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Abstract. We extend the notions of integration and di�erentiation to cover the class of functions

taking values in topological vector spaces. We give versions of the Lebesgue-Nikodym Theorem

and the Fundamental Theorem of Calculus in such a more general setting.

1. Introduction

It is hardly possible to overemphasize the importance of the notions of integral and derivative

in mathematical analysis. These two notions constitute the twin pillars on which analysis is built.

The Fundamental Theorem of Calculus (FTC) shows that integration and di�erentiation are es-

sentially inverses of one another. Since its discovery in the 17th century, several authors have

attempted to give a more general setting to the FTC. A systematic study of the vector valued

case of these two notions have started since the �rst half of the 20th centuries. Details studies

of integration/di�erentiation for functions valued in normed spaces are presented in several books

(e.g. [1, 2, 3]). For more recent results on vector valued integration theory, the reader is referred to

[7, 8]. As in many areas of mathematics, it is always desirable and useful to have at our disposal a

theory at a level of generality that will allow a wide of a spectrum of applications as possible. Our

main purpose in this paper is to further enlarge the class of integrable and di�erentiable functions

to include functions taking values in topological vector spaces, and give more general setting to the

statement of the Lebesgue-Nikodym Theorem, as well as su�cient and necessary conditions under

which the Fundemental Theorem of Calculus holds in such a setting.

The exposition will be organized as follows. In Section 2, we review few elementary concepts

related to limit of nets of elements of a linear topological space. Some the results in this section

can be considered as of independent interest. In Section 3, we show that a suitable concept of

integration can be de�ned for functions taking values in a topological vector space. In Section 4, we

state and prove a newer version of the Lebesgue-Nikodým theorem. The last Section 5 is devoted

to some extension of the Fundamental Theorem of Calculus.
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2. Preliminaries

Since integration and di�erentiation are both limit operations, it is very sound to want to develop

a good understanding of the concept of limit. There are many important topological vector spaces

where the notion of convergence are not generated by a norm nor even by a seminorm. To treat

those cases, it turns out to be very convenient to use the de�nition of limit in its most general form

as devised by E.H. Moore and H.L. Smith [5]. Recall that a nonempty set Ω is said to be directed

by a binary relation �, if � has the following properties:

(1) for x, y, z ∈ Ω if x � y and y � z, then x � z (transitivity);

(2) for x, y ∈ Ω, there exists z ∈ Ω such that z � x and z � y (upper bound property).

Given a set X, a net of elements of X is an X-valued function de�ned on a directed set (Ω,�). For

our purposes, we will de�ne the notion of limit for the setting of a topological vector space. We

denote by N0(X) the set of all balanced neighborhoods of 0 in X.

De�nition 1. Let X be a topological vector space. A net f : (Ω,�)→ X is said to be convergent

if there exists a vector lim
(Ω,�)

f ∈ X such that for every N0 ∈ N0(X), there exists ω0 ∈ Ω such that

f(ω) ∈ lim
(Ω,�)

f +N0 whenever ω � ω0.

For simplicity of notation, we shall omit such parts of the symbolism under lim as can be without

any danger of confusion. We also introduce the following notions of boundedness.

De�nition 2. Let X be a topological vector space. A net f :(Ω,�)→ X is said to be

(1) bounded if its range f(Ω) is bounded in X, that is, if for every N0 ∈ N0(X), there exists

s ∈ [0,∞) such that for every t > s, f(Ω) ⊂ tN0.

(2) eventually bounded if for every N0 ∈ N0(X), there exists ω0 ∈ Ω, and there exists

s ∈ [0,∞) such that for every t > s, f({ω ∈ Ω : ω � ω0}) ⊂ tN0.

Note that as opposed to the notion of eventual boundedness, the notion of boundedness is

independent of the direction. Clearly, a bounded net is eventually bounded. The converse is not

true: the net x ∈ (R, >) 7→ e−x is eventually bounded towards ∞, but obviously not bounded.

However, if the net is a sequence, that is, if f : (N, >)→ X is directed towards∞, then it is an easy

exercise to show that

Proposition 3. A sequence f :(N, >)→ X is bounded if and only if it is eventually bounded.

