Tensor Product of Operator-Valued Frames in Hilbert C*-Modules

K. Musazadeh

Islamic Azad University, Mahabad-Branch

A. Khosravi

Tarbiat Moallem University

Abstract. We show that the tensor product of two operator-valued frames for two Hilbert C*-modules is an operator-valued frame for the tensor product of these Hilbert C*-modules.

AMS Subject Classification: 94A12; 42C15; 68M10; 46C05. Keywords and Phrases: Frames, operator-valued frames, tensor product, Hilbert C*-modules.

1. Introduction

Frames on Hilbert C*-modules have been defined for unital C*-algebras by Frank and Larson [1] and investigated by many authors, see [2, 6, 11]. Recently, some generalizations of frames are proposed, for example, fusion frames, g-frames ([7]), operator-valued frames on Hilbert C*-modules for a unital C*-algebra ([4]). Furthermore, frames and bases in tensor products of Hilbert C*-modules have been studied in [6]. For more details about the tensor product of Hilbert spaces and C*-algebras we refer to [9]. We note that Hilbert C*-modules are used in the study of locally compact quantum groups, completely positive maps between C*-algebras, noncommutative geometry and K-theory. Also tensor product is useful in the approximation of multi-variate functions of combinations of univariate ones. In this section we recall some of the essential definitions and results which are needed in the sequel. For more details see [4].

Let \mathcal{A} be a C*-algebra. We denote the Hilbert (right) C*- \mathcal{A} -module by $\mathcal{H}_{\mathcal{A}}$. The classic example of Hilbert (right) \mathcal{A} -module and the only one we will consider in this paper is the standard module $\mathcal{H}_{\mathcal{A}} := \ell^2(\mathcal{A})$, the space of all sequences $\{a_i\}_{i\in I} \subset \mathcal{A}$ such that $\sum_{i\in I} a_i^* a_i$ converges in norm to a positive element of \mathcal{A} . $\ell^2(\mathcal{A})$ is endowed with the natural linear structure and right \mathcal{A} -multiplication, and with the \mathcal{A} -valued inner product defined by $\langle \{a_i\}, \{b_i\} \rangle = \sum_{i\in I} a_i^* b_i$, where the sum converges in norm by the Schwartz Inequality ([5]).

A map T from $\mathcal{H}_{\mathcal{A}}$ to $\mathcal{H}_{\mathcal{A}}$ is adjointable if there is a map $T^*: \mathcal{H}_{\mathcal{A}} \to \mathcal{H}_{\mathcal{A}}$ such that $< T^*\xi, \eta > = < \xi, T\eta >$ for all $\xi, \eta \in \mathcal{H}_{\mathcal{A}}$, ([4]). The collection of adjointable operators is denoted by $\mathcal{B}(\mathcal{H}_{\mathcal{A}})$. Then $\mathcal{B}(\mathcal{H}_{\mathcal{A}})$ is a C*-algebra ([5]). For each pair of elements $\xi, \eta \in \mathcal{H}_{\mathcal{A}}$, a bounded rank-one operator is defined by $\theta_{\xi,\eta}(\zeta) = \xi < \eta, \zeta >$, for all $\zeta \in \mathcal{H}_{\mathcal{A}}$. The closed submodule of $\mathcal{B}(\mathcal{H}_{\mathcal{A}})$ generated by rank-one operators is denoted by $\mathcal{K}(\mathcal{H}_{\mathcal{A}})$. When $\mathcal{A} = \mathbb{C}$, then $\mathcal{H}_{\mathcal{A}} = \ell^2$, $\mathcal{B}(\mathcal{H}_{\mathcal{A}}) = \mathcal{B}(\ell^2)$, and $\mathcal{K}(\mathcal{H}_{\mathcal{A}})$ coincides with the ideal \mathcal{K} of all compact operators on ℓ^2 . $\mathcal{K}(\mathcal{H}_{\mathcal{A}})$ is always a closed ideal of $\mathcal{B}(\mathcal{H}_{\mathcal{A}})$. The analog of the strong operator topology on $\mathcal{B}(\ell^2)$ is the *strict topology* on $\mathcal{B}(\mathcal{H}_{\mathcal{A}})$ defined by

