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convexity and non-convexity property. On the other side, the action spaces are
replaced by various metric and normed spaces.
There are many researches about best approximation in inner product spaces(see,
e.g., [8]) and Banach spaces (see, e.g., [4, 14]). Recently, in [2, 15, 16] the au-
thors introduced the notion of cone metric and cone normed spaces. After
cone metric spaces over topological vector spaces, in [13] the authors intro-
duce the concept of tvs-cone b-metric spaces over a solid cone. In the following
section another state of metric spaces is a cone metric spaces with Banach alge-
bras. According to our records, we expand the theory of best approximation to
inner-product C∗-modules. The paper is organized as follows. In Section 2., we
give some preliminary results and facts about module spaces, and properties
of C∗-algebras. In Section 3., in particular, we get some results about exis-
tence and uniqueness of best approximation of submodules on inner-product
C∗-modules. Also various properties of an A-valued metric projection onto a
convex set (or a submodule), when A is a commutative C∗-algebra, has also
been studied.

2. Preliminaries

It is well known that an algebra A, together with a conjugate linear involution
map ∗ : a→ a∗ is called a ∗-algebra if (a∗)∗ = a, (ab)∗ = b∗a∗ and (λa+ b)∗ =
λa∗ + b∗ for all a, b ∈ A, λ ∈ C. Moreover, the pair (A, ∗) is called a unital
∗-algebra if A contains the identity element. By a Banach ∗-algebra we mean
a complete normed unital ∗-algebra (A, ∗) such that the norm on A is sub-
multiplicative and satisfied a∗ = a for a ∈ A.
Furthermore in a Banach ∗-algebra (A, ∗), if we have a∗a = a2 for all
a ∈ A, then A is known as a C∗-algebra. A positive element a of a C∗-algebra
A is a self-adjoint element whose spectrum σ(a) is contained in [0,∞). If a ∈ A
is positive, we write a  0 and denote by A+ the set of all positive elements of
A. By [Theorem 4.2.2 [10]] A+ is a pointed, closed and convex cone i.e. A+ is
closed and

(a) α, β ∈ R, α, β  0, a, b ∈ A+ imply that αa+ βb ∈ A+;

(b) A+ ∩ (−A+) = {0}.

Using positive elements, one can define a partial ordering on the set of self-
adjoint elements of a C∗-algebra A as follows: a  b if and only if a− b ∈ A+.
Let A be a C∗-algebra. A pre-Hilbert A-module X which is a left A-module,
together with an A-valued mapping . : X ×X → A with the following prop-
erties:

a) x, x  0A for every x and x, x = 0A if and only if x = 0X .
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b) x, y∗ = y, x for every x, y ∈ X.

c) αx+ βz, y = αx, y+ βz, y for α, β ∈ C.

d) ax, y = ax, y for a ∈ A.

The map ., . is called the A-valued inner product on X. A pre-Hilbert A-
module (X; ., .) is called Hilbert A-module if it is complete with respect to
the norm . = ., . 12 .
In particular any C∗-algebra is a Hilbert module over itself. On the other hand
any Hilbert module over the field of complex numbers C is a Hilbert space. Thus
Hilbert C∗-modules generalize both C∗-algebras and Hilbert spaces. There are
some similarities between Hilbert C∗-modules and Hilbert spaces, but there is a
fundamental way in which Hilbert C∗-modules differ from Hilbert spaces. More
information about Hilbert C∗-modules can be found in [11].
Let H be Hilbert space and K a closed convex subset of H, then there exists
a unique element PK(x) of K such that

x−PK(x) = inf
k∈K

x− k.

But Cheney and Wulber [5] have studied subspaces of Hilbert C(X)-module
C(X) which neither existence nor uniqueness of projection holds. When K is
a convex subset of a pre- Hilbert C∗-module X, the uniqueness condition is
satisfed with respect to C∗- valued norm [8].
Let us start with some basic definitions, which will be used later. We will
present the definition of Banach cone algebras and some properties related to
this concept.

Definition 2.1. [1, 2] Let X be a space and P be a cone subset of a Banach
space A. Consider the mapping ||.||A : X → P satisfies

(1) ||x||A  0A for all x ∈ X and ||x||A = 0A ⇔ x = 0X ;

(2) ||αx||A = |α| ||x||A for all x ∈ X and α ∈ R;

(3) ||x+ y||A  ||x||A + ||y||A for all x, y ∈ X.

Then ||.||A is called a cone norm on X with respect to A and (X, ||.||A) is called
a cone normed space.

Example 2.2. [2] Let X = R2, P = {(x, y) : x  0, y  0} ⊂ R2 and
(x, y) = (α|x|, β|y|) where α, β > 0 are fixed. Then (X, ||.||) is a cone normed
space over R2.

