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1. Introduction

Mathematical programming is tightly interwoven with the classical cal-
culus of variation. Both these subjects have undergone independent de-
velopment, hence mutual adaptation of ideas and techniques have always
been appreciated. The relationship between these two subjects was ex-
plored and extended by Hanson [12]. Thereafter variational program-
ming problems [1, 13, 17, 19, 20, 21, 24] have attracted much attention
in literature.

Establishing duality results and finding optimality conditions is one of
the finest approach to solve such problems. Under different assumptions
of convexity and invexity several researchers [3, 4, 15, 18, 22] have used
efficiency to establish optimality and duality results for Wolfe as well as
Mond-Weir type of duals.

One may come across several type of solution concepts while browsing
the literature. One of them is minimizer or maximizer of order m intro-
duced by Auslender [2] and Ward [25]. Jimenez [14] extended the idea of
Ward to define notion of strict local efficient solution of order m for vec-
tor optimization problem. Bhatia [5] extended this idea further to define
global strict minimizer of order m for multi-objective optimization prob-
lem. But all these authors have worked for static cases. In this paper,
we have introduced efficiency of order m for a class of non-differentiable
multi-objective variational problems in which every component of the
objective and constraint function contains a term involving the square
root of a certain positive semidefinite quadratic form.

Necessary optimality conditions are important because these conditions
lay down foundation for many computational techniques in optimiza-
tion problems as they indicate when a feasible point is not optimal. At
the same time these conditions are useful in the development of numeri-
cal algorithms for solving certain optimization problems. Further, these
conditions are also responsible for the development of duality theory on
which there exists an extensive literature and a substantial use of which
(duality theory) has been made in theoretical as well as computational
applications in many diverse fields. Hence we are motivated to estab-
lish necessary optimality conditions for efficient solution of order m for
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non-differentiable multi-objective variational problems taking efficiency
of order m as optimality criteria. These conditions are further extended
to the class of non-differentiable multi-objective fractional variational
problem. The parametric dual of above stated problem is given. Weak
and strong duality results are established under the assumption gener-
alized p—invex conditions on the functionals involved.

The paper is organized as follows: In Section 2, some basic definitions and
preliminaries are given and necessary optimality conditions for efficiency
of order m for multiobjective variational problem are obtained. Section
3, deals with necessary optimality conditions for non-differentiable mul-
tiobjective fractional variational problem (NMFVP) using the concept
of efficiency of higher order. In Section 4, we propose dual for (NMFVP)
for which duality results are obtained under generalized higher order p—
invexity assumptions.

2. Definitions and Preliminaries

Let R™ denotes a n-dimensional Euclidean space,

R?} = {(z},22,..., 2T € R*|2* > 0,i = 1,2,...,n} and mtRi de-
notes interior of R” that is int R} = {(z!, 22, T € RY2! > 0,i =
1,2,..,n}. . .

For any z = (2!, 22, ....2™)" , y = (v}, 9%, ...,y")" € R™

r=yer =y foralli=12,..n.

(i)r<year<y foralli=1,2, .., n.

i)z Syer <y forali=1,2,..n.
(iv)z<yexSyand z #y.

For a given real interval I = [a,b], let ¢ : I x R" x R™ — R be a continu-
ously differentiable functions with respect to each of its arguments. For
notational convenience ¢(t,x(t),2(t)) will be written as ¢(t, z, &), where
x: I — R" is a piece-wise smooth state function with its derivative .
We also denote the partial derivative of ¢ with respect to ¢,z and 2 by

Oty Or, O respectively. Let C(I,R™) be the set of all continuous functions
from I — R™. Let X be the space of piece-wise smooth state functions
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z : I — R" equipped with the norm ||z| = ||z|, + ||Dz|, where the
differential operator D is given by u = Dz < z(t) = z(a) + f; u(s)ds.
Therefore, D = % except at discontinuities.