Proof. We need only to show the su�ciency. Assume that n 7→ f(n) is eventually bounded, i.e.

for every N0 ∈ N0(X), there exists n0 ∈ N, and there exists s ∈ [0,∞) such that for every t > s,

f({n ∈ N : n � n0}) ⊂ tN0. Let τ ∈ [0,∞) such that f(1), f(2), . . . , f(n0) ∈ τN0. Then clearly, for

all n ∈ N, f(n) ∈ (τ ∨ t)N0. The proof is complete. �
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Proposition 4. Let X be a topological vector space. Assume that a net f : (Ω,�) → X is

convergent. Then for every N0 ∈ N0(X), there exists ω0 ∈ Ω such that f(ω) ∈ f($) +N0 whenever

ω,$ � ω0.

Proof. Suppose lim
(Ω,�)

f = a. Fix a N0 ∈ N0(X). We can choose a neighborhood U0 of 0 such that

U0 + U0 ⊂ N0. Then there is ω0 ∈ Ω such that for ω � ω0, we have f(ω) ∈ a + U0. Thus for

ω,$ � x0, we have

f(ω)− f($) = f(ω)− a− (f($)− a) ∈ U0 + U0 ⊂ N0.

as desired. �

De�nition 5. A net f : (Ω,�)→ X that satis�es the conclusion of the above Proposition 4 is said

to be topologically Cauchy.

Recall that a net g : (Γ,<) → X is said to be a subnet of a net f : (Ω,�) → X if there exists

a function ϕ : Γ → Ω such that g = f ◦ ϕ and such that for each ω0 ∈ Ω, there exists γ0 ∈ Γ such

that whenever γ < γ0 then ϕ(γ) � ω0.

Proposition 6. Let X be a topological vector space and let f : (Ω,�)→ X be a topological Cauchy

net. Assume that f admits a subnet g : (Γ,<)→ X which converges to say a. Then f converges to

a.

Proof. Let f : (Ω,�)→ X be a topological Cauchy net and assume that a subnet g : (Γ,<)→ X of

f converges to a ∈ X. Let ϕ : Γ→ Ω be the function de�ning the subnet g. Fix a N0 ∈ N0(X) and

choose N ∈ N0(X) such that N + N ⊂ N0. Then there exists ω0 ∈ Ω such that f(ω)− f($) ∈ N
whenever ω,$ � ω0. There exists γ0 ∈ Γ such that whenever γ < γ0 then ϕ(γ) � ω0. On the other

hand, since the subnet g = f ◦ ϕ converges to a, there exists γN ∈ Γ, such that whenever γ � γN ,

f ◦ ϕ(γ) ∈ a+N . It follows that if ω � ω0, then ϕ(γ) � ω0, and we have

f(ω)− a = f(ω)− f ◦ ϕ(γ) + f ◦ ϕ(γ)− a ∈ N +N ⊂ N0.

This completes the proof. �

Proposition 4 states that every convergent net is topologically Cauchy. The converse of such a

statement does not hold in general. A topological vector space X is said to be topologically complete

(resp. sequentially complete) if every topological Cauchy net (resp. Cauchy sequence) of elements

of X is convergent. Clearly, every topologically complete vector space is sequentially complete. The

following result shows that in fact the two properties are exactly the same.

Theorem 7. Every sequentially complete vector space is topologically complete.

Proof. Let f : (Ω,�)→ X be a topological Cauchy net. Fixed a neighborhood N0 neighborhoods of

0, and for each n ∈ N, let Nn = 1
nN0 and let N

′
n be a neighborhood of 0 such that N ′n+N ′n ⊂ Nn.We
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then choose successively ω1, ω2, ω3, ... ∈ Ω such that ωn � ωn−1 and f(ω) − f($) ∈ N ′n whenever

ω,$ � ωn. Then the sequence n 7→ f(ωn) is subnet of f which is Cauchy. By the sequential

completeness of X, n 7→ f(ωn) converges to a limit. Proposition 6 now completes the proof. �

Proposition 8. Every topological Cauchy net of elements of a topological vector space is eventually

bounded.

Proof. Let f : (Ω,�)→ X be a net. Let N0 and U0 be neighborhoods of 0 such that U0 +U0 ⊂ N0.