Example 2.3. [6] Let X = C1
R[0, 1] with ||x|| = ||x||∞ + ||x||∞ and P = {x ∈

X|x(t)  0} is cone normed space.



108 M. IRANMANESH AND F. SOLEIMANY

Definition 2.4. Let (X, ||.||) be a cone normed space, {xn} be a sequence in X
and x ∈ X. The sequence {xn} is said to be convergent to x, if for any c > 0
there is N0 ∈ N such that for all n > N0, ||xn − x||  c. We denote it by
limxn = x. Likewise, {xn} is called a Cauchy sequence in X if for any c > 0
there is N0 ∈ N such that for all n,m  N0, ||xn − xm||  c. A cone norm
space X is said to be complete if every Cauchy sequence in X is convergent in
X. Complete cone normed spaces are called cone Banach spaces.

A set K in a cone normed space X is compact if for every sequence {xn} in K
there exist a subsequence {xnk} of {xn} and a point x ∈ K such that xnk → x.

Definition 2.5. Let K be a nonempty subset of a cone normed space X, x ∈ X
and A be a Banach space. An element k0 ∈ K is called an A-best approximation
from K to x if

||x− k0||A = d(x,K) = inf
k∈K

||x− k||A. (1)

The set of all A-best approximation points to x from K is denoted by PA
K(x).

Thus
PA
K(x) := {k0 ∈ K : ||x− k0||A = d(x,K)}. (2)

If for each x ∈ X corresponds at least(respectively exactly) one A-best approxi-
mation in K then K is called a proximinal(respectively Chebyshev)set.

3. A-best approximation in pre-Hilbert C∗-modules

We now establish some interesting results of A-best approximation in pre-
Hilbert C∗-modules. Let X be an inner-product A-module such that X;X is
commutative, where X;X = cl span{x, y : x, y ∈ X}. Now define

xA := |x| = x, x 12 ,∀x ∈ X.

We show that .A is a cone norm on X. In fact since x, x  0 and x, x = 0
if and only if x = 0, therefore xA  0 and xA = 0 if and only if x = 0.
For α ∈ R, ||αx||2A = αx, αx = |α|2x, x, then ||αx||A = |α| ||x||A.
More precisely triangle inequality is satisfied for A-valued norms if and only if
X;X is commutative(see e.g., [3, 9]).
It is clear that when A is commutative, (X, |.|) is cone normed space. In general
|.| is not actually a norm, because it might not satisfies |x+ y|  |x|+ |y| (see
e.g., [11]).
In the following, we shall prove some theorems of generalized best approxima-
tion in the setting of cone normed pre-Hilbert C∗-modules X over a commuta-
tive C∗-algebra A.
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Theorem 3.1. Every complete convex set in a pre-Hilbert C∗-module X over
a commutative C∗-algebra A is proximinal.

Proof. Let K be a complete convex set in X and fix any x ∈ X. Suppose that
{yn} be a sequence in K such that limn→∞ |x − yn| = d(x,K). Then by the
parallelogram law we have

|yn − ym|2 = |(x− ym)− (x− yn)|2

= 2(|x− ym|2 + |x− yn|2)− |2x− (yn + ym)|2

= 2(|x− ym|2 + |x− yn|2)− 4|x− (
yn + ym

2
)|2.

Since K is convex, yn+ym
2 ∈ K, and hence

|yn − ym|2  2|x− ym|2 + 2|x− yn|2 − 4d(x,K)2.

It follows that the right side tends to zero as n and m tend to infinity. Thus
{yn} is a Cauchy sequence. Since K is complete set, yn converges to some point
y ∈ K. This proves that K is proximinal. 

Example 3.2. Let X = {a, b}, A = C(X) and E = {f ∈ C(X) : f(a) = 0}. It
is obvious that E is a maximal ideal of the C∗-algebra A and so can be regarded
as a Hilbert A-module. Assume thatK = con(f1) ⊆ E where f1(b) = 1. The set
K is proximinal, since for each f ∈ E a straightforward verification shows that
if f(b)  0 then PK(f) = 0, if f(b)  1 then PK(f) = f1 and if 0  f(b)  1,
PK(f) = f .

Theorem 3.3. Let K be a convex subset of X. Then for each x ∈ X has at
most one best approximation in K.

Proof. Let x ∈ X and suppose y1, y2 ∈ PAK(x). Then
y1 + y2

2
∈ K by convex-

ity. By the parallelogram law, we have

0  |y1 − y2|2 = |(x− y2)− (x− y1)|2

= 2(|x− y2|2 + |x− y1|2)− |2x− (y1 + y2)|2

= 2(|x− y2|2 + |x− y1|2)− 4|x− (
y1 + y2

2
)|2

 4d(x,K)2 − 4d(x,K)2 = 0.