$$\mathcal{B}(\mathcal{H}_{\mathcal{A}}) \ni T_{\lambda} \to T \text{ strictly if } \|(T_{\lambda} - T)S\| \to 0 \text{ and } \|S(T_{\lambda} - T)\| \to 0, \forall S \in \mathcal{K}(\mathcal{H}_{\mathcal{A}}).$$

There is an alternate view of the objects $\mathcal{B}(\mathcal{H}_{\mathcal{A}})$ and $\mathcal{K}(\mathcal{H}_{\mathcal{A}})$. Embed the tensor product $\mathcal{A} \otimes \mathcal{K}$ into its Banach space second dual $(\mathcal{A} \otimes \mathcal{K})^{**}$, which, as is well known, is a W*-algebra ([10]). The multiplier algebra of $\mathcal{A} \otimes \mathcal{K}$, is defined as the collection

$$\{T \in (\mathcal{A} \otimes \mathcal{K})^{**} : TS, ST \in \mathcal{A} \otimes \mathcal{K} \ \forall S \in \mathcal{A} \otimes \mathcal{K}\}.$$

Equipped with the norm of $(\mathcal{A} \otimes \mathcal{K})^{**}$, $M(\mathcal{A} \otimes \mathcal{K})$ is a C*-algebra. Assuming that \mathcal{A} is unital we apply the following two *-isomorphisms without further references:

$$\mathcal{B}(\mathcal{H}_A) \cong M(A \otimes \mathcal{K})$$
 and $\mathcal{K}(\mathcal{H}_A) \cong A \otimes \mathcal{K}$.

The algebra $\mathcal{B}(\mathcal{H}_{\mathcal{A}})$ is technically hard to work with, while $M(\mathcal{A} \otimes \mathcal{K})$ is more accessible due to many established results. More details on the subject can be found in ([6, 8]). We denote the tensor product of two Hilbert C*-modules $\mathcal{H}_{\mathcal{A}}$ and $\mathcal{H}_{\mathcal{B}}$ by $\mathcal{H}_{\mathcal{A}} \otimes \mathcal{H}_{\mathcal{B}}$ which is a Hilbert $\mathcal{A} \otimes \mathcal{B}$ -module, where \mathcal{A} and \mathcal{B} are C*-algebras. See ([6, 8]).

2. Operator-Valued Frames on Hilbert C*-Modules

We generalize an important result about the tensor product of frames on Hilbert C*-modules to operator-valued frames. First, we recall some definitions.

Definition 2.1. According to ([1]), a (vector) frame on the Hilbert C^* module $\mathcal{H}_{\mathcal{A}}$ of a unital C^* -algebra \mathcal{A} is a collection of elements $\{\xi_i\}_{i\in I}$ in $\mathcal{H}_{\mathcal{A}}$ for which there are two positive scalars a and b such that for all $\xi \in \mathcal{H}_{\mathcal{A}}$,

$$a < \xi, \xi > \leq \sum_{i \in I} < \xi, \xi_i > < \xi_i, \xi > \leq b < \xi, \xi >,$$

where the convergence is in the norm of the C^* -algebra A.

Let $\eta \in \mathcal{H}_{\mathcal{A}}$ be an arbitrary unital vector, i.e., $\langle \eta, \eta \rangle = Id$, then by a result in ([4]), $E_0 := \theta_{\eta,\eta} \in \mathcal{A} \otimes \mathcal{K}$ is a projection. Then $\mathcal{H}_0 := E_0\mathcal{H}_{\mathcal{A}}$ is a submodule of $\mathcal{H}_{\mathcal{A}}$ and we can identify $E_0M(\mathcal{A} \otimes \mathcal{K})$ with $B(\mathcal{H}_{\mathcal{A}}, \mathcal{H}_0)$, the set of linear bounded adjointable operators from $\mathcal{H}_{\mathcal{A}}$ to the submodule \mathcal{H}_0 .