Then there exists ω0 ∈ Ω such that for all ω,$ � ω0, f(ω) − f($) ∈ U0, and in particular for all

ω � ω0

f(ω) ∈ f(ω0) + U0.

Choose s > 1 such that ω0 ∈ sU0. Then for ω � ω0, we have

f(ω) ∈ sU0 + U0 ⊂ sU0 + sU0 ⊂ sN0.

The proof is complete. �

In view of Proposition 3, we have

Corollary 9. Every Cauchy sequence of elements of a topological vector space is bounded.

Proposition 10. Let E be a subset of a topological vector space X. Then E is bounded if for

every sequence n 7→ xn of elements of E, and every sequence of scalar n 7→ αn converging to 0, the

sequence n 7→ αnxn converges to 0.

Proof. Suppose that E is bounded, and let n 7→ αn converge to 0. Let N0 be a balanced neigh-

borhood of 0. Then E ⊂ tN0 for some t > 0. Choose n large enough so that |αnt| < 1. Then

αnE ⊂ αntN0 ⊂ N0. Thus for every sequence n 7→ xn in E, αnxn ∈ N0, showing that n 7→ αnxn

converges to 0.

Conversely, suppose that for every sequence n 7→ xn of elements of E, and every sequence of

scalar n 7→ αn converging to 0, the sequence n 7→ αnxn converges to 0. Suppose to the contrary

that E is not bounded. Then there exist a N0 ∈ N0(X) and a sequence n ⇁ αn of positive real

number diverging to ∞ such that no αnN0 contains E. Then for each n, take xn ∈ E such that

xn /∈ αnN0, or equivalently α
−1
n xn /∈ N0. It follows that the sequence n 7→ α−1

n xn does not converge

to 0. A contradiction! �

3. Integrability

In what follows Ω is a nonempty set; the power set of Ω, that is, the set of all subsets of Ω will

be denoted by 2Ω. Let Σ ⊂ 2Ω. By a size-function, we mean a set-function λ : Σ → [0,+∞] that

satis�es the following conditions:λ(∅) = 0; and λ(A) ≤ λ(A ∪ B) ≤ λ(A) + λ(B) whenever A,B in

Σ. Obviously, any measure de�ned on a σ-ring is a size-function. The length function de�ned on
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the σ-ring generated by the bounded intervals in R is another example of size function. It is also

easy to see that an outer-measure is a size-function de�ned on Σ = 2Ω.

Given two sets E and F , we write E t F in place of E ∪ F when E and F are disjoint. A

Σ, λ-subpartition P of a subset A ⊂ Ω is any �nite collection {E ∈ Σ;E ⊂ A} with the following

properties:

(1) λ(E) <∞ for all E ∈ P
(2) E ∩ F = ∅ whenever E 6= F in P .

We denote by
⊔
P the subset of A obtained by taking the union of all elements of P. A Σ, λ-

subpartition P is said to be tagged if a point t ∈ E is chosen for each E ∈ P . We shall write

E = (E, t) if t is a tagging point for E. We denote by Π(A,Σ, λ) the collection of all tagged

Σ, λ-subpartitions of the set A. The mesh or the norm of P ∈ Π(A,Σ, λ) is de�ned to be ‖P‖ =

max{λ(I) : I ∈ P}. If P,Q ∈ Π(A,Σ, λ), we say that Q is a re�nement of P and we write Q � P if

‖Q‖ ≤ ‖P‖ and
⊔
P ⊂

⊔
Q. It is readily seen that such a relation does not depend on the tagging

points. It is also easy to see that the relation � is transitive on Π(A,Σ, λ). If P,Q ∈ Π(A,Σ, λ).

We quickly notice that If , then clearly, P ∨Q := {I \ J, I ∩ J, J \ I : I ∈ P, J ∈ Q} ∈ Π(A,Σ, λ),

P ∨ Q � P and P ∨ Q � Q. That is, the relation � has the upper bound property on Π(A,Σ, λ).

We then infer that the set Π(A,Σ, λ) is directed by the binary relation �. If there is no risk of

confusion, we shall drop λ in all of the above notations.

