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Abstract. To test whether a set of data has a specific distribution
or not, we can use the goodness of fit test. This test can be done by
one of Pearson X2-statistic or the likelihood ratio statistic G2, which
are asymptotically equal, and also by using the Kolmogorov-Smirnov
statistic in continuous distributions. In this paper, we introduce a new
test statistic for goodness of fit test which is based on entropy distance,
and which can be applied for large sample sizes. We compare this new
statistic with the classical test statistics X2, G2, and Tn by some sim-
ulation studies. We conclude that the new statistic is more sensitive
than the usual statistics to the rejection of distributions which are al-
most closed to the desired distribution. Also for testing independence,
a new test statistic based on mutual information is introduced.
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1. Introduction

One of the interesting problems in statistics is finding a distribution
which fits to a given set of data. In other words, we want to test whether
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a specific distribution coincides with given data or not. In a goodness
of fit test, we compare an unknown distribution q of a random variable,
or a random sample, with a given known distribution p.

There are many ways to test goodness of fit. Karl Pearson [18]
introduced a statistic for goodness of fit test that is asymptotically equal
to the likelihood ratio statistic for large sample sizes, and it has the Chi-
squared distribution. Moreover, for testing independence of two random
variables, we can use this statistic and compare it to quantiles of Chi-
squared distribution.

Sometimes we can compare two distributions by measuring the dis-
tance between them with a suitable criterion. One such comparison is
Kolmogorov-Smirnov distance d(F,G) = sup

t
|F (t) − G(t)| for continu-

ous distributions F and G. The Kolmogorov-Smirnov distance is zero if
and only if F=G (Lehmann and Romano, [14], p. 584). Another way
of measuring the distance between two distributions is relative entropy.
Also this measure is zero if and only if the two specified distributions are
equal (Cover and Thomas, [5], p. 26). By using the concept of relative
entropy, we want to construct a test statistic for testing goodness of fit.

The concept of entropy was first introduced in thermodynamics,
where it was used to provide a statement of the second law of thermo-
dynamics. Later, statistical mechanics provided a connection between
macroscopic property of entropy and microscopic state of the system.
This work was the crowning achievement of Boltzman [4]. In ([12])
Hartley introduced a logarithmic measure of the alphabet size. Shanon
[20] was the first who defined entropy and mutual information as defined
in this paper.

Entropy of a random variable is the measure of uncertainty of that
random variable, i.e., measure of the amount of information required on
the average to describe random variable. Entropy has many applications
in statistical science and engineering. One of the subjects in information
theory is mutual information, i.e., the amount of information that one
random variable has from other random variables. On the other hand,
it is the uncertainty of one random variable with knowledge of other
random variable. If the mutual information is zero, then the two random
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variables are independent. Taking this into consideration, we introduce
a measure based on mutual information for testing independence of two
random variables in contingency tables.

There are ideas about the construction of the test of goodness of
fit based on entropy but they are based on maximum entropy principal;
considering a class of densities satisfying criterion restriction and finding
a member of this class that maximizes entropy and finding its parametric
consistent estimators. Based on this principal, one can find the test
statistic of some densities that maximizes the entropy of special class,
including uniform, normal, exponential and inverse Gaussian.

Vasicek [21] proposed an entropy-based test for composite hypothe-
sis of normality and provided the critical values and power with Monte
Carlo simulation. Dudewicz and Meulen [7,8,9] extended Vasicek’s work
and proposed an entropy-based test for uniformity and provided the crit-
ical values and power by Monte Carlo simulation. Gokhale [10] proposed
the entropy-based test construction for a broad class of distributions.
Mudholkar and Lin [16] introduced an entropy-based test for exponential
hypothesis and prepared the critical values and power by Monte Carlo
simulation. Parzen [17] introduced entropy-based test statistic based on
difference of order statistic to test goodness of fit of parametric model
{F(x, θ)}. Mergel [15] found a test statistic based on maximum entropy
for null hypothesis inverse Gaussian with different estimator.

