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Effect of Polynomial Identity x[x,y] = (x[x,y])n

in the Commutativity of Rings
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Abstract. In this paper we study some sufficient conditions for com-
mutativity of a ring according to Jacobsons’idea. Jacobson proved that
if R is a ring satisfying xn = x (n > 1) for each x ∈ R, then
R is commutative. In this paper, we show that R is commutative if
for every x, y ∈ R there exists a positive integer n = n(x, y) such that
(x[x, y])n = x[x, y].
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1. Introduction

Throughout this paper R denotes an associative ring with center C

and Jacobson radical J(R).
In 1950, Jacobson proved that if for each x in R there exists a positive
integer n > 1 such that xn = x, then R is commutative . After that
in [1], Searcoid and MacHale proved that if for each x, y in R, there
exists a positive integer n = n(x, y) > 1 such that (xy)n = xy,
then R is commutative. In [3], Hirano and Yaqub studied the rings
satisfying (x − xn)(y − yn) = 0 for every x, y ∈ R and recently, Bell,
yaqub and Abu-khuzam in [5], [6], [7] have considered some conditions
and periodicity conditions for rings to be commutative.
We will fix commutator [x, y] = xy − yx in place of y and obtain
commutative results for rings.
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A ring R is called left (resp. right) s-unital ([2]) if for each x ∈ R we
have x ∈ Rx (resp. x ∈ xR). A ring R is called s-unital if for each x

in R, x ∈ xR ∩Rx.
If R is a s-unital ring, then for any finite subset K of R, there exists
an element e in R such that xe = ex = x for all x ∈ K (see [2]).
Such an element e will be called a pueudo-identity of K.
A ring R is called to be semisimple if its Jocobson radical J(R) is
zero.
A ring R is called left primitive if there exists a simple faithful left
R-module.
A ring R is said to be a subdirect product of the family of rings {Ri|i ∈
I} if R is a subring of the direct product

∏
i∈I

Ri such that πk(R) = Rk

for every k ∈ I, where πk :
∏
i∈I

Ri −→ Rk is the canonical epimorphism.

2. Preliminaries

First of all, we recall some concepts and prove some results that are used
in the sequel.
Theorem 2.1. A nonzero ring R is semisimple if and only if R is
isomorphic to a subdirect product of primitive rings.

Proof. See [8. pro. 3.2]. ¤

Theorem 2.2. If R is a ring, then we have
(i) J(R) is the intersection of all the left annihilators of simple left
R-modules.
(ii) J(R) is the intersection of all the regular maximal left ideals of R.
(iii) J(R) is the intersection of all the left primitive ideals of R.
(iv) J(R) is a left quasi-regular ideal which contains every left quasi-
regular left ideal of R.

Proof. See [8. Theorem 2.3]. ¤
We say R satisfies (∗) if, for each x, y in R, there exists a positive
integer n = n(x, y) > 1 such that (x[x, y])n = x[x, y].
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Lemma 2.3. Let R and S be rings such that R satisfies (∗) and
ϕ : R −→ S is a ring epimorphism. Then S satisfies (∗).

Proof. Let x, y ∈ S. Since ϕ is onto, there exist s, t ∈ R such
that ϕ(t) = x, ϕ(s) = y. But R satisfies (∗). Therefore there exists
a positive integer n = n(t, s) > 1 such that (t[t, s])n = t[t, s]. On the
other hand, we have

ϕ([t, s]) = ϕ(ts− st),

and since ϕ is a ring homomorphism, we have

ϕ([t, s]) = ϕ(t)ϕ(s)− ϕ(s)ϕ(t),

= [ϕ(t), ϕ(s)],

= [x, y].

Thus

x[x, y] = ϕ(t) [ϕ(t), ϕ(s)] ,

= ϕ (t[t, s]) ,

= ϕ ((t[t, s])n),

= (ϕ(t)[ϕ(t), ϕ(s)])n ,

= (x[x, y])n .

The result follows. ¤

Lemma 2.4. If R is a ring, then the quotient ring R
J(R) is semisimple.

Proof. See [8. Theorem 2.14.] ¤

Lemma 2.5. Let b ∈ R and a ∈ J(R) such that ab = b. Then
b = 0.

