Effect of Polynomial Identity $x[x, y] = (x[x, y])^n$ in the Commutativity of Rings

Z. Tabatabaei

Islamic Azad University-Marvdasht Branch

Abstract. In this paper we study some sufficient conditions for commutativity of a ring according to Jacobsons'idea. Jacobson proved that if R is a ring satisfying $x^n = x$ (n > 1) for each $x \in R$, then R is commutative. In this paper, we show that R is commutative if for every $x, y \in R$ there exists a positive integer n = n(x, y) such that $(x[x, y])^n = x[x, y]$.

AMS Subject Classification: 13PXX, 14A05.

Keywords and Phrases: Commutator, left(right) s-unital, left semisimple ring, Jacobson Radical, left Primitive ring, division ring, faithful simple left R-module.

1. Introduction

Throughout this paper R denotes an associative ring with center C and Jacobson radical J(R).

In 1950, Jacobson proved that if for each x in R there exists a positive integer n>1 such that $x^n=x$, then R is commutative. After that in [1], Searcoid and MacHale proved that if for each x,y in R, there exists a positive integer n=n(x,y)>1 such that $(xy)^n=xy$, then R is commutative. In [3], Hirano and Yaqub studied the rings satisfying $(x-x^n)(y-y^n)=0$ for every $x,y\in R$ and recently, Bell, yaqub and Abu-khuzam in [5], [6], [7] have considered some conditions and periodicity conditions for rings to be commutative.

We will fix commutator [x, y] = xy - yx in place of y and obtain commutative results for rings.

A ring R is called left (resp. right) s-unital ([2]) if for each $x \in R$ we have $x \in Rx$ (resp. $x \in xR$). A ring R is called s-unital if for each x in R, $x \in xR \cap Rx$.

If R is a s-unital ring, then for any finite subset K of R, there exists an element e in R such that xe = ex = x for all $x \in K$ (see [2]). Such an element e will be called a pueudo-identity of K.

A ring $\,R\,$ is called to be semisimple if its Jocobson radical $\,J(R)\,$ is zero.

A ring R is called left primitive if there exists a simple faithful left R-module.

A ring R is said to be a subdirect product of the family of rings $\{R_i|i\in I\}$ if R is a subring of the direct product $\prod_{i\in I}R_i$ such that $\pi_k(R)=R_k$ for every $k\in I$, where $\pi_k:\prod_{i\in I}R_i\longrightarrow R_k$ is the canonical epimorphism.

2. Preliminaries

First of all, we recall some concepts and prove some results that are used in the sequel.

Theorem 2.1. A nonzero ring R is semisimple if and only if R is isomorphic to a subdirect product of primitive rings.

Proof. See [8. pro. 3.2]. \square

Theorem 2.2. If R is a ring, then we have

- (i) J(R) is the intersection of all the left annihilators of simple left R-modules.
- (ii) J(R) is the intersection of all the regular maximal left ideals of R.
- (iii) J(R) is the intersection of all the left primitive ideals of R.
- (iv) J(R) is a left quasi-regular ideal which contains every left quasi-regular left ideal of R.

Proof. See [8. Theorem 2.3]. \square

We say R satisfies (*) if, for each x, y in R, there exists a positive integer n = n(x, y) > 1 such that $(x[x, y])^n = x[x, y]$.

Lemma 2.3. Let R and S be rings such that R satisfies (*) and $\varphi: R \longrightarrow S$ is a ring epimorphism. Then S satisfies (*).

Proof. Let $x, y \in S$. Since φ is onto, there exist $s, t \in R$ such that $\varphi(t) = x$, $\varphi(s) = y$. But R satisfies (*). Therefore there exists a positive integer n = n(t, s) > 1 such that $(t[t, s])^n = t[t, s]$. On the other hand, we have

$$\varphi([t,s]) = \varphi(ts - st),$$

and since φ is a ring homomorphism, we have

$$\varphi([t,s]) = \varphi(t)\varphi(s) - \varphi(s)\varphi(t),$$

$$= [\varphi(t), \varphi(s)],$$

$$= [x, y].$$

Thus

$$x[x,y] = \varphi(t) [\varphi(t), \varphi(s)],$$

$$= \varphi(t[t,s]),$$

$$= \varphi((t[t,s])^n),$$

$$= (\varphi(t) [\varphi(t), \varphi(s)])^n,$$

$$= (x[x,y])^n.$$

The result follows. \square

Lemma 2.4. If R is a ring, then the quotient ring $\frac{R}{J(R)}$ is semisimple.

Proof. See [8. Theorem 2.14.] \square

Lemma 2.5. Let $b \in R$ and $a \in J(R)$ such that ab = b. Then b = 0.

Proof. Let $a \in J(R)$. By theorem 2.2, there exists $r \in R$ such that r + a - ra = 0 and therefore

$$0 = 0b = (r + a - ra)b = rb + ab - rab = b$$
. \square

Theorem 2.6. Let K be a division ring. If for any $x, y \in K$ there exists a positive integer n = n(x, y) > 1 such that $[x, y]^n = [x, y]$, then K is commutative.

Proof. see [9. Theorem 12.10]. \square

Theorem 2.7. Let K be a division ring which satisfies (*). Then K is commutative.

