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Abstract. Let G be a group and Aut(G) be the group of auto-
morphisms of G. Then [g, α, β] = (g−1gα)−1(g−1gα)β is the au-
tocommutator of the element g ∈ G and α, β ∈ Aut(G) of weight
3. Also, we define K2(G) =< [g, α, β] : g ∈ G,α, β ∈ Aut(G) >
to be the third term of the lower autocentral series of subgroups
of G. In this paper, it is shown that every finite abelian group
is isomorphic to the third term of the autocentral series of some
finite abelian group.
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1. Introduction

For every element g of a group G and any automorphism α ∈ Aut(G),

[g, α] = g−1gα

is the autocommutator of the element g and the automorphism α. Clearly,
if α is taken to be an inner automorphism then we obtain the commu-
tator of two elements of G. Now the autocommutator subgroup of G is
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defined as follows:

K1(G) =< [g, α] : g ∈ G,α ∈ Aut(G) >,

which is a characteristic subgroup of G.
There are some results on the autocommutator subgroup of a finite group
G (see [2, 3, 4]). Recently, C. Chis, M. Chis and G. Silberberg ([1]) in
2008 showed that, every finite abelian group is the autocommutator
subgroup of some finite abelian group. In the present paper, it is shown
that a similar result holds for the autocommutator of weight three.
The following definition is vital in our investigation.

Definition 1.1. Let g be an element of a given group G and α, β ∈
Aut(G). Then we define

[g, α, β] = [g, α]−1[g, α]β

to be the autocommutator of the element g and the automorphisms α

and β of weight 3. Clearly, when α and β are taken to be inner auto-
morphisms of G, one obtains the usual commutator of weight 3.
Now we define the third term of the lower autocentral series of subgroups
as follows:

K2(G) =< [g, α, β] : g ∈ G,α, β ∈ Aut(G) > .

Note that one may define the lower autocentral series of subgroups of a
given group, which are all characteristic subgroups. The main objective
of this paper is to prove the following result.

Main Theorem. Every finite abelian group is the third term of the
lower autocentral series of some finite abelian group.

2. Preparatory Results

To prove our main theorem we first establish some preparatory results.
All groups, which are considered in this paper are finite.



THIRD TERM OF THE LOWER AUTOCENTRAL SERIES ... 3

Lemma 2.1. Let A and B be characteristic subgroups of a given group
G such that G = A×B. Then K2(G) = K2(A)×K2(B).

Proof. Let ϕ : Aut(G) −→ Aut(A)×Aut(B), given by α 7→ (α|A, α|B)
and θ : Aut(A)×Aut(B) −→ Aut(G), given by (µ, η) 7→ µ̄oη̄,

where µ̄oη̄ is an automorphism of G, defined as follows:

µ̄(ab) = aµb,

η̄(ab) = abη,

for all a ∈ A and b ∈ B. Since A and B are characteristic subgroups, it
follows that ϕ and θ are inverse isomorphisms and hence we may identify
Aut(G) with Aut(A)×Aut(B).
Now, for any g = ab = ba ∈ G = A × B and α, β ∈ Aut(G) we have
[g, α, β] = [ab, α, β] = [ab, α]−1[ab, α]β

= (ab)−α(ab).(ab)−β(ab)αβ

= b−αa−αab.a−βb−β.aαβbαβ

= a−αaa−βaαβ.b−αbb−βbαβ

= [a, α|A, β|B][b, α|A, β|B].

Thus K2(G) ⊆ K2(A)×K2(B).
Now, for any a ∈ A and µ, µ′ ∈ Aut(A),

[a, µ, µ′] = [a, µ̄, µ̄′] ∈ K2(G).

Hence K2(A) is contained in K2(G). Similarly K2(B) ⊆ K2(G) and so
K2(G) = K2(A)×K2(B). ¤

Lemma 2.2. Let G be a finite cyclic group. Then K2(G) = G4.

Proof. Let G =< x : xn = 1 > be the cyclic group of order n. Clearly
ϕ is an automorphism of G if and only if

ϕ : x 7→ xi, 1 6 i 6 n,

where (i, n) = 1, (see [5]). Assume n is an odd number, then since the
group G is abelian, the map α given by x 7→ x−1 is an automorphism of
G. Hence, for all g ∈ G,

g4 = [g, α, α] ∈ K2(G).
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Thus G4 ⊆ K2(G). By the assumption (4, n) = 1, then there exist some
integers s, r ∈ Z such that 4s + nr = 1. Thus g = g4s+nr = (gs)4 ∈ G4.
This shows that G and hence K2(G) is contained in G4. Therefore in
this case, K2(G) = G4.
Now, we assume n is even. Hence for a non-trivial automorphism of G

given by x 7→ xi, the integer i must be odd and greater than 2. Therefore
for any α, β ∈ Aut(G), with α(x) = xi and β(x) = xj ,

[x, α, β] = [xi−1, β] = x1−ix(i−1)j = x(i−1)(j−1) ∈ G4.

Thus K2(G) = G4. ¤

Lemma 2.3. Let G be an abelian group of odd order and Z2 the cyclic
group of order 2. Then K2(G) and K2(G×Z2) are both isomorphic with
G.

Proof. Since G is abelian of odd order n, say, we conclude that (4, n) =
1. Lemma 2.2. implies that K2(G) = G. On the other hand, Z2 and
G are characteristic subgroups in G × Z2. Thus Lemma 2.1. gives the
assertion. ¤

Lemma 2.4. Let G be a cyclic group of order 2m and H an abelian
2-group of exponent 2n, with n < m. Then K2(G×H) = G4 ×H2.

Proof. Let G =< x : x2m = 1 >, then for every element h ∈ H, we
may define a unique automorphism αh ∈ Aut(G × H) in the following
way:

αh : (x, h1) −→ (x, h−1h−1
1 ).

Thus h2 = [x, αh, αeH ] ∈ K2(G×H), and so

H2 ⊆ K2(G×H).

Using Lemma 2.2. we have K2(G) = G4. Hence

G4 = K2(G) ⊆ K2(G×H).

So G4×H2 ⊆ K2(G×H). On the other hand, for all α, β ∈ Aut(G×H)
and noting the structures of the groups G and H we have

[g, α, β] ∈ G4 ×H2, for all g ∈ G×H.
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Hence the result holds. ¤
Using the above lemma, we obtain the following.

Proposition 2.5. For natural numbers m > n1 > n2 > ... > nr, such
that m > 2, we have

K2(Z2m × Z2n1 × ...× Z2nr ) = Z2m−2 × Z2n1−1 × ...× Z2nr−1 .

3. Proof of the Main Theorem
Let G be a finite abelian group. Then G can be written as a direct
product of its Sylow p-subgroups.
If (4, |G|) = 1, then G is of odd order and has no Sylow 2-subgroups.
Since G is abelian, all of its Sylow p-subgroups are characteristic and of
odd order, which by Lemma 2.3. implies that K2(G) = G. Otherwise,
G has a Sylow 2-subgroup, say P , and it can be written as follows:

P = Z2m × Z2n1 × ...× Z2nr .

Now, we construct the abelian group

H = Z2m+2 × Z2n1+1 × ...× Z2nr+1 × P1 × ...× Ps,

where Pi’s are all Sylow pi-subgroups of G, except P . Using Proposition
2.5, we obtain

K2(H) ∼= G,

which proves the theorem. ¤
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