For testing independence, Robinson [19] introduced a test based on
an estimator of Kullback-Leibler divergence and studied consistency on
testing serial independence for time series. Zheng [22] claimed: ” Robin-
son’s test does not have good power against a broad range of alternatives.
Morever, the regularity assumptions imposed by the test are so strong
that is rules out even some commonly used distribution such as normal.”

Goria et al. [11] constructed goodness of fit tests for normal, Laplace,
exponential, Gamma, Beta based on maximum entropy principal and in-
troduced a consistent test of independent.

Our test statistics is based on property of relative entropy that is
zero if and only if two distributions are equal. This test can be used for
every distribution in null and alternative hypotheses.

In Section 2 we review the definition of relative entropy and mutual
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information and their properties. In Section 3, we review the goodness
of fit test and three well-known statistics. In Section 4, we introduce the
new statistic for testing goodness of fit based on relative entropy and
derive its asymptotic distribution by using limit theorems. To compare
the new test procedure with the usual goodness of fit tests, we provide
some examples in Section 5. In Section 6, it is shown by some simulation
studies that in contrast to the usual tests, the new test is sensitive to the
rejection of distributions which are almost close to the desired distribu-
tion. In Section 7, a new test statistic based on mutual information for
testing independent is derived, and some examples are given. Finally,
in Section 8, some conclusions are given.

2. Elementary Concepts

Relative entropy was first defined by Kullback and Leibler (1951). It is
known under a variety of names including the Kullback-Leibler distance,
cross entropy, information diverges and information for discrimination,
and has been studied in detail by Csiszar (1967) and Amari (1985).
In this section, we review two related concepts; namely, relative entropy
and mutual information.

2.1. Relative Entropy
The relative entropy is a measure of the distance between two distribu-
tions. It arises on an expected logarithm of the likelihood ratio. The
relative entropy D (q ‖p) is a measure of the inefficiency of assuming
that the distribution is p when the true distribution is q.

Definition 1. The relative entropy or Kullback-Leibler distance between
two probability mass functions p(x) and q(x) is defined as:

D (q ‖p) =
∑

x∈S(x)

q (x) log2

q (x)
p (x)

= Eq

[
log2

q (X)
p (X)

]
, (1)

where S(x) is the support of random variable X.
In the above definition, we use the convention (based on continuity ar-
gument) that 0 log 0

p = 0 and q log q
0 = ∞ .
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The relative entropy is always non-negative and is zero if and only if
p = q. However, it is not a true distance between two distributions
because it is not symmetric and does not satisfy the triangle inequality
(Cover and Thomas, 1991, p. 26).

2.2. Mutual Information
The mutual information is a measure of the amount of information that
one random variable contains about another random variable. It is the
reduction in the uncertainty of one random variable due to knowledge
of the other.

Definition 2. Let X and Y be two random variables with joint prob-
ability mass functions p(x, y) and marginal probability mass functions
p(x) and p(y). The mutual information I(X, Y ) is the relative entropy
between the joint distribution and the product p(x)p(y), i.e.,

I(X, Y ) =
∑

x

∑
y

p(x, y) log2

p(x, y)
p(x)p(y)

= D(p(x, y)||p(x)p(y))

= Ep(X,Y )

[
log2

p(X, Y )
p(X)p(Y )

]
(2)

In discrete case, the property of the mutual information is the same as
that of relative entropy, i.e., it is always non-negative. This criterion
is the measure of dependence of the two random variables and is zero if
and only if X and Y are independent. It is symmetric with respect to X
and Y.

3. Goodness of Fit Test

Suppose the result of a random experiment belongs to one of k disjoint
mutual categories A1, A2, . . . , Ak, where the probability of belonging to

category Ai is qi, (0 6 qi 6 1) ,
k∑

i=1
qi = 1 , this unknown probability

distribution is denoted by q(x). We want to test whether this random
experiment has a known probability distribution p(x) that is p (Ai) =
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pi , (0 6 pi 6 1) ,
k∑

i=1
pi = 1. In other words, we want to test H0 : q(x) =

p(x) for all x versus H1 : q(x) 6= p(x) for at least one x. To do this test,
we repeat the random experiment n times and let Oi be the frequency of
results that belong to Ai. If H0 is true, then the expected frequency of
results that belong to category Ai (Oi) is npi, that is, ei = E(Oi) = npi

in n experiments.
We can test the above hypothesis by the following well-known test statis-
tic:

1. Pearson statistic X2 =
k∑

i=1

(Oi−ei)
2

ei
. For large sample sizes, X2 has

approximately Chi-squared distribution with k − 1 degrees of freedom.
Therefore, we reject H0 if X2 > χ2 (k − 1, α) where χ2 (k − 1, α) is the
1−α quantile of Chi-squared distribution. This test is asymptotic max-
imin at level of α (Lehmann and Romano, 2005, p.593).