The Non-differentiable Multi-objective Variational Problem (P1) is de-
fined as follows:

b 1
(P1) Minimize( / (FAt, 2, 3) + {o(®)T B ($)x(t)} 2 }dt, ...,

b 1
[ ) + 07 a0} e )
subject to,

Gtz @)+ {a)TCI e <0, te T, je M=1{1,2,....m}, (1)

z(a) =0,2(b) = 0. (2)

where fi: I xR"xR* - Ri€ P={1,...,p}and ¢/ : I x R" x R" —
R, j € M, are continuously differentiable functions with respect to each
of their arguments. For each t € I, B'(t),i € P and C/(t),j € M are
n x n positive semi-definite(symmetric) matrices with B*(-) and C*(:)
continuous on I. Let X be the set of all feasible solution of (P1) that is

Xo = {x € X|g/(t,x,&) + {a(t)TCI ()z(t)}7 <0,
jeM,tel, x(a)=0,2(b) =0}.

Definition 2.1. z € Xy is said to be an efficient solution for (P1) if
there is no other x € Xy such that

b 1
/ (it )+t B (t)e(t)} e

< / b{fi(t, z,%) + {z()T B (t)z(t)}2 }dt, for all i € P and,

b
/ {F(t,2,8) +{2() B (O)w(t)} 2 Jdt

b
< / {F(t,2,2) + {z(t)" B (t)a_:(t)}%}dt,for at least onej € P.
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Let m > 1 be an integer and £ be a piece-wise smooth vector valued
function on I x R™ x R™.

Definition 2.2. £ € Xy is said to be an efficient solution of order m
for (P1) with respect to & if there exist ¢ = (c',c?,...,cP) € int RY such
that for no other x € Xj

/ab{fi(t, 2, @) + {z(t)T B ()x(t)} 2 }dt

< / (Fita.0) + OB 2+ e(t,)| ",
for alli € P and,
/ab{fj(t, z, @) + {a(t)T B (t)x (1)} 2 }dt

< / P n8) + OB 00} + € n )"

for at least one j € P.

Lemma 2.3. (Chankong and Haimes [7]) Let T be an efficient solution
of order m for (P1) with respect to §. For each k € P, define

b
P(k) Minimize / (F5(t 2, ) + {2 ()T BR (D)2 (6)}3 Yt

subject to,

¢t a, i)+ {z(O)TCI(t)z(t)}2 S 0,t € 1,5 € M,

b 1
/ {7t 2, @) + {a(t) B (t)x(t)} 2t

b
< / Ut 2,5) + {a ()T BI (0()} it j € P,j #,
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Then T is an optimal solution of order m for P(k) with respect to &,
ke P.

Proof. Fiz k € P. If possible suppose T is not an optimal solution of m
for P(k) with respect to &, k € P, that is for each a(k) € Ry — {0} there
exist feasible solution for the problem P(k) namely & such that

/ (P40 2.8) + (BT BHO)H())
b 1
< [(Fad) + o0 B O} + alb)ete.2)| "),

Feasibility of &, yields

b
162+ porBosa < [ (Fend T B 00

b 1
s / {F(t,2,2) + {z()" B/ ()z(1)}2 + a(j) |€(t, 2, 7)|| " Y,

for each o(j) € Ry —{0},j € P,j # k.

Using above inequalities we arrive a contradiction to the fact that T is
an efficient solution of order m for (P1) with respect to . Hence the
result follows. [

Lemma 2.4. Fiz k € P, T be an optimal solution of order m for P(k)
with respect to €. Then there exist T = (14, 72,...,7P) € RE | piece-wise
smooth functions N : I —R,j € M,z : I - R" i € P,w': I — R",

1 € M, such that

m

Y TEOFBI0)Z () + Y N (D)(gh() + () (3)
=1

j=1

d p
D) Z)\J | ter

=1
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/Z)\J Wl (t, %, 1) + 2(t) T O (t)w? () }dt = 0, (4)

T20,M(t) 20,5 €M, (1, \t),...,\™(t)) #£0,t eI, (5)
ATBI )2 (1) < 1, (20T B (H)z(t)2 = 2()TBi(t)2i(t),i € P (6)

wl (17 CI (1! (1) < 1, (20T CH(0)F(1)) 2 = 21T C(#)wi(t), ) € M~( |
7

Proof. Let Z be an optimal solution of order m for P(k) with respect
t0§ Let
(x) = f{fltxx)}dtzEP
a:) f {z(t)T B (t)x(t )}2dt,z € P,
G(x)(t) = (g (t,l’,ﬂf)+{ﬂf(t)T€1(t)x(t)}%,--.7
g"(tx, @) +{z(t)T C()(t)}2),
L*(I,R) = {f : I — R|fis measurable and [”|f(t)2dp(t) < oo},
where p is Lebesgue measure.
K=C.(I,R™) = {s € C(I,R™)|s(t) = 0)} C L*(I, R™)
The problem P(k) may be rewritten as Cone Constrained Problem
(CCP):
(CCP) Minimize F*(z) + J*(x)

subject to,
—G(z)e K,z € X.
—F(x) = J(x) + F/(z) + J7 () €Ry,j € Pj # k.

