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Abstract. The symmetric hit problem was introduced for the
first time by the author in his thesis ([5]). The aim of this paper
is to solve an important open problem posed in ([7]), in an special
case, which is one of the fundamental results in the studies of the
symmetric hit problem.
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1. Introduction

In this article we shall confine our attention to symmetric polynomial
algebra B(n) = P(n)Σn over the field of two elements, where P(n) =
F2[x1, . . . , xn] is the polynomial algebra in n variables and Σn is the
symmetric group on n letters acting on the right of P(n) by matrix
substitution ([23]). The Steenrod algebra A acts on the left of P(n)
and commutes with the action of Σn. In particular, B(n) is a graded A-
submodule of the left A-module P(n). The grading on P(n) is by degree
of homogeneous polynomials, where the variables xi are in degree 1.

The algebra P(n) and subalgebra B(n) of P(n) realize respectively
the cohomology of the product of n copies of infinite real projective space
and the cohomology of the classifying space BO(n) of the orthogonal
group O(n). Each element of the algebra B(n) = F2[σ1, . . . , σn] is a
polynomial in the elementary symmetric functions σi. The ideal L(n) in
P(n) generated by σn = x1 · · ·xn can be identified with the cohomology
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of the n-fold smash product of infinite real projective space in positive
dimensions.

We cite ([24, 20]) for the Steenrod algebra. Briefly, the Steenrod
algebra A is a Hopf algebra generated as an algebra by the Steenrod
squares Sqi, for i > 0, subject to the condition Sq0 = 1 and Adem
relations ([1]), with coproduct defined by

ψ(Sqn) =
∑

06i6n

Sqi ⊗ Sqn−i.

Modules M over the Steenrod algebra which arise from the cohomol-
ogy of topological spaces or from invariant theory are themselves graded
algebras and have a special property called unstability, which links the
product in M with the coproduct in A. For more details about unsta-
bility condition see ([8]). The following statement summarises the basic
properties of these modules ([24, 8]).

Proposition 1.1. For a module M over the Steenrod algebra and ho-
mogeneous elements f, g ∈ M we have

1. Sqk(f) = 0 if deg(f) <= k;
2. Sqk(f) = f2 if deg(f) = k;
3. Cartan formula

Sqk(fg) =
∑

06r6k

Sqr(f)Sqn−r(g).

In particular, the above rules permit the evaluation of a Steenrod square
on any polynomial in P(n) by a reductive process using the Cartan
formula. We cite ([19, 24, 28, 27]) for more details about Steenrod
squares.

Let M be a graded A-module. An element f ∈ M is hit if it satisfies
a hit equation

f =
∑

i>0

Sqi(hi),

where each hi ∈ M has a degree strictly less than that of f and the
summation is taken over a finite collection of Steenrod squares in positive
grading.
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For a graded left A-module M, we denote by Q(M) the quotient of
the module M by the hit elements. Then Q(M) is a graded vector space
over F2 and a basis for Q(M) lifts to a minimal generating set for M as
a module over A.

The hit problem is to discover criteria for elements of M to be hit
and find minimal generating sets for M as an A-module. This problem
is generally regarded as difficult for arbitrary number n of variables.

However, there is a statement that can be made about the case P(n),
which we refer to as the Peterson conjecture in honor of Frank Peterson
who first formulated the problem and solved it in the case n = 2 [17,
18]. The conjecture was proved in a stronger form for the first time by
Wood ([28]).

Theorem 1.2. dim(Qd(P(n))) = 0 if and only if µ(d) > n.
Here, µ(d), for a positive integer d, denotes the smallest value of k

for which it is possible to write d =
∑k

i=1(2
λi − 1), where λi > 0. For

example µ(17) = 3 as 17 = 7 + 7 + 3 = 15 + 1 + 1.
This result then generalized by Singer ([19]) identifying a new class of

hit monomials. A symmetric version of the conjecture was proved in [5,
6] for B(n). This conjecture was also proved ([3]) for algebra of invariants
P(n)G, where G is a permutation group. It would be interesting to find
the correct analogue of the Peterson conjecture for arbitrary subgroups
of G ⊂ GL(n,F2). The answer is presumably G-dependent when G is
not a permutation group. We cite the comprehensive reference [29] for
more information on the hit problem.

A minimal generating set for Qd(P(3)) is given in [2, 11, 12]. The
author settled [9] a basic criterion for a monomial in P(3) to be hit.