Given a function f : Ω→ X, and a tagged Σ-subpartition P ∈ Π(A,Σ), the (Σ, λ)-Riemann sum

of f on P is de�ned to be the vector fλ(P ) =
∑

(I,t)∈P λ(I)f(t). The function P 7→ fλ(P ) is an

X-valued net de�ned on the directed set (Π(A,Σ, λ),�). For convenience, we are going to denote´
A
fdλΣ := lim

(Π(A,Σ,λ),�)
fλ whether or not such a limit exists. The limit is of course in the sense of

the topology of X. If such a limit does exist, we say that the function f is Σ, λ-integrable over the

set A, and its limit
´
A
fdλΣ is called the Σ, λ-integral of f over A. Again we shall drop the symbols

Σ, λ whenever no risks of confusion arise. More formally,

De�nition 11. We say that a function f : Ω → X is (Σ, λ)-integrable over a set A ⊂ Ω, if

lim
(Π(A,Σ,λ),�)

fλ represents a vector in X. The vector lim
(Π(A,Σ,λ),�)

fλ will be denoted by
´
A
fdλΣand

called the (Σ, λ)-integral of f over the set A.

In other words, f : Ω→ X is (Σ, λ)-integrable over the set A with (Σ, λ)-integral
´
A
fdλΣ if for

every N0 ∈ N0(X) there exists P0 ∈ Π(A,Σ, λ), such that for every P ∈ Π(A,Σ, λ), P � P0 we

have

(3.1) fµ(Q) ∈
ˆ
A

fdλΣ +N0.

We shall denote by I(A,X,Σ, λ) the set of all (Σ, λ)-integrable functions over the set A. Many

classical properties of the integral follow immediately from the properties of net limits and therefore

their proofs are obtained at no extra cost.



FUNDAMENTAL THEOREM OF CALCULUS IN TOPOLOGICAL VECTOR SPACES 6

Proposition 12. If f ∈ I(A,X, (Σ, λ)) then for every N0 ∈ N0(X) there exists P0 ∈ Π(A,Σ) such

that fλ(Q)W ∈ N0 for every Q ∈ Π(A,Σ) that does not intersect P0 and such that ‖Q‖ ≤ ‖P0‖ .

Proof. Fix neighborhoods N0, N of 0, such that N + N ⊂ N0. Let P1 ∈ Π(A,Σ) be such that for

every P � P1 in Π(A,Σ) we have fλ(P ) ∈
´
A
fdλΣ +N. Fix P0 � P1. Then for every Q ∈ Π(A,Σ)

that does not intersect P0, and such that ‖Q‖ ≤ ‖P0‖, we have P0 ∨Q � P1, and therefore

fλ,τ (P0 ∨Q) ∈
ˆ
A

fdλΣ +N.

It follows that

fλ(Q) = fλ(P0 ∨Q)− fλ(P0)

= fλ(P0 ∨Q)−
ˆ
A

fdλ+

ˆ
A

fdλ− fλ(P0)

∈ N +N ⊂ N0.

The proof is complete. �

The above proposition suggests the following de�nition.

De�nition 13. Let X be a topological vector space. A function f : Ω → X is said to satisfy the

Cauchy criterion for integrability on A ⊂ Ω if for every N0 ∈ N0(X) there exists P0 ∈ Π(A,Σ) such

that fλ(Q) ∈ N0 for every Q ∈ Π(A,Σ) that does not intersect P0 and such that ‖Q‖ ≤ ‖P0‖ .
Thus Proposition 12 states that every integrable function satis�es the Cauchy criterion for in-

tegrability. Conversely, we notice that for if P,Q ∈ Π(A,Σ) is such that no set in P intersects a

set in Q, then fλ(P ∨ Q) − fλ(P ) = fλ(Q). It is then quickly seen that the Cauchy criterion for

integrability of a function f is equivalent to the Cauchy condition for the net P 7→ fλ(P ). It then

follows that Cauchy nets taking values in a complete topological vector space is convergent. Hence

we have the following characterization theorem.

Theorem 14. Let X be complete topological vector space. Then f ∈ I(A,X, (Σ, λ)) if and only if

it satis�es the Cauchy criterion for integrability on A.

It should be noticed that if the set A is such that λ(A) = 0, then for all subpartitions P ∈ Π(A),

λf (P ) = 0, and thus
´
A
fdλ = 0. It follows that the integral does not distinguish between functions

which di�er only on set of size zero. More precisely,

ˆ
A

fdλ =

ˆ
A

gdλ whenever λ{x ∈ A : f(x) 6= g(x)} = 0.