Proof. Let a ∈ J(R). By theorem 2.2, there exists r ∈ R such that
r + a− ra = 0 and therefore

0 = 0b = (r + a− ra)b = rb + ab− rab = b. ¤
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Theorem 2.6. Let K be a division ring. If for any x, y ∈ K there
exists a positive integer n = n(x, y) > 1 such that [x, y]n = [x, y], then
K is commutative.

Proof. see [9. Theorem 12.10]. ¤

Theorem 2.7. Let K be a division ring which satisfies (∗). Then
K is commutative.

Proof. Let x, y be arbitrary elements in K. If x = 0, then [x, y] = 0 and
xy = yx. If x 6= 0, we put z = x−1y. Hence by (∗), there exists a
positive integer n = n(x, z) > 1 such that

(x[x, z])n = x[x, z] ,

([x, xz])n = [x, xz] ,

[x, y]n = [x, y].

Hence for every x, y ∈ K, there exists a positive integer n = n(x, y) >

1 such that [x, y]n = [x, y]. Thus, by theorem 2.6, K is commuta-
tive. ¤

Theorem 2.8. Let R be a left primitive ring which satisfies (∗). Then
R is commutative.

Proof. Let R be a left primitive ring. By Structure Theorem for Left
primitive ring ([9]), there exists a division ring K = EndR(V ) ( V
is a faitful simple left R-module ) such that we have one of the
following statements:
i) There exists a positive integer m such that R ∼= Mm(K).
ii) For any integer m > 1, there exists a subring Rm of R which
admits a ring homomorphism onto Mm(K).
But for any m > 2, the division ring Mm(K) doesn’t satisfy (∗).
For example, if x = E11, y = E12, then x[x, y] = y and therefore
(x[x, y])n = yn = 0. Thus m = 1 and R ∼= K. By theorem 2.6, R is
commutative. ¤
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Theorem 2.9. Let R be a semisimple ring which satifies (∗). Then
R is commutative.

Proof. By theorem 2.1. R is isomorphic to a subdirect product of
primitive rings. By Lemma 2.3., every Ri satisfies (∗). Therefore, by
theorem 2.8., each Ri is commutative and so R is commutative. ¤

3. Main Results

Theorem 3.1. Let R be a ring which satisfies (∗). Then x[x, y] = 0,
for every x, y ∈ R.

Proof. The semisimple ring R = R
J(R) satisfies (∗) and so by theorem

2.9, R is commutative. Therefore, for each x, y in R, [x, y] ∈
J(R) and there exist a positive integer n = n(x, y) > 1 such that

([x, xy])n = (x[x, y])n = x[x, y] = [x, xy],

and so
[x, xy]n−1[x, xy] = [x, xy]

by lemma 2.5., x[x, y] = 0. ¤

Corollary 1. Let R be a left s-unital ring satisfies (∗). Then R is
commutative.

Proof. Since R is left s-unital, so for every x in R, there exists
e ∈ R that x = ex. Now we show that R is right s-unital.

If x 6= xe, then by (∗) there exists a positive integer n > 1 such
that

e[e, xe− x] = (e[e, xe− x])n.

But we have

(e[e, xe− x])2 = (xe− x− xe2 + xe)2 = 0.

Therefore,
e[e, xe− x] = 0
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and so
xe− x− xe2 + xe = 0.

and hence, x = x(2e − e2). If é = 2e − e2, for every x ∈ R, there
exists é ∈ R such that x = xé and thus R is s-unital.
For every x, y in R, there exists e ∈ R such that xe = ex = x and
ye = ey = y (see[2]) and, by theorem 3.1, we have

0 = [x + e, (x + e)y],

= [x + e, xy + y],

= [x, xy + y] + [e, xy + y],

since [e, xy + y] = 0, so

0 = [x, xy + y],

= [x, xy] + [x, y].

By theorem 3.1., [x, xy] = 0, thus [x, y] = 0. Therefore, R is commu-
tative. ¤

Corollary 2. In corollary 1, being s-unital is necessary, for example
the following noncommutative ring isn’t s-unital:

A =

{[
0 a b
0 0 c
0 0 0

]
: a, b, c are any real numbers

}
.

But for every x, y, z in A, xyz = 0 and so A satisfies (∗), and A is
noncommutative ring.
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