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Abstract. We will relate the degree of rational approximation
of a meromorphic function f to the minimum value, on the nat-
ural boundary of f , of Green potential of the weak∗ limit of the
normalized pole-counting measures.
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1. Introduction

This paper is about the quantity

d = d(S, f,E) := inf
{sn}∈S

lim sup
n→∞

‖f − sn‖
1
n
E (1)

which we call the degree of approximation from S to f on E. Here, E

is a subset of C, the extended complex plane; f is a function defined on
E; S is a class of sequences of functions; and ‖.‖E denotes the sup-norm
on E.
One of the earliest ideas for approximation came from Sangamagrama
Madhava (1350-1425). He described–all in words–how to represent the
length of a circular arc as an infinite series, in terms of sine and cosine
of the corresponding central angle,

L =
r sin θ

cos θ
− r sin3 θ

3 cos3 θ
+ · · ·
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for 0 6 θ 6 45◦, which is equivalent to what we now call the Tay-
lor/Maclaurin series for arc tangent.
To relate this historic example to our discussion here, let f(x) = arctanx,
and see whether the degree of approximation from the class S of all
sequences of polynomials {sn} (with real or complex coefficients) of re-
spective degrees 6 n is achieved by Madhava’s series on a certain set
E.
First, consider the case where E = [−1, 1]. If we let

sn(x) =
n∑

k=1

sin kπ
2

k
xk (2)

for n = 1, 2, . . ., then for this sequence the lim-sup in (1) would equal
1, so d 6 1. But from two classical results of Bernstein ([2,16]) we
can see that d =

√
2 − 1 < 1. Bernstein’s theorems show that when

f is holomorphic inside an ellipse with foci ±1, and has at least one
singularity on the ellipse, letting {sn} be the sequence of polynomials
of best uniform approximation on [−1, 1], the lim-sup in (1) equals the
difference in the lengths of the semi-axes of the ellipse. In our case,
the principle branch of f(z) = arctan(z) is holomorphic in C, minus its
branch cut, which starts at −i, goes to ∞ along the negative imaginary
axis, and then comes back along the positive imaginary axis to end at i.
Therefore the largest ellipse within which f is holomorphic has a minor
semi-axis of length 1, and a major semi-axis of length

√
2, leading to

d =
√

2− 1 < 1, since the inf in (1) is reached through the polynomials
of best approximation.
Note that when we enlarge the interval E, d moves up closer to 1, and
when we shrink it, d gets smaller. It is zero when E = {0}. In any case
where E is a real interval, d is strictly less than the lim-sup in (1) with sn

as in (2). For E = [−a, a] with 0 < a 6 1, we have d = (
√

1 + a2− 1)/a.
Next, let E = {z ∈ C : |z| 6 a} where 0 < a < 1. From a more

general result of Walsh ([18, §4.6]) we can see that if the lim-sup in (1)
was smaller than a for some sequence of polynomials sn of respective
degree 6 n, then f , the arc tangent, would have to be holomorphic
inside a disc larger than the unit disc, which we know it is not the case
because the arc tangent has branch points at ±i. On the other hand
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the sequence (2) obviously produces a as the lim-sup in (1). Therefore
d = a in this case.
The above situations are all about polynomials, which can be considered
as rational functions with poles at ∞. We shall see that in a more
general situation we can allow the poles to converge (in some sense) to
some arbitrary Borel measure whose support is not necessarily the point
at ∞. This paper is an extension of what Sergei Natanovich Bernstein,
Franciszek Leja, and Joseph Leonard Walsh studied. Numerous other
mathematicians have worked on this and related areas. For just a few
of those results see [1,3,4,5,6,7,8,10,11,12,14,15,16].
Let f be meromorphic in D, a domain on the extended complex plane
C. Suppose that D 6= C, and that the ∂D is the natural boundary of f .
Let E be a closed subset of D such that f is holomorphic on E, and let
G := C\E. We assume that G has finitely many connected components,
each intersecting the ∂D. Let µ be a unit Borel measure with support
Supp(µ) ⊂ G, such that it intersects every connected component of G.
Let hµ

G be the Green potential of µ in G ([9, §I.3], [13, §II.5], [16]). These
are some of the properties of hµ

G:
(1) hµ

G > 0 in G.
(2) hµ

G is lower semi-continuous on C, superharmonic in G, and harmonic
in G\Supp(µ).
(3) For quasi-every y ∈ ∂G (for every y except a subset of logarithmic
capacity 0) we have

lim
x→y,x∈G

hµ
G(x) = 0. (3)

Let the ∂G be regular, in the sense that (3) holds for all y ∈ ∂G. Let
H be the union of all those connected components of C\Supp(µ) that
intersect the ∂G. Then we define

Eµ
σ := {x ∈ H : hµ

G(x) < log σ}.