We say that a function f is λ-essentially equal on A to another function g, and we write f
λ∼ g, if

λ{x ∈ A : f(x) 6= g(x)} = 0. It is readily seen that the relation f
λ∼ g is an equivalence relation on

I(A,X, λ). We shall denote by I(A, λ,X) the quotient space I(A,X, λ)/
λ∼ .
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Our next result shows that if X is a topological vector space, then the space I(A,X, (Σ, λ))

can also be naturally given a structure of topological vector space. If f ∈ I(A,X, (Σ, λ)), for each

N0 ∈ N0(X), we de�ne a neigborhood of f as follows

B(f, P,N0) := {g ∈ I(A,X, (Σ, λ)) : (g − f)λ(Q) ∈ N0, for all Q,Q ∩ P = ∅} .

Theorem 15. The collection B = {B(f, P,N0) : f ∈ I(A,X, (Σ, λ)), P ∈ Π(A,Σ, λ), N0 ∈ N0(X)}
is a basis for a topology on I(A,X, (Σ, λ)).

Proof. Let B(f, P1, N1) and B(g, P2, N2) be in B, and let h ∈ B(f, P1, N1) ∩ B(f, P2, N2). Then

(h− f)λ(P ) ∈ N1 for all P that does not intersect P1 and (h− f)λ(P ) ∈ N2 for all P that does not

intersect P2. It follows that for all P that does not intersect P1∨P2 we have (h−f)λ(P ) ∈ N1∩N2,

that is, h ∈ B(f, P1 ∨ P2, N1 ∩N2). This proves the theorem. �

We denote by Θ be the topology on I(A,X, (Σ, λ)) generated by B.

Theorem 16. The vector space operations are continuous on (I(A,X, (Σ, λ)), Θ).

Proof. Let B(h, P,N0) ∈ B. Suppose f + g ∈ B(h, P,N0). Then for some 0 < λ < 1, we have

(f + g − h)λ(Q) ∈ λN0 for all Q ∈ Π(A,Σ) that does not intersect P. Let N1 ∈ N0(X) such

that λN0 + N1 + N1 ⊂ N0. Consider B := B(f, P,N1) × B(g, P,N1). It (f1, g1) ∈ B, then for all

Q ∈ Π(A,Σ) that does not intersect P, we have

(f1 + g1 − h)λ(Q) = (f + g − h)λ(Q) + (f1 − f)λ(Q) + (g1 − g)λ(Q)

∈ λN0 +N1 +N1 ⊂ N0.

This proves that the addition is continuous.

Now let α be a scalar and suppose that αf ∈ B(h, P,N0). Then for some 0 < λ < 1, we have

(αf−h)λ(Q) ∈ λN0 for allQ ∈ Π(A,Σ, λ) that does not intersect P. LetN1 ∈ N0(X) such thatN1 ⊂
N0. Choose 0 < δ small enough so that βN1 + δλN0 ⊂ N0. Consider N := B(α, δ)×B(f, P,N1). It

(β, g) ∈ N, then for all Q ∈ Π(A,Σ, λ) that does not intersect P, we have

(βg − h)λ(Q) = (αf − h)λ(Q) + (βg − αf)λ(Q)

= (αf − h)λ(Q) + β(g − f)λ(Q) + (β − α)fλ(Q)

∈ λN0 + βN1 + δλN0 ⊂ N0.

This proves that the the scaling function is continuous. The proof is complete. �

Theorem 17. Let λ : Σ ⊂ 2Ω → [0,∞] be a size-function and X a topologically complete topo-

logical vector space. Let A ∈ Σ be such that λ(A) < ∞. Then the topological function space

(I(A,X, (Σ, λ)), Θ) is topologically complete.

Proof. Let n 7→ fn be a Cauchy sequence in (I(A,X, (Σ, λ)), Θ) . Fix N0 ∈ N0(X) . Choose

N00 ∈ N0(X) such that N00 +N00 +N00 +N00 ⊂ N0. Let P ∈ Π(A,Σ, λ), and let N > 0 such that
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for m,n > N in N,

(3.2) (fn − fm)λ(P ) ∈ N00.

