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A Subgrudient Method for Unconstrained
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Abstract. We propose an iterative method that solves an uncon-
strained nonconvex nonsmooth optimization problem. The proposed
method is a descent method that uses subgradients at each iteration
and contains a very simple procedures for finding descent directions
and for solving line search subproblems. The convergence of the algo-
rithms will be studied.
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1 Introduction

In this paper, we study an unconstrained nonsmooth minimization prob-
lem with locally Lipschitz and directionally differentiable objective func-
tion. In the unconstrained case there have been proposed many methods
(see, for example, [4, 7, 13, 15]). In all of these papers it is assumed that
functions involved are at least continuously differentiable. The subgra-
dient method is one of the effective methods for solving such problems.
It was originally developed by N.shore and then was modified by many
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authors(see[3, 12, 14] and more recent papers [1, 5, 11, 9, 10]). The sub-
gradient method uses one subgradient and function evaluations at each
iteration. It does not involve any subproblems either for finding search
directions or for computation of step lengths. Therefore, it is easy to
implement this method. Although the subgradient method is very slow
it is well known that some of its modifications might be more success-
ful for solving large scale problems than other nonsmooth optimization
methods (for some of this modifications see [9, 10]).

Bundle methods and their various modifications are known to be
among the most efficient methods in nonsmooth optimization (see, [8]).
These methods involve a quadratic programming subproblem to find
search directions. The size of subproblem may increase significantly as
the number of variables increases which makes the bundle-type methods
not suitable for large scale nonsmooth optimization problems. The im-
plementation of bundle-type methods, which require the use of quadratic
programming solvers, is not as easy as the implementation of the sub-
gradient method.

In this work, we introduce a method for solving an unconstrained
nonsmooth minimization problem. The method is based on the subgra-
dient method introduced in [2]. We design a descent method which con-
tains a simple line search procedure and the convergence of the method
will be studied.

The paper is structured as follows. Section 2 provides some neces-
sary preliminaries. Section 3 presents an algorithm for finding descent
directions. The minimization method is presented in section 4. Section
5 concludes the paper.

2 Preliminaries

We use the following notations in this paper. Rn is an n-dimensional
Euclidean space, ⟨u, v⟩ :=

∑n
i=1 uivi is an inner product in Rn and ∥.∥

is the associated Euclidean norm. S1 := {x ∈ Rn : ∥x∥ = 1} is the unit
sphere, Bε(x) := {y ∈ Rn : ∥x− y∥ < ε} is the open ball centered at x
with radius ε > 0. Furthermore, Bε := Bε(0n).

Let f be a function defined on Rn. The function f is called locally
Lipschitz if for any bounded subset X ⊂ Rn there exists an L > 0 such
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that
|f(x)− f(y)| ≤ L∥x− y∥ ∀x, y ∈ X.

We recall that a locally Lipschitz function f is differentiable almost
everywhere and that we can define for it a Clarke subdifferential [6] by

∂f(x) = co

{
v ∈ Rn : ∃(xk ∈ D(f), xk → x, k → ∞) : v = lim

k→∞
∇f(xk)

}
,

hereD(f) denotes the set where f is differentiable, co denotes the convex
hull of a set. It is shown in [6] that the mapping ∂f(x) is upper semi-
continuous and bounded on bounded sets. The generalized directional
derivative of f at x in the direction d is defined as

f◦(x, d) = lim sup
y→x,α→+0

α−1 [f(y + αd)− f(y)] .

If the function f is locally Lipschitz the generalized directional derivative
exists and

f◦(x, d) = max {⟨v, d⟩ : v ∈ ∂f(x)} .

f is called a Clarke regular function on Rn, if it is differentiable with
respect to any direction d ∈ Rn and f ′(x, d) = f◦(x, d) for all x, y ∈ Rn

where f ′(x, d) is a derivative of the function f at the point x with respect
to the direction d :

f ′(x, d) = lim
α→+0

α−1 [f(x+ αd)− f(x)] .

It is clear that directional derivative f ′(x, d) of the Clarke regular func-
tion f is upper semicontinuous with respect to x for all d ∈ Rn. Let f be
a locally Lipschitz function defined on Rn. For point x to be a minimum
point of the function f on Rn, it is necessary that

0n ∈ ∂f(x).