Since 7 is an optimal solution of P(k), so is of (CCP). By Fritz John The-
orem [9], there exist 7% € Ry, p € K*(polar cone of K), 7/ € (R})* =
Ry,j € P,j # k not all zero such that

0 THOF" + TF) (@)} + p0G(x) + > THO(F +.79)(3)}, (8)
JEP,j#k
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where 9(F' + J')(2),i € P,0G(Z) denote sub-differential of F' + J*, G
at x, respectively.

pG(z) = 0. 9)

Since p € K* = p € L*(I, R™), by Riesz representation theorem [16]
there exist A = (A1,...,\™) € L}(I,R™) such that

b
p(s) = / A1) s(t)dt, for alls = (st,...,s™) € L3(I,R™). (10)
Take s = G(Z) in (10) along with (9), we get

b m 1
[ SN ) + 0 Cwav)de =0 )
a =1

(8) implies

0= P @) + i+ Y Y@+ (12)
JEPj#k
where p* € 0J%(z),k € P,v € 0G(%).
/ {£i) o) + fit)To(t)}dt,i € P for allv € X. (13)

As pt € 0J4(z),i € P, from [8, 10]

— /b{(Bi(t)Zi(t))Tv(t)}dt,for allv € X, (14)

where 2% : I — R", with /()T B (t)2'(t) < 1, (2(t )TBi(t):E(t))%
()T B (t)2'(t),i € P. As v € 0G(%), from [8, 10]

v(v)(t) = ((92(t) + C' (O)w' ()T v(t) + g5 ()T 0 (D), ..., (15)
(95" (8) + CH(B)w' (1) To(t) + g ()T 0 (t))

for all v € X,
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where w’ : I — R", with

Wi (OTC i (1) < 1, (2(0)TC )z (1)2 = 2()TCH)w' (t),i € M( |
16
Using (10), (13), (14) and (15) in (12)

/{ZT (fi(t) + Bi(t)2Y( +Z>\9 t) + 7 (t)w! (1))} ()

+{Zﬂ'f% +Z)\J b(t)ydt = 0. (17)
=1

for all v € X.

Integrating by parts the following function and using boundary condition
of v,

b P m '
/ {270+ N0k} )
@ =1 e
b P m ‘ T
:_/ {CZ[ZTifi(t)+ZAj(t>gg(t)}} o(t)dt.
“ i=1 =

Using above equation in (17), we get

/{Z (f1(t) + B'(t)2( +Z/\7 t) + CI(t)w (t))
CZZU” +Z)\J v(t)dt = 0.

for all v € X.

By fundamental theorem of calculus of variation [11],

M“@

THfA(t) + B ()2 ( +Z)\J t) + 9 (t)w’ (1))

=1

p
jt DIRFHC +ZAJ tel.

=1
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(4) follows from (11) and (16). Result now follows by proceeding as in
[6]. O

Theorem 2.5. (Necessary optimality conditions) Let T be an efficient

solution of order m for (P1) with respect to . Then there exist T =

(r1,72,...,7P) € R”, piece-wise smooth functions N T - Rj €

M,z : I -R"iecPw' :I—R"iec M, such that

/4

3O+ B OO+ VOO - COwe) 0

i=1
== [Zﬂf;(t) +> NWgl)]. tel,
i=1 j=1

bm
/ SN (1, 5,5) + 5 (TC O (D}t =0, (19)
a =1

T20,N() 20,5 €M, (1, \t),..., ™(t) #£0,tel, (20)

Proof. By Lemma 2.3, 7 is an optimal solution of order m for P(k)(arbitrary
chosen but fixed k) with respect to £. Results follows Lemma 2.4. [

