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Abstract. Let g and h be arbitrary elements of a given finite group
G. Then g and h are said to be autoconjugate if there exists some
automorphism α of G such that h = gα. In this article, we intro-
duce and study auto-average length of autoconjugacy classes of finite
groups. Also, we construct some sharp bounds for the auto-average
length of finite groups.
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1. Introduction

Let G be any group then the autocommutator of the element g ∈ G and the
automorphism α in Aut(G) is defined to be

[g, α] = g−1gα = g−1α(g).

Using this definition, the subgroup

K(G) = [x, α] : x ∈ G, α ∈ Aut(G),
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is called the autocommutator subgroup of G. The concept of autocommutator
subgroups has been already studied in [4, 5]. Also

L(G) = {g ∈ G : [g, α] = 1, ∀α ∈ Aut(G)},

is called the autocentre of G. Clearly if α runs over the inner automorphisms of
G, then K(G) and L(G) will be the commutator subgroup, G, and the centre,
Z(G), of G, respectively. One notes that, K(G) and L(G) are characteristic
subgroups of G.

A group G acts on a non-empty set Ω, if for every pair (ω, g) ∈ Ω × G, the
element ωg ∈ Ω such that

O1. ω1G = ω;
O2. (ωg1)g2 = ωg1g2 ,

for all g1, g2 ∈ G and ω ∈ Ω. Clearly, ωG = {ωg| g ∈ G} is the orbit of ω ∈ Ω
and Gω = {g ∈ G| ωg = ω} is the stabilizer of ω in G. From now on we
assume that G is a finite group, then it is easily seen that |ωG| = [G : Gω] and
|G| = |ωG||Gω|, for all ω in Ω.

As Aut(G) acts on the group G, the set of all elements of G which are au-
toconjugate to the fixed element g in G is called the autoconjugacy class of g
and

|gAut(G)| = |Aut(G) : Aut(G)g|,

in which Aut(G)g = CAut(G)(g), and it is the stabilizer of g in Aut(G).

We denote κ(G) to be the conjugacy number of G. Then µ(G) = |G|/κ(G) is
the average length of conjugacy classes of the finite group G. One notes that
conjugacy classes length gives some characterization of the group. Furthermore,
the average length of a group has strong restriction to the group. Shi and Xiao
[7] proved that if Z(G) is trivial, then µ(G) = 2 if and only if G/Z(G) ∼= S3.
Du [3] generalized this result, so that if |Z(G)| is odd, then µ(G) = 2 if and
only if G/Z(G) ∼= S3.

We define µa(G) = |G|/κa(G), where κa(G) is the autoconjugacy number of
G. By class equation: |G| = Cg1 + Cg2 + ...+ Cgk , where Cgi ’s are the length
of autoconjugacy classes of elements g1, ..., gk of G. We call µa(G) to be the
auto-average length of autoconjugacy classes of the finite group G. It is easy to
see that

µa(G) =
1

κa(G)

κa(G)

i=1

|gAut(G)
i |. (1)
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2. Main Results

In this section, we study the auto-average length of autoconjugacy classes of
finite groups. Also, we construct some sharp bounds for the auto-average length
of finite groups.

In the following we construct upper and lower bounds for µa(G).

Theorem 2.1. Let G be a finite non-trivial group. Then

1  µa(G)  |K(G)|.

Proof. Consider
[g,Aut(G)] = [g, α] : α ∈ Aut(G),

which is the autocommutator subgroup of g and Aut(G). On the other hand,
we have

|gAut(G)| = |g−1gAut(G)| = |[g,Aut(G)]|  |K(G)|.

Using equation (1),

µa(G) =
1

κa(G)

κa(G)

i=1

|gAut(G)
i |

 1
κa(G)

κa(G)

i=1

|K(G)|  |K(G)|.

It is clear that µa(G)  1 and the equality holds exactly, when G is trivial or
isomorphic with Z2. Thus we obtain our claim. 

Theorem 2.2. Let g1, g2, ..., gk be a complete set of representatives for auto-
conjugacy classes of G. Then

µa(G) =
|Aut(G)|
κa(G)

κa(G)

i=1

1
|CAut(G)(gi)|

.

Proof. Using the equation (1), we have

µa(G) =
1

κa(G)

κa(G)

i=1

|gAut(G)
i |
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=
1

κa(G)

κa(G)

i=1

|Aut(G) : CAut(G)(gi)|

=
1

κa(G)

κa(G)

i=1

|Aut(G)|
|CAut(G)(gi)|

=
|Aut(G)|
κa(G)

κa(G)

i=1

1
CAut(G)(gi)

. 

The following remark is helpful for calculating the auto-average length of el-
ements of a direct product of groups, when the orders of direct factors are
coprime.

Remark 2.3. Let H and K be two finite groups with coprime orders. Using
Theorem 2.1 of [6], we have Aut(H ×K) = Aut(H)×Aut(K). Hence

µa(H ×K) =
|H ×K|

κa(H ×K)
=

|H| × |K|
κa(H)× κa(K)

= µa(H)× µa(K).

As an example, one can calculate that µa(Z6) = 3
2 and it is easy to see that

µa(Z2)× µa(Z3) = 3
2 .

In the following results we construct some upper and lower bounds for µa(G),
which are more precise than the one given in Theorem 2.1.