Definition 2.2. Let \mathcal{A} be a unital C^* -algebra and I be a countable index set. Let E_0 be a projection in $M(\mathcal{A} \otimes \mathcal{K})$. Denote by \mathcal{H}_0 the submodule $E_0\mathcal{H}_{\mathcal{A}}$ and identify $B(\mathcal{H}_{\mathcal{A}},\mathcal{H}_0)$ with $E_0M(\mathcal{A} \otimes \mathcal{K})$. A collection $\{\Lambda_i \in B(\mathcal{H}_{\mathcal{A}},\mathcal{H}_0) : i \in I\}$ is called an operator-valued frame on $\mathcal{H}_{\mathcal{A}}$ with range in \mathcal{H}_0 if the sum $\sum_{i \in I} \Lambda_i^* \Lambda_i$ converges in the strict topology to a bounded invertible operator on $\mathcal{H}_{\mathcal{A}}$ denoted by D_{Λ} . $\{\Lambda_i\}_{i \in I}$ is called a tight operator-valued (resp., Parseval operator-valued frame) if $D_{\Lambda} = \lambda Id_{\mathcal{H}_{\mathcal{A}}}$ for a positive number λ (resp., $D_{\Lambda} = Id_{\mathcal{H}_{\mathcal{A}}}$), ([4]).

Notice that if $\{\Lambda_i\}_{i\in I}$ is an operator-valued frame with range in \mathcal{H}_0 , then it is also an operator-valued frame with range in any larger submodule. For more details see ([4]). Most properties of frames on Hilbert spaces hold also for Hilbert C*-modules. Also Kaftal, Larson and Zhang ([4]) showed that most results for operator-valued frames on Hilbert spaces are also true for operator-valued frames on Hilbert C*-modules. In this section we have another result about this subject which

is a generalization of a result in ([6]).

Lemma 2.3. Let $\{T_{\alpha}\}_{\alpha} \subset B(\mathcal{H}_{\mathcal{A}})$ converges strictly to T and $\{S_{\beta}\}_{\beta} \subset B(\mathcal{H}_{\mathcal{A}})$ converges strictly to S. Then $\{T_{\alpha} \otimes S_{\beta}\}_{\alpha,\beta} \subset B(\mathcal{H}_{\mathcal{A}} \otimes \mathcal{H}_{\mathcal{A}})$ converges strictly to $T \otimes S$.

Proof. We first show that $\mathcal{K}(\mathcal{H}_{\mathcal{A}}) \otimes \mathcal{K}(\mathcal{H}_{\mathcal{A}})$ and $\mathcal{K}(\mathcal{H}_{\mathcal{A}} \otimes \mathcal{H}_{\mathcal{A}})$ are at least algebraically equivalent. For this, let $\xi_1, \xi_2, \eta_1, \eta_2 \in \mathcal{H}_{\mathcal{A}}$. Then for all $\zeta_1, \zeta_2 \in \mathcal{H}_{\mathcal{A}}$ we have

$$(\theta_{\xi_1,\eta_1}\otimes\theta_{\xi_2,\eta_2})(\zeta_1\otimes\zeta_2)=\theta_{\xi_1,\eta_1}(\zeta_1)\otimes\theta_{\xi_2,\eta_2}(\zeta_2)=\xi_1<\eta_1,\zeta_1>\otimes\xi_2<\eta_2,\zeta_2>$$

$$= (\xi_1 \otimes \xi_2)(\langle \eta_1, \zeta_1 \rangle \otimes \langle \eta_2, \zeta_2 \rangle) = (\xi_1 \otimes \xi_2) \langle \eta_1 \otimes \eta_2, \zeta_1 \otimes \zeta_2 \rangle$$
$$= \theta_{\xi_1 \otimes \xi_2, \eta_1 \otimes \eta_2}(\zeta_1 \otimes \zeta_2).$$