The symmetric hit problem, which was introduced for the first time
by the author in his thesis [5], is the same as the hit problem for B(n).
In particular, a hit equation in B(n), called a symmetric hit equation, is
the finite sum

f =
∑

i

Sqi(hi),

where now f and the pre-images hi are symmetric polynomials. In this
case we say that f is symmetrically hit.
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For n 6 3, we proved [7] that if a monomial f is hit then σ(f),
the symmetrization of f , is symmetrically hit. The symmetrization of
a monomial is defined in Definition 2.2. This fundamental problem is
open for n > 4. The main result of this paper is to solve this problem
in some special case.

Theorem 1.3. Let f be a monomial in P(n) with distinct exponents.
If f is hit, then σ(f) is symmetrically hit.

2. The Symmetric Hit Problem and the Main
Result

In this section we discuss the symmetric hit problem in some details.
For more details see [5, 6, 7, 9].

Thom was the first one who studied the hit problem for M(n), the
ideal in B(n) generated by the elementary functions σn, and established
that M(n) is a free module over A up to grading less than 2n ([26]).
In 1999, in the first page of a preprint manuscript of the paper ([4])
Giambalvo and Peterson announced that not a lot is known about B(n).
That time, the author was working on the symmetric hit problem. The
essence of the work was talked, by Wood, in a Satellite Conference ([30])
in Ionnina University on June 2000. The main results of this work were
then published in [6, 7]. Alternative proofs for some of results then
exhibited in [13]. In a talking ([21]) in Göttingen, in 2007, Singer told
that the work on this difficult problem (the symmetric hit problem) has
been begun by Janfada and Wood in their papers ([6, 7]). His talk was
then published in [22].

We first proved ([6]) a symmetric version of Peterson conjecture for
B(n). Then we exhibited ([7]) a minimal generating set for Qd(B(3)).
It seems that the 4-variable case, in both the hit problem and the sym-
metric hit problem, is much more complicated since partitioning the ele-
ments to hit and non-hit classes is very hard in four variables. However,
Nguyen Sum ([25]) worked a bit on the hit problem for four variables.
The recent work of the author ([9]) was to prove a criterion for a mono-
mial in P(3) to be hit. Finally, we obtained ([10]) some criteria for an
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element of B(n) to be non-hit in B(n).
Study on the symmetric hit problem is continued by Singer ([22]),

Pengelly and Williams ([15, 16]), Nam ([14]) and others.
For a monomial f = xd1

1 · · ·xdn
n , let F be the matrix whose row

entries are the digits, in reversed binary expansion, of the exponents di.
Define the ω-vector ω(f) of f to be the column sum of F .

Example 2.1. For the monomial f = x7
1x

2
2 we have

F =
1 1 1
0 1 ′ ω(f) = (1, 2, 1).

By ordering vectors lexicographically, we obtain the partial ω-order
on the monomials in P(n). The ω-order will be dominant throughout
this work and when, say, we write f is lower than g, we mean lower in the
ω-order. This order is extended to P(n) in the usual way by comparing
the highest monomials presented in two polynomials.

Definition 2.2. An element π in Σn acts on a monomial by permuting
the variables. The notation π(i,j) is used for the element of Σn which
switches xi and xj. The symmetrization of a monomial f is the “small-
est” symmetric polynomial σ(f) ∈ B(n) containing f as a term. To be
precise, σ(f) =

∑t
i=1 fπi, where π1, . . . , πt run through a set of left coset

representatives for the stabilizer of the monomial f in Σn.

Example 2.3. Consider the monomial f = x7
1x

2
2 in Example 2.1. In

B(2) we have
σ(f) = f + fπ(1,2) = x7

1x
2
2 + x2

1x
7
2.

In B(3), however, σ(f) has |Σ3| = 6 terms.

σ(f) = f + fπ(1,2) + fπ(2,3) + fπ(1,3) + fπ(1,2,3) + fπ(1,3,2)

= x7
1x

2
2 + x2

1x
7
2 + x7

1x
2
3 + x2

2x
7
3 + x7

2x
2
3 + x2

1x
7
3.

3. Proof of the Main Result

In this section, we prove the main Theorem 1.3. after some preliminary
results. Then we obtein some more results.
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If π1, . . . , πt are left coset representatives for a subgroup of the sta-
bilizer of f then

∑t
j=1 fπj is symmetric but the expression may be zero.

For example, the transfer τ(f) of a monomial f with two equal expo-
nents is zero. It should be emphasized that the meaning of σ(f) depends
on the set of variables over which symmetrization is taking place. For
example σ(x1) means x1 + x2 in P(2) but x1 + x2 + x3 in P(3).

