGURE 3: Perspective plots of γβ2(x, y)− γβ1(x, y) for Gumbel family
with parameter β1 and β2 equal to 0.5 and 0.75(right), 0.5 and 0.25(left).

FIGURE 4: Perspective plots of Θα2(x, y) − Θα1(x, y) for FGM fam-
ily with parameter α1 and α2 equal to 0.5 and 0.75(right), -0.75 and
-0.5(left).
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