Therefore, $\theta_{\xi_1,\eta_1} \otimes \theta_{\xi_2,\eta_2} = \theta_{\xi_1 \otimes \xi_2,\eta_1 \otimes \eta_2}$. Since $\mathcal{K}(\mathcal{H}_{\mathcal{A}}) \otimes \mathcal{K}(\mathcal{H}_{\mathcal{A}})$ and $\mathcal{K}(\mathcal{H}_{\mathcal{A}} \otimes \mathcal{H}_{\mathcal{A}})$ are closed linear spans of these rank-one operators, the result follows. Now let $U, V \in \mathcal{K}(\mathcal{H}_{\mathcal{A}})$. Then $U \otimes V \in \mathcal{K}(\mathcal{H}_{\mathcal{A}}) \otimes \mathcal{K}(\mathcal{H}_{\mathcal{A}}) = \mathcal{K}(\mathcal{H}_{\mathcal{A}} \otimes \mathcal{H}_{\mathcal{A}})$. So we have

$$\|(T_{\alpha} \otimes S_{\beta} - T \otimes S)(U \otimes V)\|$$

$$= \|(T_{\alpha} \otimes S_{\beta} - T_{\alpha} \otimes S + T_{\alpha} \otimes S - T \otimes S)(U \otimes V)\|$$

$$= \|[T_{\alpha} \otimes (S_{\beta} - S) + (T_{\alpha} - T) \otimes S](U \otimes V)\|$$

$$= \|[T_{\alpha} \otimes (S_{\beta} - S)](U \otimes V) + [(T_{\alpha} - T) \otimes S](U \otimes V)\|$$

$$\leq \|T_{\alpha}U \otimes (S_{\beta} - S)V\| + \|(T_{\alpha} - T)U \otimes SV\|$$

$$\leq \|T_{\alpha}U\|\|(S_{\beta} - S)V\| + \|(T_{\alpha} - T)U\|\|SV\|.$$

Since $||(S_{\beta} - S)V|| \to 0$ and $||(T_{\alpha} - T)U|| \to 0$ by the hypothesis,

$$||(T_{\alpha} \otimes S_{\beta} - T \otimes S)(U \otimes V)|| \to 0.$$

Similarly, we can show that $\|(U \otimes V)(T_{\alpha} \otimes S_{\beta} - T \otimes S)\| \to 0$, Hence the result follows. \square

Proposition 2.4. Let $\{\Lambda_i\}_{i\in I}$ and $\{\Gamma_i\}_{i\in I}$ be operator-valued frames in $B(\mathcal{H}_{\mathcal{A}}, \mathcal{H}_0)$. Then $\{\Lambda_i \otimes \Gamma_j\}_{i,j}$ is an operator-valued frame in $B(\mathcal{H}_{\mathcal{A}} \otimes \mathcal{H}_{\mathcal{A}}, \mathcal{H}_0 \otimes \mathcal{H}_0)$.

Proof. Suppose that $\{\Lambda_i\}_{i\in I}$ and $\{\Gamma_i\}_{i\in I}$ are operator-valued frames in $B(\mathcal{H}_{\mathcal{A}}, \mathcal{H}_0)$. Then we have

$$\sum_{i,j} (\Lambda_i \otimes \Gamma_j)^* (\Lambda_i \otimes \Gamma_j) = \sum_{i,j} (\Lambda_i^* \otimes \Gamma_j^*) (\Lambda_i \otimes \Gamma_j) = \sum_{i,j} (\Lambda_i^* \Lambda_i \otimes \Gamma_j^* \Gamma_j)$$
$$= \sum_{i \in I} \Lambda_i^* \Lambda_i \otimes \sum_{i \in I} \Gamma_j^* \Gamma_j.$$