Proof. Let x, y be arbitrary elements in K. If x = 0, then [x, y] = 0 and xy = yx. If $x \neq 0$, we put $z = x^{-1}y$. Hence by (*), there exists a positive integer n = n(x, z) > 1 such that

$$(x[x,z])^n = x[x,z] ,$$

$$([x,xz])^n = [x,xz] ,$$

$$[x,y]^n = [x,y].$$

Hence for every $x, y \in K$, there exists a positive integer n = n(x, y) > 1 such that $[x, y]^n = [x, y]$. Thus, by theorem 2.6, K is commutative. \square

Theorem 2.8. Let R be a left primitive ring which satisfies (*). Then R is commutative.

Proof. Let R be a left primitive ring. By Structure Theorem for Left primitive ring ([9]), there exists a division ring $K = End_R(V)$ (V is a faitful simple left R-module) such that we have one of the following statements:

- i) There exists a positive integer m such that $R \cong M_m(K)$.
- ii) For any integer m > 1, there exists a subring R_m of R which admits a ring homomorphism onto $M_m(K)$.

But for any $m \ge 2$, the division ring $M_m(K)$ doesn't satisfy (*). For example, if $x = E_{11}$, $y = E_{12}$, then x[x,y] = y and therefore $(x[x,y])^n = y^n = 0$. Thus m = 1 and $R \cong K$. By theorem 2.6, R is commutative. \square

Theorem 2.9. Let R be a semisimple ring which satisfies (*). Then R is commutative.

Proof. By theorem 2.1. R is isomorphic to a subdirect product of primitive rings. By Lemma 2.3., every R_i satisfies (*). Therefore, by theorem 2.8., each R_i is commutative and so R is commutative. \square

3. Main Results

Theorem 3.1. Let R be a ring which satisfies (*). Then x[x,y] = 0, for every $x, y \in R$.

Proof. The semisimple ring $\overline{R} = \frac{R}{J(R)}$ satisfies (*) and so by theorem 2.9, \overline{R} is commutative. Therefore, for each x, y in R, $[x, y] \in J(R)$ and there exist a positive integer n = n(x, y) > 1 such that

$$([x, xy])^n = (x[x, y])^n = x[x, y] = [x, xy],$$

and so

$$[x, xy]^{n-1}[x, xy] = [x, xy]$$

by lemma 2.5., x[x,y] = 0. \square

Corollary 1. Let R be a left s-unital ring satisfies (*). Then R is commutative.

Proof. Since R is left s-unital, so for every x in R, there exists $e \in R$ that x = ex. Now we show that R is right s-unital.

If $x \neq xe$, then by (*) there exists a positive integer n > 1 such that

$$e[e, xe - x] = (e[e, xe - x])^n.$$

But we have

$$(e[e, xe - x])^2 = (xe - x - xe^2 + xe)^2 = 0.$$

Therefore,

$$e[e, xe - x] = 0$$

and so

$$xe - x - xe^2 + xe = 0.$$

and hence, $x=x(2e-e^2)$. If $\acute{e}=2e-e^2$, for every $x\in R$, there exists $\acute{e}\in R$ such that $x=x\acute{e}$ and thus R is s-unital.

For every x, y in R, there exists $e \in R$ such that xe = ex = x and ye = ey = y (see[2]) and, by theorem 3.1, we have

$$0 = [x + e, (x + e)y],$$

= $[x + e, xy + y],$
= $[x, xy + y] + [e, xy + y],$

since [e, xy + y] = 0, so

$$0 = [x, xy + y],$$

= $[x, xy] + [x, y].$

By theorem 3.1., [x, xy] = 0, thus [x, y] = 0. Therefore, R is commutative. \square

Corollary 2. In corollary 1, being s-unital is necessary, for example the following noncommutative ring isn't s-unital:

$$A = \left\{ \begin{bmatrix} 0 & a & b \\ 0 & 0 & c \\ 0 & 0 & 0 \end{bmatrix} : a, b, c \text{ are any real numbers} \right\}.$$

But for every x, y, z in A, xyz = 0 and so A satisfies (*), and A is noncommutative ring.

References

- [1] M. O. Searcoid and D. Machale, Two elementary generalizations of boolean rings, *Amer. Math. Monthly*, 93 (1986), 121-122.
- [2] A. H. Yamini, Some commutativity results for rings with certain Polynomial identities, *Math. Okayama Univ*, 26 (1994), 133-136.

- [3] Y. Hirano and A. Yaqub, Rings satisfying the identity $(x-x^n)(y-y^n) = 0$, Math. Okayama Univ., 29 (1997).
- [4] A. H. Yamini and S. Sahebi, Rings satisfying the generalized Polynomial identity $(x x^n)([x, y]_k [x, y]_k^m) = 0$, Riv. Math. Univ. Parma, 6 (2) (1999), 11-18.
- [5] H. Abu-khuzam, H. E. Bell, and A. Yaqub, A weak periodicity condition for rings, *Math. Science*, 9 (2005), 1387-1391.
- [6] H. E. Bell and A. Yaqub, Near-commutativity and Partial-Periodicity Conditions for rings, *Result. Math.*, 46 (2004), 24-30.
- [7] H. E. Bell and A. Yaqub, On commutativity of semiperiodic rings, *Result. Math.*, 53 (2009), 19-26.
- [8] T. W. Hungerford, Algebra, by Springer-Verlag New York Inc., 1974.
- [9] T. Y. Lam, A First course in Noncommutative rings, Springer-Verlag New York Inc., 1991.

Zohre Tabatabaei

Department of Mathematics Islamic Azad University-Marvdasht Branch Shiraz, Iran.

E-mail: Parivash.tabatabaee@yahoo.com