2. Likelihood ratio statistic G2 = 2
k∑

i=1
Oi log2

(
Oi
ei

)
. For large sam-

ple sizes, G2 has Chi-squared distribution with k-1 degrees of freedom.
Therefore, reject H0 if G2 > χ2 (k − 1, α). The statistic G2 is asymp-
totically equivalent to Pearson statistic X2 (Cover and Thomas, [5], p.
333).
3. The Kolmogrov-Smirnov statistic Tn = sup

x∈S(x)
n

1
2 |Fn(x)−F (x)| where

Fn(x) is the empirical distribution of sample and F is the distribution
function of continuous random variable X. Reject H0 if Tn is more than
critical value in related tables (Lehmann and Romano, [14], p.584).
In the next section, we introduce another statistic based on relative
entropy for testing goodness of fit.

4. The Goodness of Fit Test Based on Relative
Entropy

Consider testing the hypothesis H0 : q = p versus H1 : q 6= p. Using
the relative entropy given in definition 1. The above testing problem
is equivalent to testing the hypothesis H0 : D (q ‖p) = 0 versus H1 :
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D (q ‖p) > 0. For testing these hypotheses, we know that D (q ‖p) =
k∑

i=1
qi log2

qi

pi
= Eq

[
log2

q
p

]
.

Let Oi and ei , i = 1, . . . , k, be the values that are given in Section
3, then the maximum likelihood (ML) estimator of qi is q̂i = Oi

n . Since
pi = ei

n , so the ML estimator of D (q ‖p) is given by:

D̂ ( q ‖ p ) =
1
n

k∑

i=1

Oi log2

Oi

ei
. (1)

We know that O = (O1, O2, . . . , Ok) has multinomial distribution, i.e.,

O = (O1, O2, . . . , Ok) ∼Mk(n, (q1, q2, . . . , qk)).

For a large sample size, O has an asymptotic multivariate normal dis-
tribution Nk (nq, n (Dq − qq′)), where Dq is a diagonal matrix with di-
agonal elements qi, i = 1, 2, . . . , k , and q = (q1, q2, . . . , qk). Therefore,

√
n

(
1
n

O − q

)
d−→ Nk

(
0, Dq − qq′

)
,

where d−→ denotes the convergence in distribution (Agresti, [1], p. 580).
With simple algebra and using limit theorems and equations (1) and (3),
we can show:

Z =
√

n

(
D̂ (q||p)−D (q||p)

σ̂

)
d−→ N (0, 1) , (2)

where

σ̂2 =
1
n


∑

i

Oi

(
log2

Oi

ei

)2

−
(∑

i

Oi log2

Oi

ei

)2

 . (3)

So, from the above argument and asymptotic distribution of Z given by
(4), in testing the hypothesis H0 : D (q ‖p) = 0 versus H1 : D (q ‖p) > 0,
we can reject H0 if Z0 > Zα where

Z0 =
√

nD̂ (q||p)
σ̂

, (4)
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and Zα is the 1- α quantile of standard normal distribution.

Remark: The above statistic is very close to G2, but we will see by
simulation study, it is more sensitive than G2.
Note that we cannot compare the power of the new test procedure to the
usual goodness of fit tests based on X2, G2 and Tn statistics, since the
class of alternatives typically is enormously large and can no longer be
described by a parametric model (Lehmann and Romano, 2005, p.583).
Instead, in Section 6 we use some simulation studies to compare the
p-values of these test procedures and compare the sensitivity of these
test statistics. Before doing this, we will take a look at some examples
in the next section.