Given rational functions r and q, we define the pole-counting measures
πr and κr

q as

πr(A) := the number of poles of r in A (counting multiplicities)
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and

κr
q(A) : = the number of those poles of r in A

that are not poles of q (counting multiplicities)

for every Borel set A ⊂ C.
We define the class Sµ as the collection of all infinite sequences {sn} of
rational functions satisfying the following conditions:

1.

lim sup
n→∞

πsn(C)
n

6 1.

2.

κsn+1
sn

(C) = o

(
n

log n

)
.

3.
1

πsn(C)
πsn weak∗→ µ.

4. The sequence {πsn(K)} is bounded for every closed set K ⊂
C\Supp(µ).

2. Main Results

The theorems of this section are corollaries to the main theorems of [16].
Let

− log δ = min
x∈∂D

hµ
G(x) 6 min

x∈Supp(µ)
hµ

G(x).

Then it follows from [16, Theorem 4] that we can find {tn} ∈ Sµ such
that

lim sup
n→∞

‖f − tn‖
1
n
E 6 δ.

This proves

Theorem 2.1. If

min
x∈∂D

hµ
G(x) 6 min

x∈Supp(µ)
hµ

G(x),
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then
d(Sµ, f, E) 6 e−minx∈∂D hµ

G(x).

Let
min
x∈∂D

hµ
G(x) < − log δ < min

x∈Supp(µ)
hµ

G(x).

Now suppose that

lim sup
n→∞

‖f − tn‖
1
n
E 6 δ

for some sequence {tn} ∈ Sµ. Then by [16, Theorem 3] f is meromorphic
in

Eµ
1/δ = {x ∈ H : hµ

G(x) < − log δ}
which is a contradiction, since this set includes some points of the natural
boundary of f . This proves:

Theorem 2.2. If

min
x∈∂D

hµ
G(x) < min

x∈Supp(µ)
hµ

G(x),

then
d(Sµ, f, E) = e−minx∈∂D hµ

G(x).

3. Some Special Cases

In this section we consider some special cases:

3.1. Let f be an entire function but not a polynomial. Therefore the
natural boundary of f is {∞}. Let E be the unit disc, and µ be the unit
mass at ∞. Then

hµ
G(x) = max{0, log |x|}.

The class Sµ includes the sequence of partial sums of the Taylor/Maclaurin
series for f . In this case

d(Sµ, f, E) = 0 = e−minx∈∂D hµ
G(x).
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3.2. Let f be holomorphic in C\{0}, with essential singularities at 0
and ∞. Then the natural boundary of f is {0,∞}. Let E be the unit
circle. Let µ be a unit mass with mass m > 0 at 0, and mass 1−m > 0
at ∞. Then

hµ
G(x) = max {0, log |x|} −m log |x|.

The class Sµ includes a sequence of partial sums of the Laurent series
for f , rearranged so that the poles at 0 and ∞ remain in the same
proportion as the mass of µ at 0 and ∞ asymptotically. In this case

d(Sµ, f, E) = 0 = e−minx∈∂D hµ
G(x).

3.3. Let f be holomorphic in an annulus centered at the origin with radii
a and b where 0 < a < 1 < b < ∞. Let the boundary of this annulus
be the natural boundary of f . Let E and µ be as in the previous case.
Then hµ

G and Sµ are as in the previous case. In this case, by Theorem
2.2.

d(Sµ, f, E) = e−minx∈∂D hµ
G(x) = max

{
am, bm−1

}
.

3.4. In the next section we will construct a special function as a rational
series, that is holomorphic inside the unit disc, with the unit circle as its
natural boundary. Let f be that function. Let E be the closed disc of
radius a < 1, centered at the origin, and µ be the uniform distribution of
a unit mass on the unit circle. Then the class Sµ includes the sequence
of partial sums of the rational series (4) which gives

d(Sµ, f, E) = 0.

(See Property 4 of f in the next section.) On the other hand

hµ
G(x) =

1
2π

∫ 2π

0
log

∣∣∣∣
a2 − xe−iθ

ax− aeiθ

∣∣∣∣ dθ.

On the natural boundary of f , the unit circle, hµ
G is constant, positive,

and finite. Therefore, in this case

d(Sµ, f, E) = 0 < e−minx∈∂D hµ
G(x).
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Note that in cases 3.1. and 3.2. as well as in this case, the support
of µ lies on the natural boundary of f , in which Theorem 2.1. applies.
This case shows that in the conclusion of the theorem strict inequality
is possible in some cases.

3.5. Up to this point, we have made the assumption that f is holo-
morphic on E. In this special case we are replacing that condition with
continuity. Let E be the closed unit disc. As in the previous case, let
f be the function to be constructed in the next section, which is holo-
morphic in the int(E) and continuous on E, with the ∂E as its natural
boundary. And let µ be as in the previous case. Then, in this case

d(Sµ, f, E) = 0 < 1 = e−minx∈∂D hµ
G(x).