3. Non-Differentiable Multiobjective Fractional
Variational Problem

A class of fractional programming problem, in which objective function
is the ratio of two functions, has received considerable importance during
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past few decades. Because of its ratio structure, it finds its application
in various fields like economics, informational theory, engineering, heat
exchange networking and numerical analysis. We refer readers to [23] for
both the theoretical progress in fractional programming and for mathe-
matical and technical problems where this theory can applied. Now, con-
sider the non-differentiable multiobjective fractional variational problem

(P2) Mmimize<ff {F1(t, 2, %) + {x(t) "B (£)x(t)} 2 }dt
fb{kl t,x, &) — {z(t )T EL(t)z(t) %}dt’

}
St @, @) + {a(t) Bp(t)x(t)}é}dt>
ket 2, @) — {a(t)TEP()x(t)} 2 Yt

subject to

Pt z,i)+ {a®)TCIW)x(t)}2 0, t € 1,5 € M, (23)

z(a) = 0,z(b) =0, (24)

where k% : I x R" x R® — R,i € P are continuously differentiable func-
tions with respect to each of their arguments. For each t € I, E'(t),i € P
are n X n positive semi definite(symmetric) matrices with, E*(-) contin-
uous on [.

Assume that [*{f'(t, z, %) + {alt YT Bi(t)z(t)}2}dt > 0 and
JME (2, d) — {a()TE (t)a(t)} 2 }dt > 0, for all i € P, for all z € X.

Definition 3.1. A point T € X is said to be an efficient solution for
(P2) if there is no other x € Xo such that

S Fit &) + {e()T B (t)x(t)}2 Yt f {fi(t,2,7) + {2()" B (t)z(t)}2 }dt
ff{ki(t,x,;ﬁ)—{x(t) (t)act} Hdt f{kl z,z) — {Z(t)TE(t)z(t)}2 }dt
for alli e P and

JA 9w ) + (o) B O} ddt _ [ 2,7) + {2 B (0)a(0)} 2yt
Ikt ) — {a()TEI (W)2(t)}2}dt  [P{ki(t,7,5) — {2(0)TEI (8)2(t)}2 }dt

for at least one j € P.
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Let m > 1 be an integer and £ : I x X x X — R™ be a piece-wise
continuous function.

Definition 3.2. A point T € Xy is said to be an efficient solution of
order m with respect to & for (P2) if there exist ¢ = (ct,c?,...,cP) €
int Rﬁ_ and d = (d*,d?, ...,dP) € int Rﬂ such that for no other x € X

{a(t)" B (t)x(t)}7 — (L, @, @)||™ bt
{a(®)TEi(t)x(t)}? +dius< ,z, )| }dt
+{ ()T B (t)z()} 2 Yt

)T Ei(

)2 , for all i € Pand
— {3(O)TEi(H)3 (1)} 2 }dt

JHf ) +
fb{ki t,x, 1) —
f {Fit, z,
f {ki(t,

H \

H\
H\
8l

x(t)

( —Cij(t7$:f)Hm}dt
x(t)

+dj\|€( 7)™yt
£)}2 }dt

——, for at least onej € P.

)Z(
)2(t)}> }dt

[STE TS

St i) + {a ()T Bt
[Pkt 2, @) — {x(t)TEI(t
f {fi(t,z,2)+ {z(t)T B

f {ki(t,z,2) —{z(t)TEI(t

Jz(t)}
)z(t)}

Consider the following parametric non-differentiable multi-objective vari-
ational problem (NMFVP,)

Mmzmzze(/ (', 2, 3) + {z(t)" B (t)z( )}2 —ot [kt z, &) {x(t) T EL )z (t)}2 ]}dt7

b 1 1
' / {2t 2) + {2()T B (1) (t)}2 0P [(RP(t, 2, &) {o(t) " EP (t)w(t)}”}dt>
subject to

P2, 2) + {a@®TCIMa(t)}2 <0t eI, je M, (25)
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Lemma 3.3. If Z is an efficient solution of order m for (P2) with respect
to & then there exist v = (v',0%,...,0P) € ]Rﬁ_ such that T is an efficient
solution of order m for (NMFVPjy) with respect to §.