But $\sum_{i\in I} \Lambda_i^* \Lambda_i$ converges strictly to S_{Λ} and $\sum_{j\in I} \Gamma_j^* \Gamma_j$ converges strictly to S_{Γ} by the definition. Hence by the above lemma $\sum_{i\in I} \Lambda_i^* \Lambda_i \otimes \sum_{j\in I} \Gamma_j^* \Gamma_j$ converges strictly to $S_{\Lambda} \otimes S_{\Gamma}$, which is a bounded invertible operator on $\mathcal{H}_{\mathcal{A}} \otimes \mathcal{H}_{\mathcal{A}}$. \square

Since by Theorem 1.4. of ([4]) a collection $\{\xi_i\}_{i\in I}$ in $\mathcal{H}_{\mathcal{A}}$ is a frame if and only if $\{A_i \in B(\mathcal{H}_{\mathcal{A}}, \mathcal{H}_0) : i \in I\}$ is an operator-valued frame in $\mathcal{H}_{\mathcal{A}}$, where $A_i(\xi) = \langle \xi, \xi_i \rangle$, as a particular case of Proposition 2.4. we get a result proved in ([6]).

Corollary 2.5. Let $\{f_i\}_{i\in I}$ and $\{g_i\}_{i\in I}$ be standard frames for $\mathcal{H}_{\mathcal{A}}$ and $\mathcal{H}_{\mathcal{B}}$, respectively. Then $\{f_i\otimes g_j\}_{i,j\in I}$ is a standard frame for $\mathcal{H}_{\mathcal{A}}\otimes \mathcal{H}_{\mathcal{B}}$.

Proof. See ([6]). \square

Generalized frames in Hilbert C*-modules is another aspect of operatorvalued frames in Hilbert C*-modules which is introduced in ([7]).

Acknowledgement

The authors express their gratitude to the referee for his careful reading and for several valuable points which improved the manuscript.

References

- [1] M. Frank and D. Larson, Frames in Hilbert C*-modules and C*-algebras, J. Operator Theory, 48 (2002), 273-314.
- [2] D. Han, W. Jing, and R. M. Mohapatra, Structured Parseval frames in Hilbert C*-modules, (preprint).
- [3] V. Kaftal, D. Larson, and S. Zhang, Operator valued frames on C*-modules, *Contemporary Mathematics*, 2007.
- [4] V. Kaftal, D. Larson, and S. Zhang, Operator valued frames, Trans. Amer. Math. Soc. 361 (2009), 6349-6385.
- [5] G. G. Kasparov, Hilbert C*-modules: theorems of Stinespring and Voiculescu, J. Operator Theory, 3 (1980), 133-150.
- [6] A. Khosravi and B. Khosravi, Frames and bases in tensor products of Hilbert spaces and Hilbert C*-modules, *Proc. Indian Acad. Sci. (Math. Sci.)*, 117 (1) (2007), 1-12.
- [7] A. Khosravi and B. Khosravi, Fusion frames and g-frames in Hilbert C*-modules, *International Journal of Wavelets*, *Multiresolution and Information Processing*, 6 (3) (2008), 433-446.
- [8] E. C. Lance, Hilbert C*-modules-a toolkit for operator algebraists, London Math. Soc. Lecture Note Ser., (Cambridge, England: Cambridge Univ. Press) (1995), vol. 210.
- [9] G. J. Murphy, C*-algebras and operator theory, Academic Press, San Diego, California, 1990.
- [10] G. K. Pedersen, C*-algebras and their automorphism groups, Academic Press, London, New york, San Francisco, 1979.
- [11] P. Wood, Wavelets and projective Hilbert modules, (preprint).

Kamran Musazadeh

Department of Mathematics Islamic Azad University, Mahabad Branch Mahabad, Iran.

E-mail: kamran_ms2004@yahoo.com

Amir Khosravi

Faculty of Mathematical Sciences and Computer Tarbiat Moallem University Tehran, Iran.

E-mail: khosravi_amir@yahoo.com