This follows that y1 = y2. 

Definition 3.4. Let S be any nonempty subset of the inner product space
X. The dual cone (or negative polar) of S is the set

S◦ := {x ∈ X | Rex, y  0 for y ∈ S}. (3)
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The orthogonal complement of S is the set

S⊥ := {x ∈ X | x, y = 0 for y ∈ S}. (4)

Corollary 3.5. Let K be a convex subset of X, x ∈ X and y0 ∈ K. Then
y0 ∈ PAK(x) if and only if x− y0 ∈ (K − y0)◦.

Proof. Suppose y0 ∈ PAK(x) and y ∈ K. For each 0 < λ < 1 the element
yλ = λy + (1− λ)y0 is in K by convexity and

0  |x− y0|2 − |x− yλ|2

= |x− y0|2 − |x− y0 − λ(y − y0)|2

= −2Reλx− y0, y0 − y − λ2|y − y0|2,

Thus
2Rex− y0, y0 − y+ λ|y − y0|2  0.

Now if λ→ 0 then Rex− y0, y − y0  0.
Conversely, if x − y0 ∈ (K − y0)◦ by (3) we have Rex − y0, y − y0  0 for
y ∈ K. Therefore

|x− y0|2 − |x− y|2 = |x− y0|2 − |x− y0 + y0 − y|2

= −|y − y0)|2 − 2Reλx− y0, y0 − y  0.

Thus |x− y0|  |x− y|. So y0 ∈ PAK(x). 

Corollary 3.6. Let K be a convex cone in X, x ∈ X and y0 ∈ K. Then
y0 ∈ PAK(x) if and only if x− y0 ∈ K◦ ∩ y⊥0 .

Proof. By Corollary 3.5, z ∈ PAK(x) if and only if x− z ∈ (K−y0)◦. From (3),
Re z, k − y0  0 for all k ∈ K. Taking k = 0 and k = 2y0 it follows that the
last statement is equivalent to z, y0 = 0 and Re z, k  0 for all k ∈ K. That
is, z ∈ K◦ ∩ y⊥0 . 

Theorem 3.7. Let M be a submodule of X, x ∈ X and y0 ∈ M . Then y0 ∈
PAM (x) if and only if x− y0 ∈M⊥.

Proof. Since M is a submodule, then (M − y0)◦ =M◦ and −M =M implies
M⊥ = M◦ ∩ (−M)◦ = M◦. Now by Corollary 3.5, y0 ∈ PAM (x) if and only if
x− y0 ∈M⊥. 

Theorem 3.8. Let K be a closed convex subset of X. Then
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(1) For x ∈ X,

x = PAK(x) +PAK◦(x), PAK(x) ⊥ PAK◦(x).

(2) |x|2 = |PAK(x)|2 + |PAK◦(x)|2.

(3) |PAK(x)|  |x| for x ∈ X.

Proof.
1) Let x ∈ X and k0 = x − PAK(x). By Corollary 3.5, k0 ∈ K◦ and

k0 ⊥ (x− k0). For every y ∈ K◦,

Rex− k0, y = RePAK(x), y  0.

Hence x − k0 ∈ (K◦)◦. By Theorem 3.5 (applied to K◦ rather than K),
we get that k0 = PAK◦(x). This proves that, x = PAK(x) + PAK◦(x), and
PAK(x) ⊥ PAK◦(x). To complete the proof, we must verify the uniqueness of
this representation. Let x = y + z, where y ∈ K, z ∈ K◦ and y ⊥ z. For each
k ∈ K,

Rex− y, k = Rez, k  0,

and
x− y, y = z, y = 0.

By Theorem 3.5, y = PAK(x). Similarly, z = PAK◦(x).
2) The first statement follows from (1) and the Pythagorean theorem.
3) This follows using (2). 

Corollary 3.9. Let M be a closed complemented submodule of X. Then the
statements are true :

(1) Id = PAM +PAM⊥ .

(2) For x ∈ X, |x|2 = |PAM (x)|2 + |PAM⊥(x)|2.

(3) |PAM (x)|  |x| for x ∈ X.

Proof. It is a direct consequently of Theorems 3.7 and 3.8. 

Theorem 3.10. Let M be a Chebyshev submodule of X. Then

(1) PAM is a bounded linear operator and PAM = 1 (unless M = {0}).

(2) PA
M is idempotent: PA2

M = PAM .

(3) PAM is nonnegative: PAM (x), x  0.
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Proof.