Proof. Let & be an efficient solution of order m for (P2) with respect
to £.

o[ fiEE)+HE H1)E(1)} 2
Take & — ']‘Z{f@ ,.)+{ (t)TB.(t) (t)}f}dt,i —1,2,....p.
S AR (t2,2)—{2(t)T B (t)Z(t)} 2 }dt

If possible suppose, T is not an efficient solution of order m for (NMFV Py)
with respect to £&. Then for any p = (p', p?, ..., pP) € int RE | there exist
Z € Xo such that

b . . 1 . . . 1
/ {f1(t2.2) + {2(t) B (0)2(t)} 2 -0'[K'(t,2,2) — {2()T B (1)(t)} 2]t

b
< / I€(t, 2, 5)[™d, for alli € Pand
a

b . . 1 o . . 1
/ {F(t,2,2) +{2()" B ()2(t)} 2 -0 [k (1,2, 2) — {&(t) Y (£)2(t)} 2]}t

b
< p7/ (¢, &, )| ™dt, for at least one j € P.
a

Which is
R R O Q) T N M %] D
[kt &, &) — {2()TEi(t)(t)}7 Yt k(L &, 8) — {2()TE(0)(t)}7 Yt

(27)
for all i € P and
Sl 3.8) + GO B ROk e 8D
PR 3,3) - {3(8)TES(8)3(2))2 )dt [P 5, 3) - {@(t)T(Ea‘)(t):z(t)}é}dt’
28

for at least one j € P.
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Case(i) If ||£(t, 2, Z)||™ = 0. Then (27) and (28) became
JUF (8, &) + (@) B ()2 (1)} 2 )t
[Pkt 2, 4) — {&(O)TE(H)a(t)} 2 Yt

< o', for alli € P,

and
SIS (b, ) + {a(0)TBI (1)@ (1)} 2 bt
SOkt &, &) — {a ()T B ()2 (1)} = dt
Then for any ¢ = (c!,c?,...,cP) € int R’i and d = (d',d?,...,dP) €
int RY , there exist & € X such that
JUfit ) L >TBZ< )i(t)}
Sk, &, 5) — ) (1)}
f {f'(t,2,%)
f {ki(t,z, z)
JLFI(t 7, 3) + {a()TBI()E()}2 — &€t &, 7)™ Ydt
Skt &, &) — {a()TEI ()2 (1)} 2 + di||&(t, &, 7)™}t
_ LA ®) + {3 ) B (1)a(t)) 2
S [P 37) — a0 B0} e
Which is contradiction to the fact that Z is an efficient solution of order
m for (P2) with respect to &.
Case(ii) If [|£(t, 2, 7)™ # 0. For any ¢ = (c',c?,...,cP) € intRE and
d=(d",d? ..,d°") € intRE i € P define
¢ [Pk (t 2,4) - {2(t)T B (1)i(t)}2 }dt+d’f {fi(t, &, &) + {2(t) B (1) (1)} }dt
Pkt &, 8) — (2T Bi@)R(t)} 2 Yt + d [ l€(t,2,7)|mdt
Substituting this in (27) and (28) yields
LA ) + {8 TBI(0)a(t)} 2 — i€t @, 7)™}t
JUki(t 2, 3) — {2()TE(D)2()}2 + dil|é(t, &, 7)|m }dt
o LA 2,8 + BT Bi(1)z(t)} 2}t
S G5 — (2T B @R}

< @/ for at least one j € P.

— et &, 7)Yt
+ et )"
}2 )t

z(t) .
,for alli € Pand
z( }dt

o~
N—
——
[

,for at least onej € P.

(-

+{a(t
{a(t

,for alli € Pand

5:
f
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)+ {a()T BI()(0)}2 — I [€(t &, 7)™}t
oAkt 2, 2) - {i(t)TEj(t)f?(t)}% + dﬂll&( &, T) || Yt
t BI(#)&(t)} 2 )t

Sk (47, 7) — {@(O)TBI (0)3(£)} 2 }dt.

Which is contradiction to the fact that Z is an efficient solution of order
m for (P2) with respect to {. Hence the result follows. O

,for at least onej € P.