The general plan of action in tackling hit problem in P(n) is to use
the ω-order as a potential function and try to manipulate monomials
into equivalent polynomials of lower potential with the ultimate aim of
achieving some kind of canonical forms. The idea is then to transfer
these to B(n) by symmetrization. As pointed out in the next example,
this is not always straightforward business.

Example 3.1. In P(2) we have the hit equation x2
1x

2
2 = Sq1(x1x

2
2).

Symmetrizing the right hand side gives 0 = Sq1(x1x
2
2 + x2

1x2). So we
cannot prove this way that x2

1x
2
2 is symmetrically hit. On the other hand,

there is a symmetric hit equation in B(2) namely Sq2(x1x2) = x2
1x

2
2.

In favorable situations we can manufacture specially adapted hit equa-
tions which achieve the goal.

Proposition 3.2. Let f be a monomial and g a polynomial in Pd(n).
Suppose there is a hit equation f−g =

∑
i>0 Sqi(hi) in Pd(n), satisfying

the condition that the stabilizer of f is a subgroup of the stabilizer of g

and a subgroup of the stabilizer of each polynomial hi. Let π1, . . . , πt

be a collection of left coset representatives for the stabilizer of f in the
symmetric group Σn. Then

σ(f)−
t∑

j=1

gπj =
∑

i>0

Sqi(
t∑

j=1

hiπj),

is a symmetric hit equation in B(n). In particular, for a monomial f ,
we have the equivalence σ(f) ∼= ∑t

j=1 gπj in B(n).

Proof. By Definition 2.2. σ(f) =
∑t

j=1 fπj and the expressions
∑t

j=1 gπj

and
∑t

j=1 hiπj are symmetric by our earlier discussion.

The next result is a useful corollary of Proposition 3.2. in the 3-variable
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case.

Corollary 3.3. Let f, g be monomials in P(3) such that f has exactly
two equal rows i, j and g has distinct rows. Suppose that f ∼= g + gπ(i,j)

in P(3). Then σ(f) ∼= σ(g) in B(3).
To complete the proof of our main Theorem 1.3. we need one more
result.

Proposition 3.4. Let f be a monomial in P(n) with distinct exponents.
An equivalence f ∼= g in Pd(n), for any polynomial g, symmetrizes

to a symmetric equivalence σ(f) ∼= τ(g) in B(n).

Proof. Since f has distinct exponents, σ(f) = τ(f). The result follows
immediately from Proposition 3.2.

Proof of Theorem 1.3. It suffices to take g = 0 in Proposition 3.4.
The next result is a helpful tool in the symmetric hit problem. Recall
from group theory that an odd (respectively even) permutation is a
product of an odd (respectively even) number of transpositions. ¤

The following result establish a condition for a symmetrized mono-
mial to be symmetrically hit.

Proposition 3.5. Let f be a monomial in P(n) with distinct exponents.
If f ∼= fπ′ in P(n), for some odd permutation π′ in Σn, then σ(f) is
symmetrically hit.

Proof. We first note that the equivalence f ∼= fπ′ implies the hit equa-
tion

f + fπ′ =
∑

i>0

Sqi(hi).

The stabilizer of f is trivial in this case. Now let π1, . . . , πr be all the
even permutations of Σn. Then we have

r∑

j=1

(f + fπ′)πj =
∑

i>0

Sqi(
r∑

j=1

hiπj).

But, as πj runs over all even permutations of Σn, π′πj runs over all
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odd permutations of Σn. Hence

r∑

j=1

(f + fπ′)πj =
t∑

i=1

fπi = τ(f) = σ(f),

The result now follows from Proposition 3.2. by taking g = 0.

Remark. In some circumstances, to prove that a monomial f is not hit
in P(n), which cannot be solved directly, we take the problem to B(n)
and prove that, under suitable conditions, σ(f) is not symmetrically hit
or, for some g ∈ P(3), σ(f) ∼= σ(g) and σ(g) is not symmetrically hit.
The author himself has used frequently this technique, specially for 3-
variable case, in ([5, 9]). The basic tool in this situations, of course, is
Theorem 1.3.

The converse of Theorem 1.3. is not true. The following counterex-
ample shows this fact.

Example 3.6. Let F be the following block.

1
0 1
0 0 1 − 1

Then it can be easily checked that all permutations of F are equivalent
to each other and hence σ(F ) is symmetrically hit, while it is clear from
[9, Lemma 2.6] that F is non-hit.
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