Proposition 2.4. Let G be a finite group. Then

µa(G)  1
κa(G)


|L(G)|+ |Z(G) \ L(G)| |Aut(G)|

|Inn(G)| + |G \ Z(G)| |Aut(G)|
2


.

Proof. By equation (1), one has

µa(G) =
1

κa(G)

 

gi∈L(G)

|gAut(G)
i |+



gi∈Z(G)\L(G)

|gAut(G)
i |+



gi∈G\Z(G)

|gAut(G)
i |


.

Clearly, for every g ∈ Z(G) and φx ∈ Inn(G) we have gφx = gx = g. Thus
Inn(G) ⊆ CAut(G)(g) and for all g ∈ Z(G) \ L(G),

|gAut(G)| =
|Aut(G)|
|CAut(G)(g)| 

|Aut(G)|
|Inn(G)| .

Also for every g ∈ G \ Z(G), one can easily check that |CAut(G)(g)| > 2 and

|gAut(G)| =
|Aut(G)|
|CAut(G)(g)| 

|Aut(G)|
2

.
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Therefore

µa(G)  1
κa(G)


|L(G)|+ |Z(G) \L(G)| |Aut(G)|

|Inn(G)| + |G \Z(G)| |Aut(G)|
2


. 

Proposition 2.5. Let G be a finite group, then

µa(G)  2− |L(G)|
κa(G)

 3
κa(G)

.

Proof. Using equation (1)

µa(G) =
1

κa(G)

κa(G)

i=1

|gAut(G)
i |  1

κa(G)

 

gi∈L(G)

|gAut(G)
i |+



gi∈G\L(G)

|gAut(G)
i |


.

It is clear that for every g ∈ G \ L(G), one has |gAut(G)|  2 and hence

µa(G)  1
κa(G)


|L(G)|+ (κa(G)− |L(G)|)2


 2− |L(G)|

κa(G)
 3
κa(G)

.

The equality holds exactly when |gAut(G)| = 2, for every g ∈ G \ L(G). 

For example, the equality in the above theorem holds for the groups 1,Z2,Z3

or Z4.

If |CG(x)| = 2, then clearly x ∈ CG(x) and hence |x| = 2. Therefore for the
involution x such that |CG(x)| = 2, we say that x is self centralizing involution.

Theorem 2.6. Let G be a finite centreless group with no self centralizing in-
volutions, then

µa(G) <
1

κa(G)


1 + (κa(G)− 1)

|Aut(G)|
3


.

Proof. It is clear that for every non-trivial element g in G, we have
|CAut(G)(g)|  3. Now, the equation (1) implies that
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µa(G) =
1

κa(G)

κa(G)

i=1

|gAut(G)
i |

=
1

κa(G)


1 +

κa(G)−1

i=1

|gAut(G)
i |



=
1

κa(G)


1 +

κa(G)−1

i=1

|Aut(G)|
|CAut(G)(gi)



<
1

κa(G)


1 + (κa(G)− 1)

|Aut(G)|
3


.

Note that the inequality is strict, since for every non trivial element g in G,

|gAut(G)| =
|Aut(G)|

3
⇒ |CAut(G)(g)| = 3.

This implies that G is a 3-group, which is a contradiction. 

Chaboksavar et. al [1] in 2014, classified all finite groups G whose absolute
central factors are isomorphic to a cyclic group, Zp × Zp, D8, Q8, or a non-
abelian group of order pq, for some distinct primes p and q.

Now, using Theorem 3.1 of [1], we classify all finite groups G with µa(G) < 16
9 .

Theorem 2.7. Let G be a finite group with µa(G) < 16
9 . Then G is one of the

following groups: Z4,Z5,Z6,Z7,Z8,Z10,Z12,Z14,Z2 × Z2,Z4 × Z2, S3, D8, Q8.

Proof. Let 2  | G
L(G) |  7, Then Theorem 3.1 [1] implies that G is one of the

following groups:

Z4,Z5,Z6,Z7,Z8,Z10,Z12,Z14,Z2 × Z2,Z4 × Z2, S3, D8, Q8.

Now, assume that |G/L(G)| = 8. By Proposition 2.5, one can calculate that

µa(G)  2− |L(G)|
κa(G)

= 2− (
|L(G)|
|G| × |G|

κa(G)
)

= 2− 1
8
µa(G),

and hence µa(G)  16
9 gives the result. 

Theorem 2.8. Let G ∼= Zpn1 × Zpn2 × ... × Zpnk be a finite abelian p-group
with n1  n2  ...  nk. Then

µa(G)  2(pn1 × pn2 × ...× pnk)
1 + (pn1 × pn2 × ...× pnk)

.



AUTO-AVERAGE LENGTH OF FINITE GROUPS ... 75

Proof. Assume that G ∼= Zpn1 × Zpn2 × ...× Zpnk is a finite abelian p-group
with n1  n2  ...  nk. Then Corollary 3.4 [2] implies that L(G) = 1, when
p is odd or p = 2 and n1 = n2. Hence Proposition 2.5 implies that

µa(G)  2(pn1 × pn2 × ...× pnk)
1 + (pn1 × pn2 × ...× pnk)

.

Also L(G) = Z2, when p = 2 and k = 1 or n1 > n2. Now Proposition 2.5 gives

µa(G)  2(pn1 × pn2 × ...× pnk)
2 + (pn1 × pn2 × ...× pnk)

. 
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