Theorem 3.4. (Necessary optimality condition ) Let T be an efficient

solution of order m for (P2) with respect to . Then there exist T =

(r1,72,...,7P) € RY v = (v, 0%, ..., vP) piece-wise smooth functions

MN:T—-RjeMZ:I—-R y: IR iecPw:I—R"iecM,
such that

ZT (fi(D) =0k (0)+B(8)2" (1) +0 B (1)y'( +ZAJ ()+C7 (t)uw (1)
:Z[Z L) — o'k +Z)\7 l.tel, (29)
b ™M . . . . .
/ S XN (7, 5) + 2()TCT (B () }dt = 0, (30)
a =1

TZ0,N(t) 20,5 € M, (7,\'(t),...,.A"() #0,t €I,  (31)
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wl (17 CI () (8) < 1, (207 C(0)F(1))2 = 21T CI(#)w (1), j € M.

Proof. Follows from Lemma 3.3 and Theorem 2.5. O

Definition 3.5. T € X is said to be a normal efficient solution of order
m for (P2) with respect to £ if it is efficient solution of order m for (P2)

P
with respect to & and > 7" = 1.
i=1

4. Duality Results

Parametric Dual
Following the parametric approach of Bector [4], the dual (D) to multi-
objective fractional variational problem is defined as follows:

(D) Maximize v = (v!,v?,...,vP)

subject to

Zr (fL(6)—v' KL () + B (£)2" (£)+0' B (£)2"(£)+ Y N () (g, (8)+C7 (t)w (1))
j=1

:jt[ZTi(fg( — Tk (t +ZAJ Vg (t } tel, (36)
1=1
b m
/ > N0 (tu, ) +u(t) ¢ (Hw (t)}dt > 0, (37)
a =1

AOTB ()2 (1) < L, (ut)T B (H)u(t) = u(t)TBi(t)2'(t),i € P, (38)

y (O E )y (1) <1, (ut) Bl (t)u(t)? = u@®) E'(t)y'(t),i € P, (39)

W (4T CI(tyw (1) < L, (u()CF (Dult)? = u(t)TCI (Ol (1), € v
40
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b
/ {Fi(t @) + u(t) B2 () — o (k' (¢, u, @) — u()TE'(O)yi (1)}t > 0,i € P,
h (41)

p
weX, " >0,) r=LNEZ0jeMtel v >0,icP. (42)
=1

u(a) =0, u(b) = 0. (43)

Let U be the set of all feasible solutions of (D).

In order to prove weak duality theorem, the existing class of functionals
is not sufficient. Hence we need to generalized this class further. The
notion of generalized p—invexity of higher order solves the purpose.
Let ® : X — R defined by ®(z) = fab ¢(t,x,2)dt be Frechet differen-
tiable, where ¢(t,z, ) is a scalar function with continuous derivatives
upto and including second order with respect to each of its arguments.

Let there exist a real number p and a differentiable vector function
n:IxXxX — R" with

n(t,x,z) =0 at t if z(t) = z(t). (44)

For the sake of convenience, ¢, (t) represent ¢, (t,z(t),(t)) and ¢z (t)
represent ¢z (t, z(t), z(t)).

Definition 4.1. A functional ®(x) is said to be p-pseudoinvex type 2 of
order m at T with respect to n and & if

T2ty 2, 7) () + [2E2D16. (1)}t > 0 =
O(r) > @(7) + Pff lE(t, x, T)||™dt, for all z € X.

Or equivalently
(z) < ®(@) +p [, |E(t 2, 2)||"dt =
[P0t 2, 7)pa(t) + B2 (4)}dt < 0, for all z € X.

Definition 4.2. A functional ®(z) is said to be p-quasiinvez type 2 of
order m at T with respect to n and & if
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B(x) < (@) +p [, €(t 2, @) dt =
f,f {n(t, =, 2)pz(t) + [%] ¢z (t)}dt <0, for all x € X.

Or equivalently

f”{ntm)%() [z ()bt > 0 =
O(z) > d(z —i—pf |&(t, z, z)||™dt, for all x € X.

Definition 4.3. A functional ®(x) is said to be strictly p-pseudoinvex
type 2 of order m at & with respect to n and & if

2tz 2)gs(t) + 2L )6 (1) }dt > 0 =
d(z) > o(z +Pf l€(t, x, ) ||™dt, for all x € X — {Z}.

Or equivalently
®(z) < () +p L (2, 7)™ dt =
S22, 2)¢a(t) + [P (1))t < 0, for all z € X — {z}.

Lemma 4.4. [17] Let A(t) be n X n positive semi definite (symmetric)
matriz, with A(-) continuous on I and s(t)T A(t)s(t) < 1. Then,

b
/{x T A(t) }édt>/ {z()T A(t)s(t) }dt.