5. Examples

In this section, some examples for using and comparing the test proce-
dures that considered in previous sections are given (Bhattacharyya and
Johnson,1977).

Example 1. From a large population, a sample of 200 is selected and
the number of times that they go to an insurance company in a period
of 4-years is recorded in the following table. We want to test that the
distribution of data follows a Poisson distribution.

Number 0 1 2 3 4 5 6 7 sum
Frequency 22 53 58 39 20 5 2 1 200

Let X be the number of times that a person goes to the insurance com-
pany. We want to test H0 : X ∼ P (λ) versus H1 : X 6∼ P (λ). Using
test statistic (6), we have Z0 = 0.8012 and Z0.05 = 1.645. So, H0 is
accepted. The Pearson statistic is X2 = 2.33, which is not greater than
χ2(4, 0.05) = 9.487. So, again the hypothesis H0 is accepted.

Example 2. In a general election in a country about a subject, the
percentage of answers is:
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opinion very agreeable agreeable abstention disagreeable very disagreeable
percentage 20 30 20 20 10

A sample of 100 is selected and the results are collected in the following
table.

opinion very agreeable agreeable abstention disagreeable very disagreeable
frequency 14 18 18 26 24

Do these data coincide with general election?
By considering the above tables and using (6),we have Z0 = 2.3156,
and by comparing it to Z0.05 = 1.645, we conclude that the hypothesis
is rejected. Also X2 = 46.5 and χ2(4, 0.05) = 9.487, so at the level
α = 0.05, we conclude that H0 is rejected and the two methods have the
same conclusion.

Example 3. The following table shows the results of tossing a dice 120
times. We want to test whether the dice is biased or not.

spot 1 2 3 4 5 6 sum
frequency 18 23 16 21 18 24 120

By considering pi = 1
6 and ei = 20, we have Z0 = 0.7914. Comparing

it with Z0.05 = 1.645, we conclude that H0 is accepted. Also, X2 = 2.5
and comparing it with χ2(5, 0.05) = 11.1, we conclude that H0 is also
not rejected.

6. Simulation Study

As we told in Section 4, the class of alternative hypothesis is very large
and contains all distributions except the distribution given in H0. Thus,
we cannot compute and compare the power function of the new test
procedure with the usual ones. In this section, we generate random
numbers from Poisson and exponential distributions and carry out the
goodness of fit test by the test statistics which are discussed in this
paper. To compare these test functions, we use their p-values.
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6.1. Poisson Test

In this section, we simulate 10000 random numbers from P (λ1) for λ1 =
1, 2 and consider testing hypothesis H0 : X ∼ P (λ2) versus H1 : X 6∼
P (λ2), where values of λ2 are given in Tables 1 and 2, and compute

values of d̂ = D̂ (q ‖p) , σ̂2 = S2
d , Z, X2, G2 and p-values corresponding

to Z, X2 and G2 statistics. Since the data are generated from Poisson
distribution with λ1 = 1, from Table 1, we see that for values of λ2 near
1(rows I), all procedures accept H0 and for values of λ2 far from 1(rows
III), all procedures reject H0. But, for values of λ2 between (1.0196 ,
1.02) the new method based on Z statistic reject H0 (which is correct)
but the usual methods based on X2 and G2 accept H0 (which is not
correct). This shows that the new statistic Z is more sensitive than the
usual statistic to the rejection of distributions which are almost close to
the desired distribution.

Table 1. Results of testing H0 : X ∼ P (λ2) versus H1 : X 6∼ P (λ2) for
10000 random numbers generated from P(1).