In particular, taking the subpartition P = {(A,ω)} , we see that the sequence n 7→ fn(ω) is Cauchy

in X. Since X is a topologically complete, we can de�ne a function ω 7→ f(ω) = limn→∞ fn(ω).

On the other hand, since fn, fm ∈ I(A,X,Σ, λ), there exist Pn, Pm ∈ Π(A,Σ, λ) such that

(fn)λ(P ) −
´
A
fndλ ∈ N00, and (fm)λ(P ) −

´
A
fmdλ ∈ N00 whenever P � Pn ∨ Pm. Combining

with (3.2), it follows that for m,n > Nε in N and for every P � Pn ∨ Pm, we haveˆ
A

fndλ−
ˆ
A

fmdλ = (fn)λ(P )−
ˆ
A

fndλ+ (fn − fm)λ(P ) +

ˆ
A

fmdλ− (fm)λ(P ) ∈ N00.

This proves that the sequence n 7→
´
A
fndλ is Cauchy in X, and thus converges to say a ∈ X.

Now since for each ω ∈ A, f(ω) = limn→∞ fn(ω), there exists Nω > Nε such that for m,n > Nω

in N,
fn(ω)− fm(ω) ∈ λ(A)−1N00.

It follows that for P ∈ Π(A,Σ), and for every m,n > max {Nt : (I, t) ∈ P} =: NP , we have

(fn − fm)λ(P ) =
∑

(I,t)∈P

λ(I)(fn(t)− fm(t)) ∈ N00.

If we let m→∞, we obtain (fn− f)λ(P ) ∈ N00. Since a = limm→∞
´
A
fmdλ, there exists N > NP

such that
´
A
fmdλ− a ∈ N00 whenever m > N. Thus for n,m > N,

fλ(P )− a = (f − fn)λ(P ) + (fn − fm)λ(P ) + (fm)λ(P )−
ˆ
A

fmdλ+

ˆ
A

fmdλ− a.

∈ N00 +N00 +N00 +N00 ⊂ N0

Since N0 is arbitrary, this shows that f ∈ I(A,X,Σ, λ) and that
´
A
fdλ = a. �

4. Lebesgue-NikodÝm theorem

We say that a set function F : Σ → X is λ-absolutely continuous on Σ if for every N0 ∈
N0(X), there exists δ > 0 such that F (A) ∈ N0 whenever A ∈ Σ with λ(A) < δ. The classical

Lebesgue-Nikodým theorem states that for an additive real valued set function (not necessarily

countably additive) F : Σ→ R, λ-absolutely continuity implies λ-Lebesgue di�erentiability (see for

example [4]). Such a result was extended to the Banach space valued case in [6]. Our next result

further extends such a result to the case of functions taking values in a topological vector space.

Completeness is crucial for the following extended result.

Theorem 18. Let X be a complete topological vector space. Assume that F : Σ→ X is an additive

set function that is λ-absolutely continuous on Σ. Then there exists f ∈ (I(A,X, (Σ, λ)), Θ) such

that F (A) =
´
A
fdλ for every A ∈ Σ, with λ(A) <∞.
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Proof. We may assume without loss of generality that Σ = 2Ω. Fix A ∈ 2Ω, with λ(E) < ∞. For
every subpartition P ∈ Π(Ω, 2Ω, λ), consider the function de�ned on Ω by

FP (ω) =
∑
I∈P

1I(ω)

λ(I ∩A)
F (I ∩A).

Here 1I denotes the indicator function of the set I. Then it is easily seen that FP ∈ (I(A,X, (Σ, λ)), Θ).

The λ-absolute continuity of F ensures that

(4.1)

ˆ
A

FP dλ =
∑
I∈P

F (I ∩A) = F

(⊔
I∈P

I ∩A

)
→ F (A)

as λ(
⊔
I∈P

I ∩ A)→ λ(A). We claim that the net P 7→ FP is Cauchy in (I(A,X, (Σ, λ)), Θ). Fix

N0 ∈ N0(X) . Choose N00 ∈ N0(X) such that N00 +N00 +N00 +N00 ⊂ N0. By the λ-absolutely

continuity of F , we can �nd P and Q so re�ned that

(4.2) F

(⊔
I∈P

I ∩A

)
− F

⊔
J∈Q

J ∩A

 = F

⊔
I∈P

I ∩A\
⊔
J∈Q

J ∩A

 ∈ N00.