4. A Special Rational Series

Here, we will construct a function f in the form

f(z) =
∞∑

k=1

bk

zk − z
(4)

for z ∈ ∆ : |z| 6 1, with the properties that:

1. f is continuous on ∆,

2. f is holomorphic in the int(∆),

3. f has the ∂∆ as its natural boundary,

4. ∥∥∥∥lim sup
n→∞

bn

zn − ·

∥∥∥∥
1
n

∆

= 0,

5. and every point of the ∂∆ is a limit point of the poles, in a way
that

1
πsn(C)

πsn weak∗→ µ,
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where sn is the n-th partial sum of (4) and µ is the uniform distribution
of a unit mass on the ∂∆.
(We used this special rational series for cases 3.4 and 3.5, but it has
interesting properties for its own sake.)
Let us begin the construction:
Every positive integer k can be uniquely written as

k = 2qk + rk

where qk and rk are nonnegative integers and 0 6 rk < 2qk . We define
δk, θk, zk, and bk respectively as

δk = 2−2qkπ2

θk = 2−qk

(
rk +

1
2

)
2π

zk = (1 + δk)eiθk

bk =
1
kk

for each positive integer k. Clearly f is continuous on ∆ and analytic in
the int(∆), so it remains to prove that the ∂∆ is the natural boundary
of f .
For the following lemmas, we define ςj , λj,k, and τj,k respectively as

ςj =
1
2
eiθj

λj,k = |zk − ςj |
τj,k = arg(zk − ςj)− θj

for j, k ∈ N, where arg is chosen so that −π < τj,k 6 π.
For each j ∈ N, we define Mj ⊂ N as the set of all positive integers m

with the following properties:

1. m > max{j, 110}
2. θm − θj = 2−qmπ

3. qm−2 = qm−1 = qm = qm+1
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Clearly Mj is an infinite set. For convenience we state the following
lemma, which is a consequence of the 1st property:

Lemma 4.1. We have
(

1
15

)(
1
44

)
22qmm log m > 2qm+1

for all m ∈ Mj.
Since τj,m > θm − θj = 2−qmπ or 2qm+1τj,m > 2π, and τj,m−1 = −τj,m,
for m ∈ Mj , the following key lemma is an easy consequence of Lemma
4.1.

Lemma 4.2. For each j ∈ N and m ∈ Mj, there exists nj,m ∈ N, such
that (

1
44

)
22qmm log m < nj,m <

(
16
15

)(
1
44

)
22qmm log m (5)

and
cosnj,mτj,m = cosnj,mτj,m−1 >

1
2

hold.
Here is a sufficient condition for the main result of this section:

Lemma 4.3. The function f defined by (4) has the ∂∆ as its natural
boundary if

lim sup
n→∞

∣∣∣∣∣
∞∑

k=1

bk cosnτj,k

λn
j,k

∣∣∣∣∣

1
n

> 2 (6)

for all j ∈ N.
Proof. Since the series (4) is uniformly convergent on ∆ we have

∣∣∣∣∣
f (n−1)(ςj)
(n− 1)!

∣∣∣∣∣ =

∣∣∣∣∣
∞∑

k=1

bk

(zk − ςj)n

∣∣∣∣∣

=

∣∣∣∣∣
∞∑

k=1

bke
−i(τj,k+θj)n

λn
j,k

∣∣∣∣∣

>
∣∣∣∣∣
∞∑

k=1

bk cosnτj,k

λn
j,k

∣∣∣∣∣
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for all j, n ∈ N. This completes the proof, since the set {ςj : j ∈ N}
is dense on the circle |z| = 1

2 , and that already f is analytic in the
int(∆). ¤

As a simple application of the law of cosine to the triangle with
vertices zk, ςj , and the origin, we get the following lemma:

Lemma 4.4. For all j, k ∈ N, we have

(2λj,k)2 = 1 + 4(δk + 1)(δk + 1− cos tj,k)

where tj,k = θk − θj.
Next, consider a very useful lemma for the subsequent results:

Lemma 4.5. We have

λj,m < λj,2m−3 < λj,m+1

for all j ∈ N and m ∈ Mj.