(1) Let x, y ∈ X and α, β ∈ R. By Theorem 3.7, x−PAM (x) and y−PAM (y) are
in M⊥. Since αPAM (x) + βPAM (y) ∈M and M⊥ is a subspace, Theorem
3.7 implies that αPAM (x)+βPAM (y) = PAM (αx+βy). Thus PAM is linear.
By using part (3) of Theorem 3.8, we get PAM (x)  x for all x. Thus
PAM is bounded and PAM  1. Since PAM (y) = y for every y ∈ M and
hence PAM = 1.

(2) This follows because each m ∈M is its own best approximation in M .

(3) For any x in X, Theorem 3.7 implies that PAM (x), x − PAM (x) = 0,
hence PAM (x), x = PAM (x),PAM (x)  0. 

Theorem 3.11. Let K be a convex subset of X and M be any Chebyshev
submodule of X that contains K. Then:

(1) PAMP
A
K = PAK .

(2) d(x,K)2 = d(x,M)2 + d(PAM ,K)
2 for every x ∈ X.

Proof. The statement PAK ⊆ PAMP
A
K is obvious, since K ⊆M . For any y ∈ K,

we have y ∈M and x−PAM (x) ∈M⊥ by Theorem 3.7, so that

|x− y|2 = |x−PAM (x)|2 + |PAM (x)− y|2 (∗).

Since the first term on the right of (∗) is independent of y, it follows that y ∈ K
minimizes |x − y|2 if and only if it minimizes |PAM (x) − y|2. This proves that
PAK(x) exists if and only if P

A
K(P

A
M (x)) exists and PAK(x) = PAK(P

A
M (x)). 

Definition 3.12. Let M be a closed submodule of X and x ∈ X. We consider
the set

RA
M (x) := {m0 ∈M : |m0 −m|  |x−m|, for m ∈M}.

Theorem 3.13. Let M be a closed submodule of X, m0 ∈ M and x ∈ X.
Then m0 ∈ RA

M (x) if and only if M ⊆ (x−m0)⊥.

Proof. Let m0 ∈ RA
M (x) and m ∈ M , then by the submodule of M , m1 =

m0 − 1
λm ∈M . By Definition 3.12 we have

|m| = |m0 −m1|  |λx− λm1| = |m+ λ(x−m0)|.

Therefore |m|2  |m+ λ(x−m0)|2. In case λ ∈ R we get

m,x−m0+ x−m0,m+ λx−m0, x−m0  0, (λ  0). (5)
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And

m,x−m0+ x−m0,m+ λx−m0, x−m0  0, (λ  0). (6)

Taking limλ→0+ in (5) and limλ→0− in (6) we obtain

m,x−m0+ x−m0,m = 0. (7)

And for iλ, we get

m,x−m0 − x−m0,m = 0. (8)

(7) and (8) implies that m,x−m0 = 0.
Conversely, If m,x−m0 = 0 we have

|m−m0|2 − |x−m|2 = |m−m0|2 − |x−m0 +m0 −m|2

= −|x−m0)|2 − 2Reλx−m0,m0 −m  0.

Thus |m−m0|  |x−m|. So m0 ∈ RA
M (x). 

Corollary 3.14. Let M be a closed complemented submodule of X. Then
RA

M (x) = PAM (x) for x ∈ X.

Proof. Let m0 ∈ RA
M (x) by Theorem 3.13 we have M ⊥ x − m0. Then for

m ∈ M , x − m0,m∗ = m,x − m0 = 0. Therefore x − m0,m = 0. By
Theorem 3.7, m0 ∈ PAM (x) thus RA

M (x) ⊆ PAM (x). Similarly we have PAM (x) ⊆
RA

M (x). Then RA
M (x) = PAM (x). 

Theorem 3.15. Let M be a Chebyshev submodule of X and x ∈ X. Then

(i) RA
M (x)  x.

(ii) x−RA
M (x)  2x−PAM (x).

Proof. (i) By Theorem 3.13 we have

RA
M (x), x−RA

M (x) = 0.

Hence |RA
M (x)|  |RA

M (x) + λ(x−RA
M (x))| for λ ∈ R. Putting λ = 1 we get

|RA
M (x)|  |x|.

So RA
M (x)  x.

(ii) Again from Theorem 3.13 we have

RA
M (x)−PAM (x), x−RA

M (x) = 0,
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hence
|RA

M (x)−PAM (x)|  |RA
M (x)−PAM (x) + λ(x−RA

M (x))|,
and for λ = 1 we get

|RA
M (x)−PAM (x)|  |x−PAM (x)|.

So RA
M (x)−PAM (x)  x−PAM (x). Therefore

x−RA
M (x)  x−PAM (x) +PAM (x)−RA

M (x)
 x−PAM (x)+ PAM (x)−RA

M (x)
= 2x−PAM (x). 
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