For such P and Q, there exists R0 ∈ Π(A) such that for R � R0,

(4.3) (FP )λ (R)−
ˆ
A

FP dλ, (FQ)λ (R)−
ˆ
A

FQdλ ∈ N00.

It follows from (4.2), (4.3) that for R � R0,

(FP − FQ)λ (R) = (FP )λ (R)−
ˆ
A

FP dλ+

ˆ
A

FP dλ−
ˆ
A

FQdλ+

ˆ
A

FQdλ− (FQ)λ (R) ∈ N0.

This proves our claim.

By Theorem 17, there exists f ∈ (I(A,X, (Σ, λ)), Θ) such that the net P 7→ FP converges to f .

For a given N0 ∈ N0(X) , choose N00 ∈ N0(X) such that N00 +N00 +N00 ⊂ N0. Then there exists

P1 ∈ Π(A,Σ, λ) such that for R � P1

(4.4) (FP )λ (R)− fλ(R) ∈ N00.

On the other hand, it follows from (4.1) that there exists P2 ∈ Π(A,Σ, λ) such that for R � P2

(4.5) (FP )λ (R)− F (A) ∈ N00.

Finally, by de�nition of the integral, there exists P3 ∈ Π(A) such that for R � P3

(4.6) (FP )λ (R)−
ˆ
A

fdλ ∈ N00.

Combining (4.4), (4.5), and (4.6), we have for R � P1 ∨ P2 ∨ P3ˆ
A

fdη − F (A) =

ˆ
A

fdλ− fλ(R) + fλ(R)− (FP )λ (R) + (FP )λ (R)− F (A) ∈ N0.
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The desired result follows since N0 is arbitrary chosen in N0(X). The proof is complete. �

Remark. Note that, unlike the Radon-Nikodým derivative of a vector measure [1], the above density

function f need not be measurable.

A function f : A → X that satis�es the conclusion of Theorem 18 will be called a λ-density of

the set function F and the function F is then said to be the λ-inde�nite integral of f.

It goes without saying that if f : A→ X is a λ-density of F , then any function g : A→ X such

that f = g λ-a.e. is also a λ-density of F . The symbol dλF will be used to denote the class of all

λ-density functions of the set function F .

5. Fundamental Theorem of Calculus

Let now assume that the domain space Ω itself is a topological space, and Σ ⊂ 2Ωcontains the

open sets of Ω. We say that a size-function λ : Σ ⊂ 2Ω → [0,∞] is

• regular if it is non-zero on open sets of Ω.

• translation invariant if λ(ω + U) = λ(U), for every U and for every ω ∈ Ω.

Henceforth, we shall only consider a �nite regular translation invariant size-function. We introduce

the following de�nition.

De�nition 19. Let Ω, X be topological vector spaces and λ : 2Ω → [0,∞) a regular translation

invariant size-function. Let Σ ⊂ 2Ω contain the topology of Ω. A set function F : Σ → X is said

to be λ-di�erentiable at a point ω ∈ Ω, if there exists a vector dF
dλ (ω) ∈ X such that for every

N0 ∈ N0(X), there exists U0 ∈ N0(Ω) such that for every U ∈ N0(Ω) contained in U0

F (ω + U)

λ(U)
∈ dF

dλ
(ω) +N0.

We notice that when the set N0(Ω) is directed by inclusion, the statement in the above de�nition

corresponds exactly to the de�nition of the net limit

dF

dλ
(ω) = lim

(N0(Ω),⊂)

F (ω + U)

λ(U)
.