Proof. The second inequality is easily observed from the fact that

θj − θ2m−3 < θj − θm−2 = θm+1 − θj

and for the first inequality it is sufficient to show that

(δm + 1)(δm + 1− cos tj,m) < (δ2m−3 + 1)(δ2m−3 + 1− cos tj,2m−3) (7)

due to Lemma 4.4. Note that

q2m−3 = qm + 1

r2m−3 = 2rm − 3

clearly. Now recall

tj,m = θm − θj = 2−qmπ

δm = 2−2qmπ2 = t2j,m

and see that

δ2m−3 =
1
4
δm =

1
4
t2j,m

tj,2m−3 = −5
2
tj,m
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which can be put in (7). Therefore it is sufficient to show

(t2j,m + 1)(t2j,m +
1
2
t2j,m) < (

1
4
t2j,m + 1)(

1
4
t2j,m +

52

23
t2j,m − 54

3 · 27
t4j,m)

or equivalently
625
192

t4j,m +
877
48

t2j,m < 15

which is ensured by the 1st and 2nd properties of Mj . ¤
As an immediate consequence of Lemma 4.5. we get the following lemma:

Lemma 4.6. For all j ∈ N and m ∈ Mj we have

bm+1

λ
nj,m

j,2m−3

<
bm

8λ
nj,m

j,m

for nj,m as defined in Lemma 4.2.
Here’s another useful lemma:

Lemma 4.7. For all j ∈ N and m ∈ Mj we have

2nj,mb2m−2 <
bm

8λ
nj,m

j,m

for nj,m as defined in Lemma 4.2.

Proof. By using Lemma 4.4. we get

log(2λj,m)2 < 4(δm + 1)(δm +
1
2
t2j,m)

<
15
2

2−2qmπ2

which leads to
nj,m

2
log(2λj,m)2 <

21
22

m log m

through Lemma 4.2. On the other hand we have

(2m− 2) log(2m− 2) > m log m +
21
22

m log m + 3 log 2

which completes the proof. ¤
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Next, consider

Lemma 4.8. For all j ∈ N and m ∈ Mj we have

3
λ

nj,m

j,m−2

<
bm

λ
nj,m

j,m

for nj,m as defined in Lemma 2.2.

Proof. By Lemma 4.4.

(2λj,m−2)2

(2λj,m)2
− 1 =

4(δm+1)(δm+1−cos 3tj,m)−4(δm+1)(δm+1−cos tj,m)

1+4(δm+1)(δm+1−cos tj,m)

=
16(δm+1) cos tj,m sin2 tj,m

1+4(δm+1)(δm+1−cos tj,m)

< (168)2−2qm

so we can write

log
(2λj,m−2)2

(2λj,m)2
>

(
99
100

)
16(δm + 1) cos tj,m sin2 tj,m

1 + 4(δm + 1)(δm + 1− cos tj,m)

>

(
99
100

)
(16)(0.995)

(
99
100

)2
π22−2qm

1 + 4(101
100)( 1

100 + 1
200)

> (140)2−2qm

by estimation. Therefore by Lemma 2.2. we get

1
2
nj,m log

(2λj,m−2)2

(2λj,m)2
>

(
70
44

)
m log m

> log
3
bm

which completes the proof. ¤
Another lemma:

Lemma 4.9. Let j ∈ N and m ∈ Mj. Then

λj,m−2 < λj,k

for all k < m− 2.
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Proof. Recall that qm−2 = qm. It is clear geometrically that the lemma
is true when qk = qm. Now suppose that qk < qm. It is sufficient to
prove the lemma for the case qk = qm − 1. By Lemma 4.4. we have

(2λj,m−2)2 < 1 + 4(δm + 1)(δm +
1
2
(3tj,m)2)

= 1 + 4(δm + 1)
55
10

δm

and

(2λj,k)2 > 1 + 4(4δm + 1)(4δm +
9
10
· 1
2
(2tj,m)2)

= 1 + 4(4δm + 1)
58
10

δm

which completes the proof. ¤
Now we can prove the main theorem of this section:

Theorem 4.10. The natural boundary of f is the unit circle.

Proof. Let j be a positive integer. Then it is sufficient to prove (6).
Note that for each m ∈ Mj we can write

∣∣∣∣∣
∞∑

k=1

bk cos nj,mτj,k

λ
nj,m

j,k

∣∣∣∣∣ >
bm + bm−1

2λ
nj,m

j,m

−
∑m−2

k=1 bk

λ
nj,m

j,m−2

−
∑2m−3

k=m+1 bk

λ
nj,m

j,2m−3

− 2nj,m

∞∑

k=2m−2

bk

>
bm

λ
nj,m

j,m

− 3
2λ

nj,m

j,m−2

− 3bm+1

2λ
nj,m

j,2m−3

− 3
2
2nj,mb2m−2

>
bm

λ
nj,m

j,m

− bm

2λ
nj,m

j,m

− 3bm

16λ
nj,m

j,m

− 3bm

16λ
nj,m

j,m

=
bm

8λ
nj,m

j,m

because of the 3rd property of Mj , and lemmas 4.2, 4.5, 4.6, 4.7, 4.8 and
4.9. To complete the proof, observe that Mj is an infinite set of positive
integers,

lim
m→∞λj,m =

1
2
,
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and

lim
m→∞ b

1
nj,m
m = 1,

due to (5). ¤
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