3 Computation of a Descent Direction

Consider the following problem

min h(y) s.t y ∈ Rn (1)
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In which h is a locally lipschitz and directionally differentiable function.
In this section we design an algorithm for finding descent directions of
the objective function. Let y ∈ Rn be a given point, c1 ∈ (0, 1) and
δ > 0 be given numbers.

Algorithm 3.1 (Computation of the descent direction).

Step 1 Select any direction d1 ∈ S1 and compute a subgradient v1 ∈ ∂h(y)
such that

h′(y, d1) = ⟨v1, d1⟩.

Set ṽ1 := v1 and k := 1.

Step 2 Solve the following problem:

minimize ϕk(λ) := ∥λvk + (1− λ)ṽk∥2 s.t λ ∈ [0, 1]. (2)

Let λ̄k be a solution to this problem. Set

v̄k := λ̄kvk + (1− λ̄k)ṽk.

Step 3 (Stopping criterion) If

∥v̄k∥ < δ, (3)

then stop. Otherwise go to Step 4.

Step 4 Compute the search direction by d̄k = −∥v̄k∥−1v̄k.

Step 5 If

h′(y, d̄k) ≤ −c1∥v̄k∥, (4)

then stop. Otherwise go to step 6.

Step 6 Compute a subgradient u ∈ ∂h(y) such that

h′(y, d̄k) = ⟨u, d̄k⟩

Set vk+1 := u, ṽk+1 := v̄k, k := k + 1 and go to step 2.
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It is worth to mention that at the kth iteration (k > 1) of the al-
gorithm we use the aggregate subgradient ṽk computed at the previous
(k − 1)th iteration. This aggregate subgradient gives the least distance
between the segment

Sk−1 = {v ∈ Rn : v = λvk−1 + (1− λ)ṽk−1, λ ∈ [0, 1]}

and the origin at the (k − 1)th iteration and the distance can be calcu-
lated explicitly.

In the next theorem we prove that Algorithm (3.1) is finite conver-
gent.

Theorem 3.2. Suppose that h is a locally Lipschitz and directionally
differentiable function and at y ∈ Rn

C := max {∥v∥ : v ∈ ∂h(y)} < +∞. (5)

If c1 ∈ (0, 1) and δ ∈ (0, C), then Algorithm (3.1) stops after m > 0
iterations, where

m ≤ 2 log
(δ/C)
2 / logC1

2 +1, C1 = 1−
[
(1− c1)(2C)−1δ

]2
.

Proof. Algorithm (3.1) terminates when either the condition (3) or the
condition (4) is met. Hence, it is sufficient to estimate the upper bound
of the number of iterations m when the condition (3) occurs. If none
of conditions (3) and (4) hold then new subgradient vk+1 computed in
step 6 does not belong to the segment Sk. Since v̄k is the solution to
problem (2) it follows from necessary condition for a minimum that

⟨v, v̄k⟩ ≥ ∥v̄k∥2, ∀v ∈ Sk. (6)

On the other hand since the condition (4) does not hold, we obtain

h′(y, d̄k) > −c1∥v̄k∥.

Since h′(y, d̄k) = ⟨vk+1, d̄k⟩ therefore

⟨vk+1, d̄k⟩ > −c1∥v̄k∥.
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Hence,
⟨vk+1, v̄k⟩ < c1∥v̄k∥2. (7)

From (6) we have vk+1 /∈ Sk. Therefore, it is proved that newly calcu-
lated subgradient vk+1 is not on the segment between vk and ṽk, and
by updating subgradients in this manner, we change the set Sk at every
iteration of Algorithm (3.1). Now we will prove that if stopping criteria
do not apply then the new minimizer v̄k+1 is better than v̄k in the sense
that ϕk+1(λ̄k+1) < ϕk(λ̄k).
Since ϕk+1 is strictly convex function, v̄k+1 = λ̄k+1vk+1+(1− λ̄k+1)ṽk+1

is its only minimizer. In addition, since ṽk+1 = v̄k, we have

ϕk+1(λ̄k+1) = ∥v̄k+1∥2 < ϕk+1(0) = ∥v̄k∥2 = ϕk(λ̄k).