We denote by ∆F the set of all ω ∈ Ω for which dF
dλ (ω) exists. We shall call such a set ∆F the

domain of di�erentiability of F. By the uniqueness of limit, the correspondence ω 7→ dF
dλ (ω) de�nes

a function dF
dλ on ∆F which we shall call the derivative of F with respect to λ, or simply the λ-

derivative of F . It is easily checked that dF
dλ is

• homogeneous on ∆F : for any scalar α, dFdλ (αF ) = αdFdλ (F ),

• additive in the sense that for any pair of set functions F,G : Σ → X , dF
dλ (F + G)(ω) =

dF
dλ (F )(ω) + dF

dλ (G)(ω) for every ω ∈ ∆F ∩∆G
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In this setting, to establish a FTC is equivalent to �nding necessary and su�cient conditions under

which the λ-derivative dF
dλ of an additive set function F is an element of the class of λ-density

functions dλF. More formally, we say that

De�nition 20. The FTC holds for an additive set function F : Σ ⊂ 2Ω → X if dFdλ ∈ dλF.
We are now ready to state and prove our version of FTC for set functions taking values in

complete locally bounded topological vector spaces.

Theorem 21. Let Ω be a topological vector space, X a topologically complete locally bounded topo-

logical vector spaces and λ : 2Ω → [0,∞) a regular translation invariant size-function. Then the

following statements are equivalent for an additive λ-di�erentiable set function F : Σ→ X .

(1) For every N0 ∈ B0(X), there exists P0 ∈ Π(Ω, λ) consisting of elements of

A0 =

{
(I, ω) ∈ Π(Ω, λ) : F (I)− λ(I)

dF

dλ
(ω) ∈ N0

}
such that whenever P � P0,

∑
(I,ω)∈P\A0

F (I) ∈ N0, and
∑

(I,ω)∈P\A0
λ(I)dFdλ (ω) ∈ N0.

(2) dF
dλ ∈ dλF .

Proof. 1. ⇒ 2. Since λ(Ω) < ∞, we may assume all the subpartitions P ∈ Π(Ω) are partitions by

simply adjoining if necessary the complement of
⊔
P. Fix N0 ∈ B0(X). Let P0 ∈ Π(Ω) as in 1.

Then by the additivity of F we have for P � P0,

F (Ω)−
(
dF

dλ

)
λ

(P ) =
∑

(I,ω)∈P

F (I)−
∑

(I,ω)∈P

λ(I)
dF

dλ
(ω)

=
∑

(I,ω)∈P∩A0

(
F (I)− λ(I)

dF

dλ
(ω)

)

+
∑

(I,ω)∈P\A0

F (I)−
∑

(I,ω)∈P\A0

λ(I)
dF

dλ
(ω)

∈
∑

(I,ω)∈P∩A0

λ(Ii)N0 +N0 +N0 ⊂ (λ(Ω) + 2)N0

Since N0 ∈ B0(X) is arbitrary, this shows that dF
dλ ∈ I(Ω, X, λ) and

´
Ω
dF
dλ dλ = F (Ω). This proves

1.⇒ 2. .

2. ⇒ 1. Assume that dF
dλ ∈ dλF. Then in particular dF

dλ ∈ (I(A,X, (Σ, λ)), Θ) . Fix N0 ∈ B0(X)

and let N00 ∈ B0(X) such that N00 +N00 ⊂ 2N0. Let Ek =
{
ω ∈ Ω : dFdλ (ω) ∈ kN00 \ (k − 1)N00

}
.

There exists Pk,0 ∈ Π(Ω) such that for every P � Pk,0,∑
(I,ω)∈P

(F (I)− λ(I)f(ω)) ∈ 1

k2k+1
N00.
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For each n ∈ N, let

fn(ω) =

dF
dλ (ω) if ω ∈

⋃n
k=1Ek

0 otherwise.

Then for P �
∨n
k=1 Pk,0, we have∑

(I,ω)∈P\A0

λ(I)fn(ω) ∈
∑

(I,ω)∈P\A0

λ(I)kN00 ⊂
∑

(I,ω)∈P\A0

k (F (I)− λ(I)f(ω)) ⊂ 1

2
N00.

On taking the limit as n→∞, we infer that∑
(I,ω)∈P\A0

λ(I)fn(ω) ∈ 1

2
N00 ⊂ N0.

It then follows that∑
(I,ω)∈P\A0

F (I) ⊂
∑

(I,ω)∈P\A0

(F (I)− λ(I)f(ω)) +
∑

(I,ω)∈P\A0

λ(I)f(ω) ⊂ 1

2
N00 +

1

2
N00 ⊂ N0.

The proof is complete. �
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