λ2 d̂ S2
d Z X2 G2 p-value (z) p-value (X2) p-value (G2)

I 1 0.0008 0.0048 1.15 2.32 2.36 0.1251 0.89 0.88
1.005 0.0008 0.0049 1.24 3.21 3.29 0.1075 0.7788 0.774
1.01 0.0009 0.005 1.35 4.58 4.71 0.0855 0.6 0.584
1.015 0.0011 0.005 1.49 6.43 6.61 0.068 0.4 0.37
1.019 0.0012 0.006 1.63 8.25 8.48 0.0526 0.22 0.215
1.0195 0.0013 0.006 1.646 8.49 8.74 0.0505 0.21 0.201

II 1.0196 .0013 0.006 1.65 8.54 8.79 0.0495 0.21 0.198
1.0197 0.0013 0.006 1.654 8.59 8.84 0.0495 0.209 0.196
1.02 .0013 0.006 1.66 8.75 8.99 0.0485 0.2 0.188

III 1.03 0.0017 0.007 2.05 14.77 15.2 0.0202 0.023 0.02
1.04 0.0023 0.0085 2.5 22.6 23.27 0.0062 0 0
1.05 0.003 0.001 2.96 32.18 33.18 0.0015 0 0
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Table 2. Results of testing H0 : X ∼ P (λ2) versus H1 : X 6∼ P (λ2) for
10000 random numbers generated from P (2).

λ2 d̂ S2
d Z X2 G2 p-value (z) p-value (X2) p-value (G2)

I 2 0.001 0.005 1.58 3.72 3.81 0.0571 0.88 0.86
2.001 0.001 0.005 1.6 3.87 3.96 0.0548 0.86 0.855
2.005 0.0017 0.005 1.65 4.53 4.64 0.0495 0.8 0.79

II 2.01 0.0012 0.005 1.73 5.58 5.72 0.0418 0.69 0.68
2.03 0.002 0.006 2.17 12.17 12.47 0.0150 0.16 0.14
2.04 0.002 0.008 2.45 16.89 17.3 0.0071 0.033 0.028

III 2.05 0.003 0.008 2.75 22.52 23.08 0.003 0 0
2.06 0.003 0.0095 3.06 29.07 29.82 0.0011 0 0
2.07 0.0035 0.011 3.38 36.52 37.48 0 0 0

Similar results can be seen from Table 2, where we generate 10000 ran-
dom numbers from P(2) and then test the hypothesis H0 : X ∼ P (λ2)
versus H1 : X 6∼ P (λ2) for some values of λ2. Again we see that for
values λ2 ∈ (2.005, 2.03) the new method based on Z statistic rejects H0

but the other methods accept it.

6.2. Exponential Test
Similar to the previous section, we simulate 10000 random numbers
from exp(1) and consider testing hypothesis H0 : X ∼ exp(λ2) versus
H1 : X 6∼ exp(λ2), where values of λ2 are given in Table 3 and computed
d̂, σ̂2, Z, X2, G2, Tn and p-values corresponding to Z, X2, and G2 statis-
tics where the critical value of Tn is 1.36. We see that for values of λ2

near 1 (rows IV), all procedures accept H0 and for λ2 = 1.06 that is far
from 1 (row I), all procedures reject H0. For values of λ2 in (1.039,1.041)
the new method based on Z statistic rejects H0 but the usual methods
based on X2, G2, and Tn accept H0. This shows the new method is
more sensitive than the others to the rejection of distribution which are
almost close to the desired distribution. Although we see in row III for
λ2 = 1.05, the methods based on X2 and G2.
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Table 3. Results of testing H0 : X ∼ exp (λ2) versus H1 : X 6∼ exp (λ2) for
10000 random numbers generated from exp(1).

λ2 d̂ S2
d Z X2 G2 Tn p-value (z)p-value (X2)p-value (G2)

I 1 0.00040.00121.15 4.09 4.1 0.76 0.1251 0.767 0.766
1.02 0.00040.00141.17 4.9 4.66 0.40 0.121 0.673 0.7
1.03 0.00070.00211.42 8.1 7.62 0.64 0.0778 0.337 0.38

II 1.0390.0009 0.003 1.7212.5811.750.87 0.0427 0.0862 0.11
1.04 0.001 0.00321.7513.18 12.3 0.90 0.0401 0.072 0.09
1.041 0.001 0.00331.7913.7912.860.92 0.0367 0.0573 0.083

III 1.05 0.00140.00462.1320.1318.661.10 0.0166 0.0055 0.009
IV 1.06 0.002 0.00652.5228.9726.671.38 0.0059 0 0

7. Test of Independence Based on Mutual In-
formation

Suppose a random sample of size n is drawn from a population. The
observations in the random sample are classified according to the two
criteria. Using the first criterion, each observation is associated with
one of the R rows, and using the second criterion, each observation is
associated with one of the C columns. Consider Oij as the number of
observations associated with row i and column j simultaneously. These
Oij s are arranged in a R×C contingency table.