Various duality results connecting efficient solutions of primal and its
dual problem are established in the sequel.

Theorem 4.5. (Weak duality) Let x € Xy and
(u, 7t 7Pt P A A 2 Pyt Pt ™) e T,

let us write

b
= / (filt,z, &) + z(t)T B ()2 () =0 { k' (t, 2, &) —z(t) T E¥(t)y' (t)} }dt,i € P,

p m
G(x) :/ Z)\j(t){gj(t,x,jz) + ()T C7 (t)w? (t) dt.

a =1
Suppose 0'(x), fori € P are strictly p'-pseudoinvez type 2 functionals
of order m at T with respect to n and & and G(z) is p'-quasiinver type
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2 functional of order m at T with respect to n and &, where p, p' €
int Ry, fori € P. Then the following cannot hold:

S @) + o) BI )2 (t)}2 = €t @, u)| "}t <

ok, ) — {aT B (D2(t)}2 + di (€t 2,u)|mhdt
for allv € P and

Sl F (8,2, 3) + {2(t)T j(t)w(t)}% — gt 2, u)|™ }at <,

Jo gkt 2, 2) — {a(®)TEI (D)2 ()}2 + & ||€(t, 2, u) | }dt
for at least one j € P,
for some ¢ = (ct,c?,...,cP) € intRY, and d = (d,d?,...,dP) € int RY..
Proof. Contrary to the result, assume that for any ¢ = (c!,c?,...,cP) €
intRE and d = (d',d?,...,dP) € int RE,
SIS, @) + {a ) TBI (W (t)}2 — &t 2, u)| ™}t <
Ju {’fz( T, )— {a(OTEi(t)x(t)}2 + dif|&(t, v, u)|[m }dt
for all ¢ € P and
JAS (b )+ {a(0) B () (0)}2 — €tz w)|" Yt _
Jo kI (¢, &) — {2 (BT B (D (0)}2 + dI]|E(t 2, u)||™ )t

for at least one j € P,

)

/ (£t 2, 8) ()T B (02 (0)}2 =0 [k (¢, 2, 2) — {w()T B (H)2(t)} 2]t
< (¢ + d'DY) /b |£(t, 2, u)||™dt, for alli € Pand

b 1 . . 1
/ {F(t 2 @) () B (#)a(t)}2 —0 W (t, 2, 2) — {(t) B (t)a(t)}2]}dt

b
< (d+ djvj)/ IE(t, z,w)||™dt, for at least one j € P.



64 P. KUMAR AND B. SHARMA
Choose p' = ¢ +d'v',i € P. Using Lemma 4. along with (41) implies
. . b .
0 (2) < 0 (u) + / (PIIE(E 2, 0) |Vt for alli € P and

07 (x) < 67 (u / {pY|€(t, z, w)||™}dt, for at least one j € P.

Since §i(x), for i € P are strictly p‘-pseudoinvex type 2 functionals of
order m at T with respect to n and &, we obtain

b
/ {n(t, z,w)[fL(O)+B ()2 (t) — 0" (ky,(t) — E*(£)y'(1))] (45)
M[fu( t) — 0k ()] }dt < 0, for alli € P.

Multiplying (45) by 7¢,i € P and by summing over i € P, we get

/a { (t,x,u [ZTZ{JM t) + Bi(t)2'(t) — @i(kZ(t)_Ei(t)yi(w}} (46)

p

dn(t, z, if g i
| dnlt,,u) df ) [ZT (i) — o k:u(t)}] }dt <0.
=1
(u,Tl,...,Tp,f}l,...,ﬁp,)\l,...,)\m,zl,...,zp,yl,...,yp,wl,...,wm)EU,

z € Xo and p'||E(t, x,Z)||™ = 0, yields
G(z) <0< Gu) + [P ||et, z,u)|™}dt

Since G(z) is p'-quasiinvex type 2 functional of order m at Z with re-
spect to n and &, we obtain

/{muzw 0+ 0 (1) ”“Zw e <o,

(47)
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Adding inequalities (46) and (47), we get

b p
/ {n(t7 ,u) [Z TH{Lu(t) + B ()2 (1) — 0 (k, () — E'(D)y' (1)}

i=1

+Z>\J Hah(t) + ¢ (tw (t)}]