Furthermore, we will show that at each iteration the optimal value of
the function ϕk over the sets Sk, k = 1, 2, . . . will be decreased sufficiently.
We observe that

∥v̄k+1∥2 ≤ ∥tvk+1 + (1− t)v̄k∥2

for all t ∈ [0, 1]. Hence,

∥v̄k+1∥2 ≤ t2∥vk+1 − v̄k∥2 + 2t⟨vk+1 − v̄k, v̄k⟩+ ∥v̄k∥2. (8)

It follows from (5) that

∥vk+1 − v̄k∥ ≤ 2C. (9)

From (7), (8) and (9) we have

ϕk+1(λ̄k+1) = ∥v̄k+1∥2 < 4t2C2 + (1− 2t(1− c1)) ∥v̄k∥2

= 4t2C2 + (1− 2t(1− c1))ϕk(λ̄k).

Let t0 = (1− c1)∥v̄k∥2(4C2)−1. It is clear that t0 ∈ (0, 1). Therefore, for
t = t0 we have

∥v̄k+1∥2 <
[
1− (1− c1)

2(4C2)−1∥v̄k∥2
]
∥v̄k∥2. (10)

Since ∥v̄k∥ > δ for all k = 1, . . . ,m− 1, it follows that

∥v̄k+1∥2 <
[
1− (1− c1)

2(4C2)−1δ2
]
∥v̄k∥2.
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Let C1 = 1 − (1 − c1)
2(4C2)−1δ2. It follows that C1 ∈ (0, 1). Then we

have

ϕk+1(λ̄k+1) < C1ϕk(λ̄k).

Since ϕ1(λ̄1) = ∥v1∥2 ≤ C2 we get

ϕk(λ̄k) < (C1)
k−1C2.

Therefore, the inequality (3) is satisfied if Cm−1
1 C2 ≤ δ2. This inequality

must happen after at most m iterations where

m ≤ 2 log
δ/C
2

logC1
2

+ 1.

This complete the proof. □
Based on Algorithm (3.1) one can find descent directions because it
allows to design a very simple line search procedure.

4 The Method

In this section we will describe two algorithms for solving the problem
(1) . The first algorithm can find the so-called δ-stationary points of
problem (1) whereas the second algorithm finds its Clarke stationary
points. We start with the definition of the δ-stationary points.

Definition 4.1. A point y is called the δ-stationary point for problem
(1) iff:

min {∥v∥ : v ∈ ∂h(y)} ≤ δ.

It follows from definition that if y be a δ-stationary point then

0n ∈ ∂h(y) +Bδ.

Let c1 ∈ (0, 1), c2 ∈ (0, c1) be given numbers. An algorithm for finding
δ-stationary points is presented as follows.

Algorithm 4.2 (Computation of δ-stationary points).

Step 1 Select any starting point y0 ∈ Rn and set k := 0.
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Step 2 Apply Algorithm (3.1) for the computation of the descent direc-
tion at y = yk for given δ > 0 and c1 ∈ (0, 1). This algorithm
terminates after finite number of iterations and as a result, we get
the subgradient vk, the aggregated subgradient ṽk and an element
v̄k such that

v̄k = λ̄kvk + (1− λ̄k)ṽk

where

λ̄k := argminλ∈[0,1]∥λvk + (1− λ)ṽk∥2.

Furthermore, either ∥v̄k∥ < δ or for the search direction
d̄k = −∥v̄k∥−1v̄k,

h′(yk, d̄k) ≤ −c1∥v̄k∥. (11)

Step 3 If

∥v̄k∥ < δ,

then stop. Otherwise go to Step 4.

Step 4 Compute yk+1 = yk + σkd̄k, where σk is defined as follows:

σk = argmax
{
σ ≥ 0 : h(yk + σd̄k)− h(yk) ≤ −c2σ∥v̄k∥

}
.

Set k := k + 1 and go to Step 2.

In the next theorem we prove that Algorithm (4.2) is finite conver-
gent to the set of δ-stationary points of problem (1)

Theorem 4.3. Suppose that function h is bounded below:

h∗ := inf {h(y) : y ∈ Rn} > −∞. (12)

Then Algorithm (4.2) terminates after finite many iterations M > 0 and
produces the δ-stationary point yM where

M ≤ M0 :=

⌊
h(y0)− h∗

c2zδ

⌋
+ 1. (13)

in which z is a positive number such that σk ≥ z, k ∈ N.
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Proof. Suppose on the contrary, that is the sequence {yk} generated by
Algorithm (4.2) is infinite and the points yk are not δ-stationary points
for any k = 1, 2, . . .. This means that

min {∥v∥ : v ∈ ∂h(yk)} > δ, ∀k = 1, 2, . . . .