Y 1 2 · · · C Sum
X
1 O11 O12 · · · O1C O1.

2 O21 O22 · · · O2C O2.
...

...
...

. . .
...

...
R OR1 OR2 · · · ORC OR.

Sum O.1 O.2 · · · O.C n

The total number in i-th row is Oi. and j-th column is O.j and the sum of
numbers in all the cells is n. For testing H0: (the event ”an observation
is in row i” is independent of the event ”that some observation is in
column j” for all i and j.), by the definition of independence of events,
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we can state as follows:
H0: p(row i, column j) = p(row i) ×p(column j) for all i, j

Versus
H1: p(row i, column j)6= p(row i) ×p(column j) for some i, j

The test statistic is given by

X2 =
∑

j

∑

i

(Oij − eij)
2

eij
,

where eij = Oi.×O.j

n .This statistic has Chi-squared distribution with (R−
1)(C − 1) degrees of freedom. So, reject H0 at level α if X2 > χ2((R −
1)(C − 1), α).
Now using the mutual information given in definition 2, the above testing
problem is equivalent to testing the hypothesis H0 : I(X,Y ) = 0 versus
H1 : I(X, Y ) 6= 0, i.e., to test H0 : D(p(x, y)||p(x)p(y)) = 0 versus
H1 : D(p(x, y)||p(x)p(y)) > 0.
Testing the above hypothesis is similar to that of Section 4. In this case,
the ML estimator of I(X,Y ) is given by

Î (X,Y ) =
1
n

∑

i

∑

j

Oij log2

Oij

eij
,

where O = (O11, O12, . . . , ORC) is the observed values and has a multi-
nomial distribution. For large sample size it has an asymptotic normal
distribution. By using the same argument as in Section 4, we have.

Z =

√
n

(
Î (X,Y )− I (X, Y )

)

σ̂

d−→ N (0, 1) ,

where

σ̂ 2 =
1
n


∑

i

∑

j

Oij

(
log2

Oij

eij

)2

−

∑

i

∑

j

Oij log2

Oij

eij




2
 .

So, we reject H0 if Z0 =
√

n(Î(X,Y ))
σ̂ > Zα.
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The following examples introduce the use of this model of testing in com-
parison to the usual test of independence based on X2-statistic (Bhat-
tacharyya and Johnson,1977).

Example 4. 1200 persons are classified into four business groups and
two types of opinion. The results are classified in the following table.
Are these two types of opinion independent from each other?

opinion I II Sum
group

A 32 269 300
B 51 199 250
C 67 233 300
D 83 267 350

Sum 233 967 1200

From this table, we have X2 = 20.59 and by comparing it with χ2(3, 0.05)
= 7.815, we reject the independent hypothesis. Based on mutual infor-
mation, we have Z0 = 2.514 and by comparing it with Z0.05 = 1.645
we also reject the independent hypothesis. Therefore, the two methods
have the same result.

Example 5. To distinguish the efficiency of a chemical treatment on
seeds, we choose 100 seeds with treatment and 150 seeds without treat-
ment and gain the following results:

positive negative
with treatment 84 16

without treatment 132 18

for testing independence, we have X2 = 0.817 and χ2(1, 0.05) = 3.841,
which imply independence. Moreover, with the new method, we have
Z0 = 0.4456, which is not greater than Z0.05 = 1.645. Thus, we conclude
that the independent hypothesis is not rejected.
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8. Conclusion

In this paper, we introduce a new statistic for goodness of fit test based
on relative entropy and compare it with the classical statistics X2, G2

and Tn (in the continuous case) by simulation studies. It is seen that
goodness of fit test based on relative entropy is more sensitive than the
usual ones to the rejection of distributions which are almost close to the
desired distribution. Also, to test the independence,we derive a new test
based on mutual information.
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