+M%?Wb;aﬁ@_mﬂm+§ymmwikww.M&
i=1

J=1

Using (36), we get

b p
/{Wmmib}wm vw}+zwgh]

=1
+W[i7i{ﬂ( }+ZAJ ”dt<o
=1
I et £ 745500 - ki 01 + 55 W 0gio)] e <o
b
%wwﬂzﬁww—wmn+zwm<ﬂ}<o

i=1
Conditions (24), (43) and (44) lead to contradiction. Hence result fol-
lows. O

Theorem 4.6. (Strong duality) Let T be a normal efficient solution of
order m for (P2) with respect to &. Then there exist T = (t1,7%,...,7P) €
RE v = (v!0%,...,0F) € RE, piece-wise smooth functions N : I —
RjeM,zt : I - Ry : 1 - R" i€ Pw :1— R"ie M, such
that (Z, 7,0, Ao ™ 2 2Pyt Pt w™) € U. Further
if weak duality theorem holds. Then

_ 1 m 1 p , 1 D ol m
(Z, 0, A A 2 2y P e w™),

is an efficient solution of order m for (D) with respect to .
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Proof. Since z is an efficient solution of order m with respect to & for
(P2), hence by Theorem 3.4, there exist 7 = (7!,72,...,77) e R} ,v =
(vt 02 .. 0P) € RY, piece-wise smooth functions M T - R,j e
M,z : I - Ry : I - R" i€ Pw :1 — R" i € M, such that
(Z, 70, AL A 2 Py P et w™) € UL

Let if possible, (z,7,v,A\l,... A 2l 0 2Pyt o P wt, L w™) s
not an efficient solution of order m for (D) with respect to & , then
for any p = (p ,0 . ,pp) € intRE | there exist

(:L‘Tv)\  m st AP 9Pt L ™) € U such that

. oo i o3 E) + {3 T B ()3(1)} 2 Yt
+ &(t, dt > v = ‘ - ‘ -

’ / el [PK(t ,8) — (2(0)T B (0) ()}t
(49)

for all¢ € P and,
4 [ et 5.2t > o — de 6 ED) + FOTBI OB}t
a ki (8,3, 5) {f(t)TEJ(t)af(t)}z}dt)
(50

for at least onej € P.

Case(i) If [|€(t,2,2)|™ = 0. Then for any ¢ = (c!,c?,...,cP) € intRE,
and d = (d',d?, ..., dP) € intRE_, we have

LA (t3,8) + 5@ B 0} 2 = gt & 7) "t _
Jo k(e 2. 2) — {2OTE ()2 + di|€(, 2, 2) |t

for all¢ € P and,

3,8) + 20T BI()T(1)}2 — o |l€(t, &, 7)™}t e
2,8) — {2 ()T B ()a()}? + di|(t, 3 a:~>||m}dt |
for at least onej € P.

Which is contradiction to weak duality theorem.
Case(ii) If ||£(t, 2, 7)™ # 0. For any ¢ = (c!,¢?,...,c?) € intRE and



DUALITY FOR NON-DIFFERENTIABLE MULTT ... 67

d=(d"d? ..,d°") € intRE i € P, define

P M (a8) (e ()T B (O} 2 derd [P (435)+ 50T B (D)3()) Yt

MR (L) (30T B (00} 2 +dIE(t,e,) ™ Yde) [k (4.2.5)~{2(0)T B (D)F()) 2 Yt
Substituting this in (49) and (50) yields,

JAF
SOk
for alli € Pand
S
Joki(

for at least onej € P.

p

9

2, 8) + {2()TB ()2 ()} — ¢ |E(t, &, )| bt g
1, 7) — {Z(OTE(DZ()} 7 + &t &, 7)™} dt

@i

2, 8) + {2(O)TBI (D)2 ()} — J||€(t, &, 7)™t
2, 8) — {Z()TEI()T(t)}2 + di||(t, 2, )| }dt

7

)

Which contradicts weak duality theorem. Thus
(z,mou, A A 2 2Py P wt L w™) s an efficient solu-
tion of order m for (D) with respect to {. O

Remark 4.7. Sufficient optimality conditions can be prove proceeding
on similar lines of weak duality.
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