Then a descent direction d̄k is obtained at yk so that the condition (4)
will be satisfied:

h′(yk, d̄k) ≤ −c1∥v̄k∥ < −c2∥v̄k∥.

Hence there exists z > 0 such that for all α ∈ (0, z]

h(yk + αd̄k)− h(yk) < −c2α∥v̄k∥

It follows from the definition of σk that σk ≥ z. Therefore, we have

h(yk+1)− h(yk) = h(yk + σkd̄k)− h(yk) < −c2σk∥v̄k∥ ≤ −c2z∥v̄k∥.

In view of condition ∥v̄k∥ > δ we have

h(yk+1)− h(yk) < −c2zδ.

Thus,

h(yk+1) ≤ h(y0)− (k + 1)c2zδ.

So, h(yk) → −∞ as k → ∞ which contradicts (12). Clearly, the upper
bound for the number of iterations M necessary to find the δ-stationary
point is M0 given by (13). □
Now we are ready to state an algorithm for finding stationary points of
problem (1), that is, point y satisfying the condition 0n ∈ ∂h(y). As-
sume that ε > 0 is a tolerance.

Algorithm 4.4 (Computation stationary point).

Step 1 Select sequence {δj} such that δj > 0 and δj → 0 as j → ∞.
Choose any starting point y0 ∈ Rn, and set k := 0.

Step 2 If δk ≤ ε, then stop with yk as the final solution.
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Step 3 Apply Algorithm (4.2) starting from the point yk with δ = δk.
This algorithm finds an δk-stationary point yk+1 after finitely many
iterations M > 0.

Step 4 Set k := k + 1 and go to Step 2.

Next we state the convergence of Algorithm (4.4). For the point
y0 ∈ Rn, we consider the level set

L(y0) := {y ∈ Rn : h(y) ≤ h(y0)} .

Theorem 4.5. Suppose that objective function h in problem (1) is lo-
cally Lipschitz and directionally differentiable, the set L(y0) is bounded
and ε = 0 in Algorithm (4.4). Then any accumulation point of the se-
quence {yk} generated by this algorithm is a stationary point of problem
(1).

Proof. According to theorem (4.3) the sequence of δk-stationary points
will be generated after a finite number of iterations for all k > 0. Since
for any k > 0, the point yk+1 is the δk-stationary point, it follows from
the definition of the δk-stationary point that

min {∥v∥ : v ∈ ∂h(yk+1)} ≤ δk.

It is obvious that yk ∈ L(y0) for all k > 0. The boundedness of the
set L(y0) implies that the sequence {yk} has at least one accumulation
point. Let y∗ be an accumulation point and yki → y∗ as i → ∞. Hence

min {∥v∥ : v ∈ ∂h(yki)} ≤ δki−1 (14)

Now suppose that τ > 0 is arbitrary. Since the sequence {δj} converges
to 0, it follows that there exists i1 such that δki < τ for all i > i1. In
view of (14) we have

min {∥v∥ : v ∈ ∂h(yki)} ≤ τ, ∀i > i1 + 1

Now let

∥v∗ki∥ = min {∥v∥ : v ∈ ∂h(yki)} ≤ τ, ∀i > i1 + 1
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Then ∥v∗ki∥ ≤ τ for all i > i1 + 1 and without loss of generality we
assume that v∗ki → v∗ as i → ∞. It is clear that ∥v∗∥ ≤ τ and by upper
semicontinuity of subdifferential mapping, we have

v∗ ∈ ∂h(y∗),

Therefore
min {∥v∥ : v ∈ ∂h(y∗)} ≤ τ.

Since τ is arbitrary 0n ∈ ∂h(y∗). This complete the proof. □

5 conclusion

In this paper we have proposed an algorithm for solving unconstrained
nonsmooth optimization problems. This algorithm can be applied to
a broad class of nonsmooth optimization problems including problems
with non regular objective functions. It contains simple procedure for
finding descent directions and step lengths.
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